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Abstract— The MinMax controller results from a differential
game approach to solving the H∞ control problem. As such, the
MinMax controller involves a design parameter, which gives
a measure of robustness for the controller. There exists no
explicit formula for determining the design parameter, and
the optimal value must be determined experimentally. Instead
of choosing the parameter value experimentally and suffering
the computational expense, it would be more efficient if the
design parameter could be determined by a prescribed formula
based on a mathematically rigorous criterion. In this paper,
the author employs continuous sensitivity equation methods

to examine the sensitivity of the controlled state with respect
to variation of the MinMax control parameter, with the goal
being to explore the possibility of determining an efficient
assignment of the parameter that is mathematically justified.
Numerical simulations are performed on a one-dimensional
nonlinear cable-mass system, and the results are presented.

I. INTRODUCTION

Since its introduction by Zames [1], the H∞ controller has

received much research attention because of its robustness

to disturbances and uncertainties. Rhee and Speyer later

introduced what has become known as the MinMax con-

troller, which is a differential game approach to solving the

H∞ control problem [2]. As with the standard H∞ control

problem, the mathematical formulation of the MinMax con-

troller involves a design parameter, which gives a measure

of robustness for the controller. There is no explicit formula

for determining the design parameter, and the optimal value

- optimal in the sense of controller robustness - must be de-

termined experimentally, thus adding computational expense

to the design of the MinMax controller. Presently, a costly

iterative procedure is used to choose the value for θ . Still

yet, Chen identifies the problem of finding an optimal value

for the control design as an unsolved problem in systems and

control theory [3]. Instead of choosing the parameter value

experimentally and suffering the computational expense, it

would be more efficient if the design parameter could be de-

termined by a prescribed formula based on a mathematically

rigorous criterion.

In this paper, the author employs continuous sensitivity

equation methods to mathematically examine the sensitivity

of the controlled state and the controller itself with respect

to variation of the MinMax control parameter, with the goal

being to explore the possibility of determining an efficient

assignment of the parameter that is mathematically justified.
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Numerical simulations are performed on a one-dimensional

nonlinear cable-mass system [4], [5], [6].

The outline of the paper is as follows. The MinMax

controller is summarized in Section II. Section III provides

a description of the equations governing the cable-mass

PDE, along with the variational forms of the PDE equations

and state sensitivity. Numerical results are presented in

Section IV. Conclusions and directions for future work are

given in Section V.

II. MINMAX CONTROL DESIGN

In this section, the author presents a short overview of the

MinMax compensator design [2]. Assume the existence of a

nonlinear PDE system of the form

ẋ(t) = A0x(t)+N (x(t))+Bu(t)+Dη(t),

x(0) = x0,
(1)

where x(t) = x(t, ·) ∈ X is the state of the nonlinear system

and X is a Hilbert space. Here, A0 is the system operator

defined on D(A0) ⊆ X that, by assumption, generates an

exponentially stable C0 semigroup, N defined on X is the

nonlinearity in the system, B is the control operator, D is

the disturbance operator, u(t) is the control input, and η(t)
is the disturbance, with the latter two functions defined on

Hilbert space U . It is assumed that knowledge of only part

of the system can be obtained through the state measurement

y on Hilbert space Y where

y(t) = C x(t). (2)

Assume an estimate of the state is used in the control law.

To provide this estimate, a compensator is used that has the

form

ẋc(t) = Acxc(t)+Fy(t), xc(0) = xc0
(3)

and the feedback control law is written

u(t) = −K xc(t) (4)

where xc(t) = xc(t, ·) ∈ X is the state estimate. Designing a

controller of this type requires determining Ac,F , and K .

The MinMax compensator is defined for linear systems,

so one must first linearize the system in (1), (2). Doing so

yields the linear distributed parameter control system (with

state xℓ) defined on X

ẋℓ(t) = A xℓ(t)+Bu(t)+Dη(t), xℓ(0) = xℓ0
(5)

with sensed output

y(t) = C xℓ(t). (6)
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By solving the Riccati equations

A
∗Π + ΠA −Π(BR−1

B
∗−θ 2

BB
∗)Π +C

∗
C = 0, (7)

where R : U →U is a weighting operator for the control of

the form R = cI, with c a scalar and I the identity operator,

and

A P+ PA
∗−P(C ∗

C −θ 2
C

∗
C )P +BB

∗ = 0, (8)

one can obtain the operators K , F , and Ac via

K = R−1
B

∗Π,

F = (I −θ 2PΠ)−1PC
∗,

Ac = A −BK −FC + θ 2
BB

∗Π. (9)

The resulting feedback control is applied to the original

nonlinear system; the closed loop nonlinear system is then

defined by

d

dt

[

x(t)
xc(t)

]

=

[

A −BK

FC Ac

]

[

x(t)
xc(t)

]

+

[

N (x(t))
N (xc(t))

]

+

[

D

0

]

η(t).

