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Abstract— This paper deals with the consensus control of a
multi-agent system with state and measurement disturbances,
and proposes a distributed dynamic output feedback protocol.
By defining an appropriate controlled output, the consensus
control problem is reformulated as an H∞ control problem.
Using H∞ techniques, a sufficient condition in terms of linear
matrix inequalities (LMIs) is given to ensure consensus with
the prescribed H∞ performance, and the undetermined system
matrix of the proposed protocol is obtained. Simulation results
show that a multi-agent system under the proposed protocol
with system matrix solved by the LMI (linear matrix inequality)
approach possesses the desired H∞ consensus performance.

Index Terms— Consensus, Multi-agent systems, Dynamic H∞

control, External disturbances

I. INTRODUCTION

The multi-agent system has received considerable attention

due to its applications in many areas, such as formation

control of unmanned air and underwater vehicles, flocking of

mobile vehicles, distributed optimization of multiple mobile

robotic systems, and scheduling of automated highway sys-

tems. In the literature, consensus control generally means

to design a distributed protocol based on communication

networks such that the states of all agents are asymptotically

driven to a common value, which is well accepted as one of

the most important and fundamental issues in the cooperative

control of multi-agent systems.

During the past decade, large numbers of interesting

results have been obtained for the consensus of multi-

agent systems [1]-[20]. In reality, agents are usually under

uncertain environments with external disturbances and sub-

ject to communication noises arising from the information

interaction. Thus recently, consensus of such a multi-agent

system has attracted the attention of some researchers [13]-

[20]. In [17], a stochastic model was considered for the

average consensus of discrete-time multi-agent systems, in

which each new updated value was corrupted by an additive

noise with zero mean, and the optimal weighted adjacency
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matrix was designed to minimize the static mean square

consensus error by convex optimization. In [18], Li et

al. considered the disturbance rejection problem arising in

the coordination control of multi-agent systems subject to

external disturbances, and they proved that the disturbance

rejection problem of an agent network could be solved by

analyzing the H∞ control problem of a set of independent

systems whose dimensions were all equal to that of a single

agent. In [19], Lin et al. studied the consensus problem

of first-order multi-agent systems with external disturbances

and model uncertainties for directed networks with zero and

nonzero time delays, and they showed that this problem could

be transformed into a robust H∞ control problem.

In this paper, we study the consensus control problem for

a network of autonomous agents with high-dimension linear

coupling dynamics and state and measurement disturbances.

To this end, a controlled output is firstly defined to measure

the state disagreements among agents, and the consensus

control problem of multi-agent systems is reformulated as

an H∞ control problem. Then, a distributed dynamic output

feedback protocol is proposed with an undetermined sys-

tem matrix, and a closed-loop system is obtained with an

uncontrollable subblock in the state matrix. To solve this

uncontrollable problem, we conduct a model transformation

by two steps, and derive an equivalent reduced-order system

regarding the H∞ performance, based on which a sufficient

condition in terms of LMIs is given to ensure consensus

with the desired H∞ performance, and the system matrix

of the proposed protocol is further determined by solving

two LMIs. Finally, a simulation example is included to

demonstrate the effectiveness of the proposed protocol and

the correctness of the theoretical results.

Throughout this paper, 1 and 0 denote the column vectors

with appropriate dimensions whose elements are all ones

and all zeros, respectively, while 1n and 0n denote the

corresponding n×1 column vectors; In and 0n (0n×m) denote

the n× n identity matrix and the n× n (n×m) null matrix;

notations X < 0 and X > 0 represent that the symmetric

matrix X is negative and positive definite, respectively;

in symmetric block matrices, ∗ is used as an ellipsis for

terms induced by symmetry; diag{M1, · · · ,Mn} denotes a

block diagonal matrix whose diagonal blocks are given by

M1, · · · ,Mn; the notation ⊗ denotes the Kronecker product;

superscripts “T” and “-1” stand for matrix transposition and

matrix inverse, respectively; the space of square-integrable

vector functions over [0,∞) is denoted by L2[0,∞), and

for v(t) ∈ L2[0,∞), its normalized energy is defined by

‖v(t)‖2 = (
∫ ∞

0 ‖v(t)‖2dt)1/2, where ‖v(t)‖2 = vT(t)v(t).
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II. PRELIMINARIES AND PROBLEM REFORMULATION

