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Abstract— While performing a mission, multiple Unmanned
Aerial Vehicles (UAVs) need to avoid each other to prevent
collisions among them. In this paper, we design a collision
avoidance algorithm to resolve the conflict among UAVs that are
on a collision course while flying to their respective destinations.
The collision avoidance algorithm consist of each UAV that is
on a collision course reactively executing a maneuver that will,
as in ‘inverse’ Proportional Navigation (PN), increase Line of
Sight (LOS) rate between them, resulting in a ‘pulling out’ of
collision course. The algorithm is tested for high density traffic
scenarios as well as for robustness in the presence of noise.

I. INTRODUCTION & PROBLEM STATEMENT

Research in Unmanned Aerial Vehicles (UAVs) is growing

at a fast pace due to various capabilities that they offer for

military and civilian sectors. The increasing popularity of

UAVs can be attributed to, among others, the reduced cost,

portability and absence to human risk. The multiple UAV

missions give rise to many emergent subproblems that need

to be tackled effectively. For any mission involving multiple

UAVs, a common subproblem is that the UAVs may collide

with each other. The problem assumes great importance in

a high density multiple UAV traffic scenario. In this paper,

we design a collision avoidance algorithm to resolve conflict

among UAVs that are on collision course in a highly cluttered

environment.

We consider the following problem in this paper. We

assume that several UAVs are flying from different bases

to their respective destinations. These UAVs need to avoid

mid-air collision with other UAVs on their path. For safety

reasons, ‘miss distance’ or the minimum separation between

any two UAVs at any time of flight is desirable to be

greater than a specified value. This has to be achieved

preferably in a decentralized manner. The collision avoidance

maneuvers need to be realistic and efficient in the sense

that the deviation of a UAV from its nominal path owing

to collision avoidance maneuver should be minimal so as to

minimize the late arrival at its destination. The problem is to

find an algorithm that, when executed by every UAV, results

in no collisions and minimum number of ‘near misses’.

Although it is desirable to have zero near misses, it might be

impossible to achieve this in high density air traffic scenarios

like the ones considered in this paper. Moreover, in the

case of UAVs, where there is no human risk, such a high

level of safety requirement may not be necessary. So we

emphasize on reducing the near misses while allowing some
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Fig. 1. An example situation requiring collision avoidance

in trade-off for efficiency. Each UAV needs to achieve the

above objective with the limited information of positions and

velocities of only the neighboring UAVs that are within its

sensor range. An example scenario of the problem that we

tackle is depicted in Fig. 1 where mid-air encounter of 6
UAVs during flight to their respective destinations is shown.

In the figure, the inner and the outer discs around UAV U1

show the desired safety zone around the UAV and its sensor

range. The same applies to all other UAVs.

We assume that a UAV has limited sensor range and

knows exactly the positions and velocities of all UAVs within

its sensor range. For a group of cooperating UAVs, if the

communication is possible, this information can be acquired

through sharing. We consider UAVs with a kinetic constraint

of minimum radius of turn. We assume that all UAVs fly at

a same constant speed and have same minimum radius of

turn. Thus, in this paper, we are dealing with a homogeneous

group of UAVs although the algorithm we develop is easily

extendable to a heterogeneous group. The kinematics of the

UAV Ui with position (xi, yi), velocity V , and heading ψi

is

ẋi = V cos(ψi)

ẏi = V sin(ψi)

ψ̇i = ui (1)

where ui is the commanded angular velocity issued by

the collision avoidance guidance algorithm. If Rmin is the

minimum radius of turn, then |ui| ≤ V/Rmin.

There has been some research over the last decade on

aircraft conflict and collision avoidance both from the mul-

tiple UAV and the air traffic control points of view. Most

of the algorithms developed for air traffic management are
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those that guarantee safe trajectories in a very low density

traffic with a few aircraft ([1], [2], [3]). In literature, we find

protocol based conflict resolution algorithms ([4], [5]) that

require instantaneous changes in position, velocity and/or

heading of aircraft which are unrealistic. Also, these are not

applicable in highly dynamic environments considered in our

paper.