(10)

For sufficiently small θ , there are guaranteed minimal so-

lutions Π and P to (7) and (8), respectively, such that

(I − θ 2PΠ) is positive definite and the linearized closed

loop system, i.e. the linearized form of (10), is stable. Note

that θ = 0 yields the classical Linear Quadratic Gaussian

(LQG) compensator design. Since there exist no prescribed

formulas for θ , there is an inherent computational expense

for this control design in choosing the parameter value.

The author seeks to use sensitivity analysis to gain a better

understanding of the MinMax controller. The goal is to

develop a methodology for choosing θ to satisfy performance

and robustness criteria, while justifying that choice based on

the analysis. To this end, sensitivity analysis is applied to

MinMax controlled distributed parameter systems to examine

the sensitivity of the controlled state to θ .

III. A STRUCTURAL VIBRATION PROBLEM

The PDE system of interest in this work is the cable

mass distributed parameter system described in [4] and also

studied numerically in [5] and [6]. In particular, a wave

equation with Kelvin-Voigt damping models the elastic cable,

which is fixed at one end and attached to a mass at the other

end, for 0 < s < ℓ. A Duffing’s type equation models the

oscillator, which is forced by a sinusoidal disturbance, at

s = ℓ. The equations governing this system are as follows:

ρ
∂ 2

∂ t2
w(t,s) =

∂

∂ s

[

τ
∂

∂ s
w(t,s)+ γ

∂ 2

∂ t∂ s
w(t,s)

]

, (11)

for 0 < s < ℓ, t > 0, and

m
∂ 2

∂ t2
w(t, ℓ) = −

[

τ
∂

∂ s
w(t, ℓ)+ γ

∂ 2

∂ t∂ s
w(t, ℓ)

]

−α1w(t, ℓ)−α3[w(t, ℓ)]3 + η(t)+ u(t),

(12)

with boundary condition

w(t,0) = 0, (13)

where w(t,s) represents the displacement of the cable at time

t and position s, w(t, ℓ) gives the position of the mass at

time t, ρ and m are the densities of the cable and mass

respectively, τ is tension in the cable, and γ is the coefficient

of the damping term. The spring’s stiffening terms have

coefficients of α1 and α3, with α3 being associated with the

nonlinear effects in the spring. A disturbance enters through

η(t), and u(t) is a control input. This view of the cable mass

system can be seen in Figure 1.

Fig. 1. Cable-mass system.

Sensed information is used to design a feedback controller

that attenuates the disturbance η(t). It is assumed that the

control acts exclusively on the mass, and the only available

measured information is the position and velocity of the

mass. These two observations take the form

y1(t) = w(t, ℓ), y2(t) =
∂

∂ t
w(t, ℓ). (14)

Identifying operators from (5), (6), A contains system dy-

namics, while the control input, disturbance input, and state

measurement operators are bounded and defined by

B = D =

[

0,0,0,
1

m

]T

and C =

[

0 1 0 0

0 0 0 1

]

. (15)

A. Variational Form and Discretization of Cable Mass Sys-

tem

Now consider the variational form of the cable mass

system in order to develop a Galerkin finite element approxi-

mation of the problem. One wants to find a w(s) ∈V = {ϕ =
[ϕ1(·),ϕ2]

T ∈ E : ϕ1(ℓ) = ϕ2} ⊂ E = H1
L(0, ℓ)× IR such that

for all ϕ ∈V
∫ ℓ

0
ρẅ(t,s)ϕ1(s) ds−

∫ ℓ

0
τw′′(t,s)ϕ1(s) ds−

∫ ℓ

0
γẇ′′(t,s)ϕ1(s) ds+ mẅ(t, ℓ)ϕ2 + τw′(t, ℓ)ϕ2+

γẇ′(t, ℓ)ϕ2 + α1w(t, ℓ)ϕ2 + α3 [w(t, ℓ)]3 ϕ2

= η(t)ϕ2 + u(t)ϕ2.