A. Preliminaries

Let G = (V ,E ,A) be a weighted undirected graph of

order n with the set of nodes V = {v1, · · · ,vn}, the set of

undirected edges E ⊆ V ×V , and a symmetric adjacency

matrix A = [ai j] with nonnegative adjacency weights ai j. The

adjacency elements associated with edges are positive, i.e.,

(vi,v j) or (v j,vi) ∈ E ⇔ ai j = a ji > 0. In graph G , node vi

represents the ith agent, and edge (vi,v j) represents that

information flows between agents i and j. Then the set

of neighbors of vi is denoted by Ni = {v j ∈ V : (vi,v j) ∈
E }. The Laplacian of a weighted graph G is defined as

L = D−A, where diagonal matrix D = diag{d1, · · · ,dn} is

named the degree matrix of G , whose diagonal elements are

di = ∑n
j=1 ai j. An undirected path is a sequence of ordered

edges of the form (vi1 ,vi2), (vi2 ,vi3), · · · , (vil−1
,vil ) in an

undirected graph, where vi j
∈ V , j = 1, · · · , l. If there is a

path from every node to every other node, the undirected

graph is said to be connected.

Lemma 1: [2] Let L be the Laplacian of an undirected

graph G . Then L has at least one zero eigenvalue and

all of the nonzero eigenvalues are positive. Furthermore,

matrix L has exactly one zero eigenvalue if and only if (iff)

the undirected graph G is connected, and the eigenvector

associated with zero is 1.

Lemma 2: [11] Let Lc = [Lci j
] be a symmetric matrix with

Lci j
=

{

n−1
n

, i = j

− 1
n
, i 6= j.

(1)

Then the following statements hold:

(1) The eigenvalues of Lc are 1 with multiplicity n− 1

and 0 with multiplicity 1. The vectors 1T
n and 1n are the

left and the right eigenvectors of Lc associated with the zero

eigenvalue, respectively.

(2) There exists an orthogonal matrix U ∈ R
n×n such that

UTLcU =

[

In−1 0n−1

∗ 0

]

,

and the last column of U is 1n/
√

n. Furthermore, let L∈R
n×n

be the Laplacian of any undirected graph, then

UTLU =

[

L1 0n−1

∗ 0

]

,

where L1 ∈ R
(n−1)×(n−1) is positive definite iff the graph is

connected.

B. Problem statement and reformulation

Consider the multi-agent system consisting of n identical

agents with the ith one modeled by the following linear

dynamic system with external disturbances:

ẋi(t) = Axi(t)+B1ωi(t)+B2ui(t)

yi(t) = Cxi(t)+Dωi(t), i = 1, · · · ,n,
(2)

where xi(t) ∈ R
m, ui(t) ∈ R

m2 and yi(t) ∈ R
p are the state,

the protocol and the measured output of agent i, respectively,

and ωi(t) ∈ R
m1 is the external disturbance that belongs

to L2[0,∞). It is assumed that (A,B2) is stabilizable, and

without loss of generality, B2 is of full column rank. The

objective is to design a distributed output feedback protocol

such that the multi-agent system (2) asymptotically reaches

consensus on the states that is expressed by

lim
t→∞

(xi(t)− x j(t)) = 0, ∀i, j ∈ {1, · · · ,n} , N . (3)

Under the influence of external disturbances, the accurate

consensus may be hard to achieve. In view of this, we

attempt to design a protocol to attenuate the interference

of external disturbances to the consensus performance. In

order to quantitatively analyze the effect of disturbances to

the consensus, define a controlled output function

zi(t) = xi(t)−
1

n

n

∑
j=1

x j(t), i = 1, · · · ,n (4)

to measure the disagreement of xi(t) to the average state

of all agents. Note that if zi(t) = 0 for all i ∈ N , then

xi(t) = x j(t) for ∀i, j ∈ N , that is, the consensus is

achieved. Denote x(t) = [xT
1 (t) · · · xT

n (t)]T ∈ R
mn, ω(t) =

[ωT
1 (t) · · · ωT

n (t)]T ∈ R
m1n, u(t) = [uT

1 (t) · · · uT
n (t)]T ∈ R

m2n,

y(t) = [yT
1 (t) · · · yT

n (t)]T ∈ R
pn and z(t) = [zT

1 (t) · · · zT
n (t)]T ∈

R
mn. Then combining the dynamic equation (2) with the

controlled output (4) yields the following system written in

matrix form

ẋ(t) = (In ⊗A)x(t)+(In ⊗B1)ω(t)+(In ⊗B2)u(t)

y(t) = (In ⊗C)x(t)+(In ⊗D)ω(t)

z(t) = (Lc ⊗ Im)x(t),

(5)

where Lc is defined in (1).