There has also been some work in the area of collision

avoidance where size and shape of objects are explicitly

taken into account ([6], [7], [8]). These algorithms need the

a priori knowledge of the trajectories of obstacles.

Archibald et al. [9] use satisficing game theory to address

the problem of collision avoidance in multiple UAVs. They

do simulations involving test cases with high density air

traffic scenarios to test their algorithm. This algorithm,

apart from being computationally intensive, requires constant

communication between neighboring UAVs which may not

always be possible. We call this algorithm Satisficing Game

Theory based Algorithm (SGTA) for collision avoidance and

use it for comparative studies with the algorithm that we

develop in our paper.

A broad overview of our solution for the multiple UAV

collision avoidance while the UAVs fly from their bases to

respective destinations is as follows. When a UAV envisages

a collision with another UAV, it ‘reacts’ by switching to

a collision avoidance mode. The collision avoidance mode

comprises of a maneuver of doing a turn until the projected

trajectories of UAVs are safe with a minimum required

separation between them. The turn taken is one which

ensures an increase in the LOS rate between the concerned

UAVs. The collision avoidance maneuver would have taken

the UAV out of its nominal path. We require that the arrival

of a UAV at its destination has to be as quick as possible. The

UAV therefore takes a Dubins path [10], which is a minimum

time path, from its current location to the destination.

The organization of the rest of the paper is as follows.

In Section II, we develop the algorithm for collision avoid-

ance. We analyze the performance of this algorithm through

various test cases and discuss the results in Section III.

Section IV gives conclusions.

II. THE ALGORITHM

Proportional Navigation (PN) guidance law [11] is very

robust and elegant, and its variants are therefore most widely

used for missile guidance. The PN guidance law applies a

lateral acceleration to the missile so as to nullify the rate of

rotation of Line of Sight (LOS) or the LOS rate between

the missile and the target, and brings the missile into a

collision course with the target. As far as collision avoidance

is concerned, a lateral acceleration which takes a vehicle

away from the collision course is what is desirable. We

propose an algorithm that employs a kind of ‘inverse’ PN

for collision avoidance. The algorithm consist of applying

lateral accelerations to increase the LOS rate between UAVs

that are on a collision course.

There are a few papers in the literature that have used PN

based algorithms for collision and obstacle avoidance ([12],

[13], [14]). These algorithms are usually not suitable for

large number of aircraft. Our proposed algorithm resembles

the work in above papers, extended to multiple UAV case

by considering pairs of UAVs with the highest chance of

predicted collision.

A. Collision prediction

The first step toward employing such a collision avoidance

rule for a UAV is to calculate the envisaged miss distance

or the Zero Effort Miss (ZEM) with all other UAVs which

are within its sensor range. We assume that every UAV has

the capability to locate other UAVs in its sensor range and

measure their velocities exactly.

In a 2D engagement scenario, consider two UAVs, U1 and

U2. Let the initial position of U1 be p1 = (x1, y1) and that of

U2 be p2 = (x2, y2). The UAVs have velocities of magnitude

V. Let d1 = (l1,m1) and d2 = (l2,m2) be direction cosines

of the respective headings of U1 and U2. At any time t, if

the separation between the two UAVs is S, then

S2 =(p1 − p2)·(p1 − p2) + 2(p1 − p2)·(d1 − d2)(V t)

+ (d1 − d2)·(d1 − d2)(V t)2. (2)

Solving for t from
dS

dt
= 0 will give the time at which a

minimum separation between UAVs will occur; we call this

the time-to-go (tgo) which is given as

tgo = −
(p1 − p2)·(d1 − d2)

V (d1 − d2)·(d1 − d2)
. (3)

If tgo > 0, then there exists a time at which closest approach

between two UAVs occur. The tgo calculated as above can

take negative values which means that the vehicles are on a

diverging path (that is, their paths extrapolated backwards

lead to a minimum distance between them and thus the

negative tgo). Substituting tgo into the expression for S
will give the predicted miss distance or ZEM which is the

distance of closest approach. We do not give the explicit

analytical expression for this here for sake of brevity. If the

obtained miss distance is less than the desired separation,

then a collision avoidance maneuver has to be performed.