(16)

Now choose a basis {ei}
N
i=1 for the approximating space

V N ⊆ V , where N corresponds to the number of gridpoints
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used in the finite element approximation. In particular, since

V N ⊆V ⊂E = H1
L(0, ℓ)×IR, the state can be approximated by

a linear combination of linear B-splines, satisfying bi(0) = 0,

of the form

ei = [bi(s) bi(ℓ)]
T

for i = 1, . . . ,N. (17)

Then the state is approximated as
[

w(t,s)
w(t, ℓ)

]

≈

[

wN(t,s)
wN(t, ℓ)

]

=
N

∑
i=1

ci(t)ei(s)

=





N

∑
i=1

ci(t)bi(s)

cN(t)bi(ℓ)



 .

(18)

Using the state approximation (18) in (16), we find that (16)

can be rewritten as a matrix equation

M0c̈(t)+ D0ċ(t)+ K0c(t)+ F0(c(t)) =

B0u(t)+ G0η(t),

c(0) = c0, ċ(0) = c1,

(19)

where c(t) = [c1(t), . . . ,cN(t)]T , M0 is the mass matrix, D0

is the damping matrix, K0 is the stiffness matrix, F0(c(t))
contains the nonlinear terms, B0 is the input matrix, G0 is

the disturbance matrix, all defined by the following, for i, j =
1, . . . ,N:

[M0]i, j =

∫ ℓ

0
ρbi(s)b j(s) ds+ mbi(ℓ)b j(ℓ)

[D0]i, j =

∫ ℓ

0
γb′i(s)b

′
j(s) ds

[K0]i, j =
∫ ℓ

0
τb′i(s)b

′
j(s) ds+ α1bi(ℓ)b j(ℓ)

F0(c(t)) = α3 [wN ]3

B0 = G0 = [b1(ℓ), . . . ,bN(ℓ)]T .

(20)

Convert (19) into a first order system by defining x1(t) = c(t)
and x2(t) = ẋ1(t) = ċ(t), thereby yielding

[

ẋ1(t)
ẋ2(t)

]

=

[

0 I

−M−1
0 K0 −M−1

0 D0

][

x1(t)
x2(t)

]

+

[

0

M−1
0 B0

]

u(t)+

[

0

M−1
0 G0

]

η(t)−

[

0

−M−1
0 F0(w(t))

]

,

x(0) = x0,

(21)

where x = [x1(t),x2(t)]
T =

[

x1(t),
d

dt
x1(t)

]T

. Note that (21)

is a finite-dimensional approximation of the system in (1).

B. Variational Form and Discretization of Sensitivity Equa-

tion for Cable Mass System

This framework now provides the basis for implementing

control techniques discussed in Section II. Beyond control

design, the author is interested in examining the effects

of the MinMax control parameter, θ , on the displacement

of the cable, displacement of the mass, and the controller

itself. The dependence of these quantities on θ is denoted

explicitly with the following notation: w(t,s) = w(t,s;θ ),
w(t, ℓ) = w(t, ℓ;θ ), and u(t) = u(t;θ ), respectively. A contin-

uous sensitivity equation method is employed for examining

the sensitivities of these quantities to changes in the value of

θ used in the MinMax control design. Make the following

definitions for the sensitivities: sw(t,s;θ ) = ∂
∂θ w(t,s;θ ) for

the sensitivity of cable displacement with respect to θ at

time t and spatial location s, sw(t, ℓ;θ ) = ∂
∂θ w(t, ℓ;θ ) for the

sensitivity of mass displacement with respect to θ at time t,

and su(t;θ ) = ∂
∂θ u(t;θ ) for the sensitivity of the controller

with respect to θ at time t.

Now derive the variational form of the sensitivity equation

by adding (11) and (12) and differentiating with respect to θ .

One seeks a sw(s;θ ) ∈ V = {ϕ = [ϕ1(·),ϕ2]
T ∈ E : ϕ1(ℓ) =

ϕ2} ⊂ E = H1
L(0, ℓ)× IR such that for all ϕ ∈V

∫ ℓ

0
ρ s̈w(t,s;θ )ϕ1(s) ds−

∫ ℓ

0
τs′′w(t,s;θ )ϕ1(s) ds

−

∫ ℓ

0
γ ṡ′′w(t,s;θ )ϕ1(s) ds+ ms̈w(t, ℓ,θ )ϕ2+

τs′w(t, ℓ;θ )ϕ2 + γ ṡ′w(t, ℓ;θ )ϕ2+

α1sw(t, ℓ;θ )ϕ2 + 3α3 [w(t, ℓ;θ )]2 sw(t, ℓ;θ )ϕ2

= su(t;θ )ϕ2.