Since z(t) = 0 implies xi(t) = x j(t) for ∀i, j ∈ N , the

attenuating ability of the multi-agent system on consensus

against external disturbances can be quantitatively measured

by the H∞ norm of the closed-loop transfer function matrix

Tzω(s) from the external disturbance ω(t) to the controlled

output z(t) that is defined by

‖Tzω(s)‖∞ = sup
ν∈R

σ̄(Tzω(jν)) = sup
0 6=ω(t)∈L2[0,∞)

‖z(t)‖2

‖ω(t)‖2
, (6)

where σ̄ denotes the largest singular value. Thus, the ob-

jective changes into designing an output feedback protocol

ui(t) (i ∈ N ) such that ‖Tzω(s)‖∞ < γ , or equivalently, the

closed-loop system satisfies the dissipation inequality
∫ ∞

0
‖z(t)‖2dt < γ2

∫ ∞

0
‖ω(t)‖2dt, ∀ω ∈ L2[0,∞),

where γ > 0 is a given H∞ index. In this way, the consensus

control problem of the multi-agent system with external dis-

turbances is reformulated as the above H∞ control problem.

III. H∞ CONSENSUS CONTROL

A. Protocol design and model transformation

Using the neighbors’ measured outputs, a distributed dy-

namic output feedback protocol is designed as

v̇i(t)=AKvi(t)+BK ∑
j∈Ni

ai j(yi(t)− y j(t))

ui(t)=CKvi(t)+DK ∑
j∈Ni

ai j(yi(t)− y j(t)), i = 1, · · · ,n,
(7)
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where vi(t) ∈ R
mK (mK is a preassigned dimension) is the

state of the dynamic output feedback controller, and ai j are

the adjacency weights of the interaction graph G . Define the

system matrix of protocol (7) as

K =

[

AK BK

CK DK

]

. (8)

Substituting protocol (7) into the system (5) results in the

following closed-loop system

[

ẋ(t)
v̇(t)

]

=

[

In⊗A+L⊗B2DKC In⊗B2CK

L⊗BKC In⊗AK

][

x(t)
v(t)

]

+

[

In ⊗B1 +L⊗B2DKD

L⊗BKD

]

ω(t)

z(t) =
[

Lc ⊗ Im 0n ⊗0m×mK

]

[

x(t)
v(t)

]

,

(9)

where v(t) = [vT
1 (t) · · · vT

n (t)]T ∈R
mKn, and L is the Laplacian

of graph G .

Since the symmetric matrix L is singular, it can be proved

that the state matrix of the system (9) is unstable if the given

matrix A is unstable, which means that the state matrix of the

closed-loop system is uncontrollable. To solve this problem,

we conduct a model transformation by two steps.

Step 1: Let

x̄(t) = x(t)− 1n

n
⊗ (

n

∑
j=1

x j(t)) = (Lc ⊗ Im)x(t)

v̄(t) = v(t)− 1n

n
⊗ (

n

∑
j=1

v j(t)) = (Lc ⊗ ImK
)v(t).

By (9), it is derived that

˙̄x(t)

=(Lc ⊗ Im) ẋ(t)

=(Lc⊗Im)[(In⊗A+L⊗B2DKC)x(t)+(In⊗B2CK)v(t)

+(In ⊗B1 +L⊗B2DKD)ω(t)]

=(Lc ⊗A+LcL⊗B2DKC)x(t)+(Lc ⊗B2CK)v(t)

+(Lc ⊗B1 +LcL⊗B2DKD)ω(t)

=(Lc⊗A+LcL⊗B2DKC)[x̄(t)+
1n

n
⊗(∑

n

j=1
x j(t))]

+(Lc ⊗B2CK)[v̄(t)+
1n

n
⊗ (∑

n

j=1
v j(t))]

+(Lc ⊗B1 +LcL⊗B2DKD)ω(t)

=(Lc ⊗A+LcL⊗B2DKC)x̄(t)+(Lc ⊗B2CK)v̄(t)

+(Lc ⊗B1 +LcL⊗B2DKD)ω(t),

(10)

where the facts Lc1n = 0n and L1n = 0n have been used.