A UAV prepares a list of UAVs in its neighborhood with

which its miss distance is less than the minimum required

separation. From this list, the UAV chooses that UAV with

which it has minimum positive tgo, which means that they

are on a collision course, and does a collision avoidance

maneuver.

B. Collision avoidance maneuver

The collision avoidance maneuver that we propose involve

UAVs pulling out of the collision course. To pull out of a

collision course, a UAV has to apply a lateral acceleration in

such a way so as to increase the rate of rotation of the LOS

connecting the two UAVs. This is illustrated in Fig. 2. Let

r be the LOS separation. If θ2 > θ1 (refer Fig. 2), then the

LOS rate is

θ̇ =
V sin θ2 − V sin θ1

r
. (4)
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Fig. 2. Collision avoidance rule for a 2D engagement

To increase the LOS rate in this scenario (θ2 > θ1), we apply

accelerations a1 and a2, which delivers a turn radius

R = Rmin exp(λ × ZEM/Rdes), (5)

to U1 and U2, respectively, as shown in the figure. Here,

the desired separation Rdes and λ are tuning parameters for

the algorithm, and Rmin is the minimum radius of turn.

The magnitude of applied acceleration is V 2/R and the

corresponding turn rate obtained is V/R. Accelerations are

applied in directions opposite to that shown in Fig. 2 for

each UAV, when θ2 < θ1. For a predicted zero ZEM, we

expect a UAV to do a tightest turn corresponding to minimum

radius of turn. Whereas, for a higher predicted minimum

separation, as there is a lower risk of collision it is desirable

that the radius of turn of the collision avoidance maneuver

of a UAV be considerably lesser to minimize deviation from

the nominal path. One way of achieving this is by using

an exponential function as above to command a demanded

radius of turn R.

If a UAV is not in collision course with any other UAV,

then it flies to its destination. It is preferable to do this in

minimum time. This can be achieved if the UAV takes a

Dubins path from the current location to the destination. This

is explained in the following subsection.

C. Dubins path to destination

Given initial position and departure angle, and final po-

sition and arrival angle, Dubins curve or path gives the

trajectory with minimum path length under the additional

constraint of a maximum allowed curvature of the trajectory

[10]. In the multiple UAV collision avoidance scenario, once

a UAV has deviated from its nominal path after a collision

avoidance maneuver, it is desirable to reach its destination

in minimum time. Following a Dubins path to destination

will help in achieving this because, with a constant speed

assumption, a minimum length path is also a minimum time

path. For arrival of a UAV at destination in minimum time,

we require a special case of Dubins curve where there is no

arrival angle constraint. The maximum curvature constraint

takes care of the minimum radius of turn of UAV. We propose

a switching algorithm that implements this special case of

Dubins path.

Let D be the destination, C+ a circle, whose radius is

equal to the radius of minimum turn, tangential to the

DestinationC+

C-

D

C+

Destination

Fig. 3. Dubins paths to destination. Two possible scenarios where the
destination is inside and outside the circle (C+) of minimum radius of turn
(case of free terminal constraint).

velocity vector and such that following C+ will take UAV

toward the destination, and C− a similar circle such that

following C− will take a UAV away from the destination

(refer Fig. 3). Then, a UAV employing Algorithm 1 will

follow a Dubins path to the target. Fig. 3 shows the possible

cases of Dubins path to a destination when there is no

terminal angle constraint.

Algorithm 1 Algorithm to implement Dubins path with free

terminal constraints

if UAV heading points to D then

Head straight.

else if C+ encircles D (D strictly within C+) then

Take a path along C−.
else

Take a path along C+.
end if

We implement this algorithm with a slight modification.

During simulation, a UAV follows Algorithm 1 till the

difference between its desired heading, in which case the

UAV’s velocity vector points directly to its destination, and

actual heading is less than a small quantity ǫ > 0. Beyond

that, the UAV uses a proportional controller of the form

ψ̇ = k(ψd − ψ), where ψ is the heading angle and ψd is

the desired heading of the UAV. This avoids chattering that

might occur otherwise due to switching.