(22)

We choose the same basis {ei}
N
i=1 for the approximating

space V N ⊆V as was used in the state approximation. Then

the state sensitivity is approximated as

[

sw(t,s;θ )
sw(t, ℓ;θ )

]

≈

[

sN
w(t,s;θ )

sN
w(t, ℓ;θ )

]

=
N

∑
i=1

sci(t)ei(s)

=





N

∑
i=1

sci(t)bi(s)

scN(t)bi(ℓ)



 ,

(23)

and a finite dimensional approximation of (22) can be

4093



rewritten as a matrix equation

M0s̈c(t)+ D0ṡc(t)+ K0sc(t)+ F1(c(t),sc(t))

= B0su(t;θ ),

sc(0) = sc0, ṡc(0) = sc1,

(24)

where sc(t) = [sc1(t), . . . ,scN(t)]T , M0, D0, K0, and B0 are

defined in (20) and

F1(c(t),sc(t)) = 3α3[wN ]2(sw)N . (25)

Convert (24) into a first order system by defining sx1(t) =
sc(t) and sx2(t) = ṡx1(t) = ṡc(t), thereby yielding

[

ṡx1(t)
ṡx2(t)

]

=

[

0 I

−M−1
0 K0 −M−1

0 D0

][

sx1(t)
sx2(t)

]

+

[

0

M−1
0 B0

]

su(t)+

[

0

−M−1
0 F1(w(t),sw(t))

]

,

s(x0) = sx0,

(26)

where sx = [sx1(t),sx2(t)]
T =

[

sx1(t),
d

dt
sx1(t)

]T

. Combining

(21) and (26) yields the coupled system









ẋ1(t)
ẋ2(t)
ṡx1(t)
ṡx2(t)









=









0 I 0 0

H1 H2 0 0

0 0 0 I

0 0 H1 H2

















x1(t)
x2(t)
sx1(t)
sx2(t)









+









0

H3 u(t)
0

H3 su(t)









+









0

H4 η(t) + H5

0

H6









,

(27)

where I is the identity operator and

H1 = −M−1
0 K0

H2 = −M−1
0 D0

H3 = M−1
0 B0

H4 = M−1
0 G0

H5 = −M−1
0 F0(w(t))

H6 = −M−1
0 F1(w(t),sw(t)).

(28)

Now, (27) is a finite-dimensional approximation to a system

similar to the form of (1), where the additional terms appear

due to the coupled sensitivity equation. One can replace the

control u(t) in (27) by the full state feedback control law

u(t,θ ) = −K x(t,θ ) = −K

[

x1(t)
x2(t)

]

. (29)

Furthermore, one can differentiate (29) with respect to θ to

compute su(t,θ ) as follows

su(t,θ ) =
d

dθ
u(t,θ )

= −R−1
B

∗Π
dx(t,θ )

dθ
−R−1

B
∗ dΠ

dθ
x(t,θ )

= −K sw(t,θ )−R−1
B

∗ dΠ

dθ
x(t,θ ),

(30)

where the sensitivity of Π with respect to θ ,
dΠ

dθ
, is com-

puted by differentiating (7) with respect to θ and solving a

resulting Lyapunov equation [7], [8].

IV. NUMERICAL RESULTS

To obtain a solution to the system in (27), initial conditions

are chosen of the form








x1(0)
x2(0)
sx1(0)
sx2(0)









=









s

−2

0.75 ∗ s

0.75 ∗−2









. (31)

That is, to generate a nonzero state sensitivity, the author

chooses the initial conditions for the sensitivity equation

to be 15% of the initial conditions for the state equation.

A finite element approximation of order N = 80 for the

spatial discretization is employed to simulate (27), and

the parameter values for the cable-mass distributed system

are provided in the following table. For this discretization

TABLE I

SYSTEM PARAMETERS

ρ τ γ m ℓ α1 α3

1 1 .005 1.5 2 .01 3

and set of parameter values, it was found that the largest

possible MinMax controller parameter θ that will guarantee

(I − θ 2PΠ) being positive definite is 0.45. Therefore, all

MinMax controllers implemented in this paper use θ = 0.45.