Similarly, we have

˙̄v(t)=(LcL⊗BKC)x̄(t)+(Lc⊗AK)v̄(t)+(LcL⊗BKD)ω(t) (11)

and

z(t) = (Lc ⊗ Im)x̄(t)+(0n ⊗0m×mK
)v̄(t). (12)

Combining equations (10) (11) and (12), we obatin the

following system written in matrix form
[

˙̄x(t)
˙̄v(t)

]

=

[

Lc⊗A+LcL⊗B2DKC Lc⊗B2CK

LcL⊗BKC Lc⊗AK

][

x̄(t)
v̄(t)

]

+

[

Lc ⊗B1 +LcL⊗B2DKD

LcL⊗BKD

]

ω(t)

,Ā

[

x̄(t)
v̄(t)

]

+ B̄ω(t)

z(t) =
[

Lc ⊗ Im 0n ⊗0m×mK

]

[

x̄(t)
v̄(t)

]

,C̄

[

x̄(t)
v̄(t)

]

.

(13)

Step 2: By Lemma 2, there exists an orthogonal matrix

U = [U1 U2] ∈ R
n×n with U2 = 1n/

√
n such that

UTLcU =

[

In−1 0n−1

∗ 0

]

, L̄c

and

UTLU =

[

L1 0n−1

∗ 0

]

, L̄,

where L1 ∈ R
(n−1)×(n−1) is positive definite iff the graph G

is connected. Perform the orthogonal transformation:

x̂(t) = (UT ⊗ Im)x̄(t), v̂(t) = (UT ⊗ ImK
)v̄(t)

ω̂(t) = (UT ⊗ Im1
)ω(t), ẑ(t) = (UT ⊗ Im)z(t).

Then according to (13), we have
[

˙̂x(t)
˙̂v(t)

]

=

[

L̄c⊗A+L̄cL̄⊗B2DKC L̄c⊗B2CK

L̄cL̄⊗BKC L̄c⊗AK

][

x̂(t)
v̂(t)

]

+

[

L̄c ⊗B1 + L̄cL̄⊗B2DKD

L̄cL̄⊗BKD

]

ω̂(t)

,Â

[

x̂(t)
v̂(t)

]

+ B̂ω̂(t)

ẑ(t) =
[

L̄c ⊗ Im 0n ⊗0m×mK

]

[

x̂(t)
v̂(t)

]

,Ĉ

[

x̂(t)
v̂(t)

]

.

(14)

Note that the last rows of symmetric matrices L̄c and L̄cL̄ are

both zeros. Then by (14), we derive an reduced-order system
[

˙̂x1(t)
˙̂v1(t)

]

=

[

In−1⊗A+L1⊗B2DKC In−1⊗B2CK

L1⊗BKC In−1⊗AK

][

x̂1(t)
v̂1(t)

]

+

[

In−1 ⊗B1 +L1 ⊗B2DKD

L1 ⊗BKD

]

ω̂1(t)

,Â1

[

x̂1(t)
v̂1(t)

]

+ B̂1ω̂1(t)

ẑ1(t) =
[

In−1 ⊗ Im 0n−1 ⊗0m×mK

]

[

x̂1(t)
v̂1(t)

]

,Ĉ1

[

x̂1(t)
v̂1(t)

]

(15)

that is equivalent to (14) considering the H∞ performance

from the external disturbance to the controlled output, where
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x̂1(t) = (UT
1 ⊗ Im)x̄(t) ∈ R

m(n−1), v̂1(t) = (UT
1 ⊗ ImK

)v̄(t) ∈
R

mK(n−1), ω̂1(t) = (UT
1 ⊗ Im1

)ω̄(t) ∈ R
m1(n−1) and ẑ1(t) =

(UT
1 ⊗ Im)z̄(t) ∈ R

m(n−1).

From (13) and (14), we get Tzω(s) = C̄(sI − Ā)−1B̄ and

Tẑω̂(s) = Ĉ(sI − Â)−1B̂. It can be easily verified that

(UT ⊗ Im)[C̄(sI − Ā)−1B̄ ](U ⊗ Im1
) = Ĉ(sI − Â)−1B̂,

which leads to ‖Tzω(s)‖∞ = ‖Tẑω̂(s)‖∞ = ‖Tẑ1ω̂1(s)‖∞ by the

definition of H∞ norm as given in (6). On the other hand, if

x̂1(t) = 0, then x̄(t) = 1 yields from x̂1(t) = (UT
1 ⊗ Im)x̄(t),

which implies x(t) = c1 (c is a constant), i.e., the consensus

on xi(t) is achieved. Thus, by designing a distributed protocol

such that the reduced-order system (15) is asymptotically

stable and ‖Tẑ1ω̂1(s)‖∞ < γ , we can ensure consensus of the

multi-agent system (2) with the H∞ performance index γ .