Putting all this together, we give an algorithmic description

of the collision avoidance algorithm, that each UAV flying

to its destination implements at every time step in a multi-

UAV scenario, in Algorithm 2. Since the UAV reacts to

the situation of a violated desired separation and employs

a maneuver in the spirit of inverse PN, we call this Reactive

Inverse PN Algorithm (RIPNA).

RIPNA handles the multiple UAV scenario by considering

only that collision which is immediate to a UAV in terms

of the minimum LOS rate. This approach results in a good

collision avoidance algorithm with good performance as

we will demonstrate through simulations. However, it is

possible that by considering only the immediate collision

and doing a collision avoidance maneuver may at times
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Algorithm 2 Reactive Inverse PN Algorithm (RIPNA) for

UAV Ui for collision avoidance

Find neighbors Ni that are other UAVs within the sensor

range Rsen of Ui.
Calculate ZEM between Ui and each UAV Uj ∈ Ni.
Find N ∗

i , the neighbors with which Ui has ZEM < Rdes.
if N ∗

i is not empty then

Choose Uj∗ ∈ N ∗

i with which Ui has least tgo.
Turn with radius of turn R to increase LOS rate between

Ui and Uj∗.
else

Take Dubins path to destination.

end if

lead the UAVs to other conflicts which are too close to

avoid. Also, there is a chance of chattering when a UAV

faces two nearly similar conflicts – avoiding one will lead to

other and vice versa. This usually occur when engagement

geometries have some sort of symmetry. In such cases where

engagements are close to symmetric, it is desirable to follow

a protocol which will break the symmetry and then proceed

to use RIPNA. We remark that RIPNA can easily handle

heterogeneous group of UAVs with different velocities and

radii of turn by using tuning parameters specific to individual

UAVs instead of global ones. However, to keep the situations

simple, we consider only a homogeneous group of aircraft

for simulations in this paper.

III. SIMULATION RESULTS AND DISCUSSION

In order to evaluate the collision avoidance algorithm, we

carry out simulations. For simulations, we use a test case

similar to that in [9] which was originally designed for air

traffic control problems. Thus the speed of vehicles used is

typical of an aircraft and not of small UAVs. Nonetheless as

this suffices to test the algorithm, as in [9], we assume that

the UAVs travel at a speed of 500 miles per hour (733.33
ft/s) and that they have the maximum turn rate of 5◦ per

second.

We use the same performance metrics that are used to

measure the performance of collision avoidance algorithm

in [9]. These are number of near misses and efficiency, and

are explained below for completeness.

Near misses: From safety point of view, UAVs are required

to keep a distance of at least 5 miles between each other. Any

location of two UAVs within this desired separation results

in a near miss. A good collision avoidance algorithm will

ensure fewer near misses.

Efficiency: The UAVs are required to reach the destination

in minimum possible time. The collision avoidance maneuver

should be minimal so that UAVs arrive at their destinations

not too late. If taj is the actual flight time of jth UAV and

tij is its ideal flight time (i.e., the time taken to reach the

destination if the UAV were not to make any deviation for

collision avoidance), then the efficiency for N UAVs is given

as

Efficiency =
1

N

N∑

j=1

tij
taj

.

A. Test case of random flights

A test case for collision avoidance should be complex and

at the same time scalable to test the high traffic density

cases. We consider a test case given in [9]. The UAVs

fly from random points on an outer circle, the destination

being random points on an inner circle. The radii of outer

and inner circles used for simulations in this paper are

120 and 100 miles, respectively. Each simulation is done

for a specified aircraft density or the number of aircraft

in the concerned airspace. When the simulation begins, a

new aircraft is introduced at a random point on the outer

circle at every 5 sec interval, which is assigned a random

point on the inner circle as destination, till the required

aircraft density is achieved. Whenever an aircraft reaches the

destination, a new aircraft is added to keep the number of

aircraft constant in the airspace. Once the airspace achieves

required density, information regarding system efficiency and

number of near misses is collected from simulation for a

simulation time of 50 minutes. Since the test case involves

random introduction of UAVs and random assignment of

destination points, the simulation for a particular aircraft

density is conducted 20 times and average values are taken.