Still, the reader is reminded of the interest in examining the

sensitivity of the state with respect to θ variation.

To this end, approximate state and state sensitivities to θ
are computed for several values of the parameter, namely θ =
0.00 (LQG compensator), 0.20, 0.40 and 0.45. For reference,

the uncontrolled state plot is given in Figure 2.

Figure 3 shows the controlled state plot for θ = 0.45.

The plot demonstrates how well the MinMax controller

is able to regulate the position state to the exponentially

stable equilibrium of zero. The controller also satisfactorily

regulates the velocity state and mass and midcable positions.

Due to space limitations, the controlled state plots for θ =
0.00, θ = 0.20 and θ = 0.40 are not provided in this paper.

However, they tell much the same story as Figure 3. The

MinMax controllers for θ = 0.00, θ = 0.20, and θ = 0.40

regulate the states to zero quite well, and it is difficult to

visually distinguish the controlled states from those obtained

with θ = 0.45.
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Fig. 2. Uncontrolled Position State

Fig. 3. MinMax Controlled Position State (θ = 0.45)

The primary question of interest in this paper is to examine

how sensitive the controlled cable and mass displacements

are to variation in the MinMax control parameter, θ . Given

the similarity of the controlled state plots for a range of θ
values between 0.00 and 0.45, the author expects the state

sensitivity to be similar for these same parameter values.

Figures 4-7 show the approximate sensitivities of the cable

and mass displacements with respect to θ for θ = 0.00, 0.20,

0.40 and 0.45, respectively.

The four plots all show increased amplitude near s = 1,

meaning the sensitivities of the cable and mass displacements

are largest near the midcable position for the parameter

values considered. The sensitivities increase as the θ pa-

rameter increases. This seems reasonable since the MinMax

controller with θ = 0.45 does a visibly better job of regu-

lating the cable and mass displacements to the exponentially

stable equilibrium of [0,0]T than the LQG controller where

θ = 0.00 [9]. The sensitivities also demonstrate that the

fixed end of the cable is not sensitive to small changes

in the θ parameter. This seems reasonable given that the

control, which is dependent on θ , is only applied at the mass

location and not along the cable. It is interesting to note

that the sensitivities remain bounded over the time interval

Fig. 4. State Sensitivity (θ = 0.00)

Fig. 5. State Sensitivity (θ = 0.20)

Fig. 6. State Sensitivity (θ = 0.40)
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Fig. 7. State Sensitivity (θ = 0.45)

[0,50] seconds, even at the midcable position. In fact, the

sensitivities are oscillatory, and the amplitudes of the waves

are comparable to the amplitudes of the controlled cable and

mass displacements observed in Figure 3. Additionally, the

author examined su(t;θ ), the sensitivity of the controller with

respect to θ , and these plots are found in Figure 8. Figure 8

shows that the controllers are more sensitive initially and

then taper off toward a zero sensitivity. Additionally, as θ
increases, increased controller sensitivity is observed.
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Fig. 8. Control Sensitivities: θ = 0.00 (top left), θ = 0.20 (top right),
θ = 0.40 (bottom left), θ = 0.45 (bottom right)

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a nonlinear cable-mass distributed parameter

system is considered, and a continuous sensitivity equation

method is applied to derive the sensitivity of the cable and

mass displacements with respect to the MinMax control

parameter, θ . Numerical results calculated using a Galerkin

finite element approximation for the PDEs have been pre-

sented. Approximate state sensitivities and controller sen-

sitivities were calculated for varying θ parameter values.

Based on the computational results presented here, both the

state and controller sensitivities increase gradually in mag-

nitude for increasing values of θ ∈ [0.00,0.45]. Increasing

the value of θ also leads to improved performance in the

regulation of the state to equilibrium. These sensitivity and

controller performance results do not suggest a clear indi-

cation for choosing the control parameter θ in an alternate

way.

B. Future Works

An analysis similar to that presented in this paper will

be applied to other hyperbolic and parabolic distributed

parameter systems, in hope of determining a strategy for

an efficient assignment of the MinMax control parameter

that is mathematically justified and still satisfies certain

performance and robustness criteria. Other related research

directions pertain to sensitivity and conditioning of solutions

to Riccati equations and controller robustness [8].
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