B. Conditions on H∞ consensus problem

Lemma 3: [24] Let G(s) = C(sI − A)−1B. Then A is a

stable matrix and ‖G(s)‖∞ < γ , iff there exists a positive

definite matrix P to the following Riccati inequality

ATP+PA+ γ−2PBBTP+CTC < 0.

Lemma 4: (Schur Complement) For a given symmetric

matrix S of the form S = [Si j], S11 ∈ R
r×r, S12 ∈ R

r×(n−r),

S22 ∈ R
(n−r)×(n−r), then S < 0 iff

S11 < 0, S22 −S21S−1
11 S12 < 0

or equivalently

S22 < 0, S11 −S12S−1
22 S21 < 0.

Theorem 1: Consider the network with an undirected in-

teraction graph G that is connected. For a given index γ > 0,

the system (15) is asymptotically stable and ‖Tẑ1ω̂1(s)‖∞ < γ ,

if there exist a dynamic output feedback u(t) with the system

matrix K defined in (8) and positive definite matrices Pi ∈
R

(m+mK)×(m+mK) (i = 1, · · · ,n− 1), such that the following

matrix inequalities are satisfied for i = 1, · · · ,n−1:

A1T
i Pi +PiA

1
i + γ−2PiB

1
i B1T

i Pi +C1T
0 C1

0 < 0, (16)

where

A1
i =

[

A+λiB2DKC B2CK

λiBKC AK

]

B1
i =

[

B1 +λiB2DKD

λiBKD

]

C1
0 =

[

Im 0m×mK

]

,

(17)

and λi > 0 is the ith eigenvalue of the symmetric matrix L1.

Proof : Since the interaction graph G is connected, the matrix

L1 is positive definite by Lemma 2, and there exists an

orthogonal matrix F ∈ R
(n−1)×(n−1) such that

FTL1F = diag{λ1, · · · ,λn−1} , ∆,

where 0 < λ1 ≤ ·· · ≤ λn−1.

Let x̃1(t) = (FT ⊗ Im)x̂1(t), ṽ1(t) = (FT ⊗ ImK
)v̂1(t),

ω̃1(t) = (FT ⊗ Im1
)ω̂1(t) and z̃1(t) = (FT ⊗ Im)ẑ1(t). Then

the system (15) can be restated in terms of x̃1(t), ṽ1(t), ω̃1(t)
and z̃1(t) as follows

[

˙̃x1(t)
˙̃v1(t)

]

=

[

In−1⊗A+∆⊗B2DKC In−1⊗B2CK

∆⊗BKC In−1⊗AK

][

x̃1(t)
ṽ1(t)

]

+

[

In−1 ⊗B1 +∆⊗B2DKD

∆⊗BKD

]

ω̃1(t)

,Ã1

[

x̃1(t)
ṽ1(t)

]

+ B̃1ω̃1(t)

z̃1(t) =
[

In−1 ⊗ Im 0n−1 ⊗0m×mK

]

[

x̃1(t)
ṽ1(t)

]

,C̃1

[

x̃1(t)
ṽ1(t)

]

.

(18)

By the property of orthogonal transformations, x̂1(t) = 0

iff x̃1(t) = 0, and ‖Tẑ1ω̂1(s)‖∞ = ‖Tz̃1ω̃1(s)‖∞ holds. Thus,

combining with Lemma 3, we have that the system (15) is

asymptotically stable and ‖Tẑ1ω̂1(s)‖∞ < γ , iff there exists a

matrix P̃ > 0 such that

Ã1TP̃+ P̃Ã1 + γ−2P̃B̃1B̃1TP̃+C̃1TC̃1 < 0. (19)

On the other hand, by rearranging elements of the state

vector in the system (18), we can obtain an equivalent system

of (18) with the state matrix A1, the input matrix B1 and the

output matrix C1 as

A1 = diag{A1
1, · · · ,A1

n−1}
B1 = diag{B1

1, · · · ,B1
n−1}

C1 = diag{C1
0 , · · · ,C1

0},

where A1
i , B1

i and C1
0 are defined in (17), i = 1, · · · ,n− 1.