Since there is a randomness involved in this test case, we

can expect that, if the simulations are carried out reasonably

enough number of times, we would have encountered almost

all the possible conflict geometries.

To achieve a good performance, right values have to be

chosen for the tuning parameters of our algorithm. Towards

this, we do extensive simulations with varying values of

tuning parameters Rdes, Rsen and λ, and observe the per-

formance in terms of number of near misses and efficiency.

One such study for a traffic density of 20 aircraft and a

constant λ = 0.5 is given in Fig. 4. As seen from the figure,

the choice of Rdes and Rsen is a tradeoff between number

of near misses and efficiency; more the efficiency, more

the number of near misses. After similar studies for other

aircraft densities, the values Rsen = 10 miles, Rdes = 6
miles, Rmin = 5/π miles (equivalent to a maximum turn

rate of 5◦ per sec) and λ = 0.5 were chosen for the tuning

parameters. Fig 4(b) shows a decrease in efficiency with an

increase in sensor radius. This is contrary to the intuition

that more information should lead to better efficiency. Here,

we remark that RIPNA is not an optimal algorithm that take

complete advantage of all the available information, but a

reactive one. For a UAV implementing RIPNA, higher sensor

radius implies more neighbors. Then, it may so happen that

in trying to avoid conflicts with this larger class of neighbors,

a UAV may result in taking a roundabout path avoiding the

whole neighbor set as a group while there may be a safe

path through them. This behavior results in a poor efficiency.

Restricting the sensor radius forces a UAV to ignore those

neighbors which are far and take the risk of exploring a

safe path through the neighbors. Also, we observe through
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Fig. 4. Variation of near misses and efficiency with Rsen and Rdes for
a traffic density of 20 aircraft.

TABLE I

COMPARISON OF PERFORMANCE OF ALGORITHMS RIPNA AND SGTA:

TEST CASE OF RANDOM FLIGHTS (AVERAGED OVER 20 RUNS)

Number of Near Misses Efficiency
Aircraft SGTA RIPNA SGTA RIPNA

20 1.95 1.35 99.45 99.09
40 7.05 3.75 97.94 97.64
60 17.85 12.65 94.38 96.39

simulations that by a suitable choice of tuning parameters,

we can adapt RIPNA to mimic a near optimal behavior.

The results for low density (20 aircraft), medium density

(40 aircraft), and high density (60 aircraft) traffic are given in

Table I. For the purpose of comparison, the values obtained

by simulating the algorithm of Archibald et al. [9] are also

given in the table. Archibald et al. [9] use satisficing game

theory based approach for aircraft conflict resolution. They

give two versions of the algorithm – full and simplified. We

use the simplified algorithm as it is computationally much

less demanding while the performance is almost same as that

of the full version [9]. The simplified satisficing approach to

aircraft conflict resolution which we call Satisficing Game

Theory based Algorithm (SGTA). To compare the perfor-

mances under similar test conditions, along with RIPNA,

we implement SGTA using information available in [9].

As complete details of the implementation of SGTA is not

available in [9], we handle the missing details the same way

Fig. 5. A snapshot during simulation of random flights where UAVs fly
from random points on outer to inner circle for a traffic density of 40

aircraft.

TABLE II

COMPARISON OF COMPUTATION TIMES OF RIPNA AND SGTA: TEST

CASE OF RANDOM FLIGHTS (AVERAGED OVER 20 RUNS)

Number of Time Taken (sec)
Aircraft SGTA RIPNA

20 673 68
40 1711 200
60 3009 396

as we do it for RIPNA. For example, the same subroutines are

used for both the algorithms to calculate predicted minimum

separation, efficiency, number of near misses, and other

required quantities. The results used for comparison are

obtained from our implementation and not directly taken

form the above mentioned reference. However, the results

are similar in noise-free case. They do not consider the case

with noisy measurements. Both the algorithms were executed

and evaluated under same conditions for all test cases – for

example, same sequence of random numbers were used in

setting up the problem, and performances are measured in the

same way. All the values in Table I are averages over 20 runs.