Then there exists a matrix P̃ > 0 such that (19) holds, iff

there is a matrix P > 0 to satisfy

A1TP+PA1 + γ−2PB1B1TP+C1TC1 < 0. (20)

Considering the diagonal block structure of matrices A1,

B1 and C1, let P be a diagonal block definite matrix

that is denoted by P = diag{P1, · · · ,Pn−1}, where 0 < Pi ∈
R

(m+mK)×(m+mK), i = 1, · · · ,n−1. In this case, if there exist

positive definite matrices Pi to satisfy (16) for i = 1, · · · ,n−1,

then the matrix inequality (20) holds, from which it is

derived that the system (15) is asymptotically stable and

‖Tẑ1ω̂1(s)‖∞ < γ . This completes the proof. ¤

To proceed, the system matrix of the dynamic output

feedback protocol u(t) is further solved in Theorem 2.

Theorem 2: Consider the network with an undirected in-

teraction graph G that is connected. For a given index γ > 0,

the system (15) is asymptotically stable and ‖Tẑ1ω̂1(s)‖∞ < γ ,

if there exist a positive definite matrix

P̄ =

[

P̄1 0(m2+mK)×(m−m2)

∗ P̄2

]

∈ R
(m+mK)×(m+mK) (21)

and a matrix

Q̄ =

[

Q̄1

0(m−m2)×(p+mK)

]

∈ R
(m+mK)×(p+mK) (22)
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such that LMIs
[

Ā1T
(1)P̄+P̄Ā1

(1)+Ā1T
i(2)Q̄

T+Q̄Ā1
i(2)+C̄1T

0 C̄1
0 P̄B̄1

(1)+Q̄B1
i(2)

∗ −γ2Im1

]

<0,

(23)

are simultaneously satisfied for i = 1 and n−1, where

Ā1
(1) =VA1

(1)V
−1, Ā1

i(2) =A1
i(2)V

−1,C̄1
0 =C1

0V−1, B̄1
(1) =V B1

(1),

A1
(1)=

[

A 0m×mK

∗ 0mK

]

, A1
i(2) =

[

0mK×m ImK

λiC 0p×mK

]

,

B1
(1)=

[

B1

0mK×m1

]

,B1
i(2)=

[

0mK×m1

λiD

]

,C1
0=

[

Im

0mK×m

]T

,

and V ∈ R
(m+mK)×(m+mK) is a nonsingular matrix such that

Ē = V E =

[

Im2+mK

0(m−m2)×(m2+mK)

]

(24)

with

E =

[

0m×mK
B2

ImK
0mK×m2

]

.

Further, if (23) hold for i = 1 and n− 1, then the system

matrix of the distributed protocol is given by

K = P̄−1
1 Q̄1.

Proof : Note that the system matrix K of u(t) can be

decompounded from matrices A1
i and B1

i as follows

A1
i =

[

A 0m×mK

∗ 0mK

]

+

[

0m×mK
B2

ImK
0mK×m2

]

K

[

0mK×m ImK

λiC 0p×mK

]

= A1
(1) +EKA1

i(2)

B1
i =

[

B1

0mK×m1

]

+

[

0m×mK
B2

ImK
0mK×m2

]

K

[

0mK×m1

λiD

]

= B1
(1) +EKB1

i(2).

(25)

To solve the system matrix K, we impose the qualification

Pi = P0 (i = 1, · · · ,n − 1) on the sufficient condition of

Theorem 1. Then combining with Lemma 4, we know that

the system (15) is asymptotically stable and ‖Tẑ1ω̂1(s)‖∞ < γ
if there exists a common matrix P0 > 0 such that

[

A1T
i P0 +P0A1

i +C1T
0 C1

0 P0B1
i

∗ −γ2Im1

]

< 0

hold for i = 1, · · · ,n − 1. Substituting (25) into the above

inequality leads to
[

Θi P0B1
(1) +P0EKB1

i(2)

∗ −γ2Im1

]

< 0,

Θi =A1T
(1)P0+P0A1

(1)+A1T
i(2)K

TETP0+P0EKA1
i(2)+C1T

0 C1
0 .

(26)

Since B2 is of full column rank, there exists an nonsingular

matrix V such that (24) holds. Pre- and post-multiplying the

inequality (26) with V̄ = diag{V−T, Im1
} and V̄ T yields the

matrix inequality (23) with

P̄ = V−TP0V−1, Q̄ = P̄ĒK.