As seen from Table I, the number of near misses are lesser

for RIPNA when compared to SGTA, while the efficiencies

are comparable for all the cases. A snapshot during one of

the simulations with a traffic density of 40 aircraft is shown

in Fig. 5.

RIPNA has a great computational advantage over the

algorithm in [9]. The average computational time taken in

the simulations with various air traffic densities is presented

in Table II. Clearly, RIPNA is about 8–10 times faster.

B. Simulations with noise

To study the robustness of the collision avoidance algo-

rithm, we introduce noise in the presence of measurement of

UAV positions and observe the degradation of performance

of the algorithm. In previous simulations, we assumed that

the positions of neighboring UAVs which are within the

sensor range of a particular UAV are exactly known to it. We
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TABLE III

COMPARISON OF PERFORMANCE OF RIPNA AND SGTA: TEST CASE OF

RANDOM FLIGHTS WITH NOISE IN MEASUREMENT OF POSITION

Std. Dev. of Near Misses Efficiency
Noise SGTA RIPNA SGTA RIPNA

0 1.95 1.35 99.45 99.09
0.1 8.65 1.35 99.58 98.99
0.2 12.50 1.55 99.79 99.08
0.3 14.10 1.95 99.44 99.02

TABLE IV

COMPARISON OF PERFORMANCE OF RIPNA AND SGTA: TEST CASE OF

RANDOM FLIGHTS WITH NOISE IN MEASUREMENT OF HEADING

Std. Dev. of Near Misses Efficiency
Noise SGTA RIPNA SGTA RIPNA

0 1.95 1.35 99.45 99.09
5 10.40 1.80 99.92 99.01
10 13.30 1.85 99.96 99.08
15 14.60 2.25 99.99 99.06

relax this assumption and hold that the x and y coordinates

of other UAVs are measured with a noise which is normally

distributed with a standard deviation of σ in miles. The

performance of collision avoidance algorithms, both RIPNA

and SGTA, for the case of random flights with an aircraft

density of 20 for various values of σ is tabulated in Table III.

From the table we observe that as the standard deviation of

noise in position measurement increases the performance of

the collision avoidance algorithm developed in this paper

degrades gracefully when compared to the sudden loss of

performance as observed for the algorithm of Archibald et

al. [9].

We also study the effect of noise in the measurement

of heading of neighboring aircraft on the performance of

our collision avoidance algorithm. During simulation, we

introduce noise of various standard deviations to actual

heading of neighboring aircraft to make the measurement

noisy. Collision avoidance algorithm is run with this noisy

measurement. Performance results obtained are presented

in Table IV where the standard deviations are in degrees.

Even in this case we observe a very low degradation in

performance of RIPNA in terms of number of near misses

when compared to SGTA.

IV. CONCLUSIONS

In this paper we developed a reactive inverse PN algorithm

to achieve collision avoidance among UAVs in a multi-

UAV scenario while UAVs are flying to their respective

destinations. This algorithm tries to achieve a collision

avoidance by increasing the LOS rate between the UAVs

on a collision course. This is inspired from and opposite

to what is done in the popular PN in missile guidance.

Through simulations, we demonstrated the performance of

this collision avoidance algorithm. We also showed that the

degradation of the performance of the algorithm is graceful

in presence of noise which points to the robustness of the

algorithm. The devised algorithm is decentralized as each

UAV implements it with its limited information of surround-

ings gathered through its sensors, and is simple to implement

as it contains the spirit of PN guidance law. The algorithm is

computationally less demanding. However, there is still scope

for a lot of improvement. A lack of efficiency can arise due

to ‘over doing’ the collision avoidance maneuver because

of the myopic behavior of UAVs implementing the present

algorithm – only the most threatful UAV is considered. It

can so happen that by the time one UAV is avoided, another

one which was not ‘seen’ earlier is encountered. Algorithms

which take into account all the UAVs in the sensor radius and

even model those outside it are expected to perform better.

Future work in this topic will be directed along these lines.
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