Correspondingly, the system (15) is asymptotically stable and

‖Tẑ1ω̂1(s)‖∞ < γ , if there exist a positive definite matrix P̄ ∈

R
(m+mK)×(m+mK) and a matrix Q̄∈R

(m+mK)×(p+mK) such that

matrix inequalities (23) are simultaneously satisfied for i =
1, · · · ,n−1.

The above condition can be further predigested. Note

that for a fixed subscript i, (23) is an LMI with respect to

variables P̄ and Q̄, thus has the convex property. Therefore,

only two LMIs in (23) associated with the largest eigenvalue

λn−1 and the smallest eigenvalue λ1 need to be verified, as

stated in the theorem.

Furthermore, if (23) hold for i = 1 and n− 1, the unde-

termined system matrix of the proposed protocol can be

solved. Substituting (21) (22) and (24) into Q̄ = P̄ĒK yields

K = P̄−1
1 Q̄1. This completes the proof. ¤

Corollary 1: If the input-space dimension is equal to the

state-space dimension, i.e., m2 = m, then the input matrix

B2 is reversible from the condition that B2 is of full column

rank. In this case, the system (15) is asymptotically stable

and ‖Tẑ1ω̂1(s)‖∞ < γ if there exist 0 < P ∈ R
(m+mK)×(m+mK)

and Q ∈ R
(m+mK)×(p+mK) such that the following LMIs are

satisfied for i = 1 and n−1:
[

A1T
(1)P+PA1

(1)+A1T
i(2)Q

T+QA1
i(2)+C1T

0 C1
0 PB1

(1)+QB1
i(2)

∗ −γ2Im1

]

<0.

Further, the system matrix K is obtained by K = E−1P−1Q.

IV. SIMULATION EXAMPLE

We conduct the numerical simulation on a network of four

agents with each one modeled by

ẋi(t) =

[

0 −1

2 1

]

xi(t)+

[

0

1

]

ωi(t)+

[

1 0

0 1

]

ui(t)

yi(t) =

[

1 0

0 1

]

xi(t)+

[

0

1

]

ωi(t) i = 1,2,3,4.

Then the controlled output function zi(t) is defined as

zi(t) = xi(t)−
1

4

4

∑
j=1

x j(t) i = 1,2,3,4.

The undirected interaction graph is given in Fig. 1, and

the H∞ index γ is chosen as 1. The external disturbance

is ω(t)=[ω1(t)ω2(t)ω3(t)ω4(t)]
T =[−0.5w(t) 0.8w(t) w(t)

−0.6w(t)]T, where w(t) is the energy-limited white noise that

is supposed to disturb the system only during the initial two

seconds for simplicity of simulation.

Fig. 1. Undirected interaction graph G .

Under the assumption that all nonzero weighting factors

ai j are 1, the Laplacian of the graph G is

L =









3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1









,
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whose largest and smallest nonzero eigenvalues are λ3 = 4

and λ1 = 1, respectively. Then by solving two LMIs related to

λ3 and λ1, we obtain the dynamic output feedback protocol

(7) with vi(t) ∈ R
2 and the system matrix

K =









−0.5000 0 0 0

0 −0.5000 0 0

0 0 −3.5181 0.1907

0 0 5.9000 −1.1708









.

With the above protocol, Figs. 2 and 3 depict the state

error trajectories and the corresponding energy under the

zero-valued initial condition, respectively. Obviously, it can

be seen that the consensus is asymptotically achieved with

‖Tzω(s)‖∞ < 1, which validates the effectiveness of the

proposed output feedback protocol and demonstrates the

correctness of the theoretical results.
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Fig. 2. State error trajectories of the four agents.
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Fig. 3. Energy trajectories of ω(t) and z(t).

V. CONCLUSIONS

In this paper, the consensus control problem has been

addressed for networks of autonomous agents with high-

dimension linear coupling dynamics and external distur-

bances. By transforming the original problem into an H∞

control problem, a distributed dynamic output feedback

protocol is proposed, and conditions in terms of LMIs

are derived to ensure consensus with the prescribed H∞

performance. Meanwhile, the system matrix of the proposed

protocol is determined by solving two LMIs. It deserves

pointing out that the method introduced in this paper can

be applied to networks of agents with switching topology.
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