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Abstract— This paper presents a new support vector machine
for simultaneous gene selection and microarray classification.
By introducing the adaptive elastic net penalty which is a convex
combination of weighted 1-norm penalty and weighted 2-norm
penalty, the proposed support vector machine can encourage
an adaptive grouping effect and reduce the shrinkage bias for
the large coefficients. According to a reasonable correlation be-
tween the two regularization parameters, the optimal coefficient
paths are shown to be piecewise linear and the corresponding
solving algorithm is developed. Experiments are performed on
leukaemia data that verify the research results.

Index Terms— Gene selection, grouping effect, microarray
classification, solution path, support vector machine (SVM).

I. INTRODUCTION

Development of microarray techniques makes it possible

to profile gene expression on a whole genome scale and study

associations between gene expression and occurrence or pro-

gression of common diseases, such as cancer, HIV and heart

disease. A typical microarray dataset has a large number of

gene expression values (several thousands or even tens of

thousands) and a relatively small number of samples (a few

dozen). Therefore, besides predicting the correct class for a

given sample, another challenge in microarray classification

is to identify the relevant genes which contribute most to the

classification.

In recent years, a tremendous amount of efforts have been

devoted to microarray classification and gene selection (see,

[5], [7], [10], [11], [12], [15], [19], [22], [23], [25] and

the reference therein). Although many developed machine

learning algorithms achieve similar low classification error

rates, most of these methods do not select genes in a

satisfactory way. The support vector machine [7], [10] and

penalized logistic regression [11], [23] are very successful

methods for microarray classification. However, they cannot

do gene selection automatically and both use either univariate

ranking or recursive feature elimination to reduce the number

of genes in the final model. Lasso [17] and the 1-norm

SVM [1], [22] have been proposed to perform simultaneous

classification and variable selection. Because of the nature of

the L1 norm penalty function, the both methods can reduce
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the coefficients of irrelevant variables to exactly zero, thus

achieving automatic variable selection. However, the 1-norm

penalty methods cannot reveal the grouping information

in dealing with gene-gene interactions and the number of

selected genes is upper bounded by the sample size.

The grouping effect is a natural demand for microarray

classification. Biologically speaking, complex diseases, such

as cancer, are caused by mutations in gene pathways, instead

of individual genes. From the statistical point of view,

this can be described as a grouping effect, i.e., generating

similar coefficients for highly correlated genes. The group

lasso [9], [21] has been developed for selecting the highly

correlated and relevant variables in groups. However, how

to correctly construct genes clusters in advance and identify

important genes within each cluster is still a difficult work.

By combining the 1-norm penalty and 2-norm penalty, the

elastic net penalized methods [19], [20], [25] can produce a

sparse model with good prediction accuracy, while encour-

aging a grouping effect. Although these methods have been

successfully applied to microarray data, there are still several

challenges:

• (a) Since the elastic net penalized methods tend to auto-

matically include the whole groups into the model once

one gene of them is selected, the redundant noise (the

correlated and irrelevant genes) may be included in the

fitted model. How to automatically identify important

genes within each group is a challenging problem.

• (b) The 1-norm shrinkage would produce biased estima-

tor for the large coefficients. How to properly reduce the

shrinkage bias for the large coefficients of significant

genes is an interesting problem.

• (c) Two regularization parameters are involved in the

elastic net. How to appropriately select the two regular-

ization parameters is an important problem.

This paper is devoted to solving the aforementioned chal-

lenges. To this end, we first present the adaptive elastic

net penalty, based on which, the adaptive huberized support

vector machine (AHSVM) is proposed. Then, the AHSVM

is shown to encourage an adaptive grouping effect. After that

a reasonable correlation of the two regularization parameters

is proposed and the optimal coefficient paths are shown to

be piecewise linear Finally, we apply AHSVM to leukaemia

classification and achieve promising results.

II. PROBLEM FORMULATION

Assume that the training pairs {(xi,yi), i = 1, · · · ,n} are

independently and identically distributed according to an un-

known probability distribution P(x,y). For microarray gene
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expression data, xi represents the expression levels of p genes

of the i-th sample tissue and yi ∈ {−1,+1} codes its binary

response. Our goal is to estimate a linear decision function

f (x) = β0 +β T x, (1)

and hence build the associated classifier

Class(x) = sign[ f (x)] = sign[β0 +β T x], (2)

for predicting the cancer class of a new sample and identi-

fying the relevant genes.

This is a typical “large p, small n” problem, i.e there are a

large number of gene expression values and a relatively small

number of samples. There are many ways to fit linear clas-

sifier (2), including support vector machines, lasso, boosting

and logistic regression. These popular learning machines can

be formulated into a generic regularized problem by using

Loss+Penalty criterion:

β̂ (λ1,λ2) = argmin
β

L(y, f (x))+λ1J1(β )+λ2J2(β ), (3)

where λ1,λ2 ≥ 0 are the regularization parameters. The

popular loss functions used in machine learning are: hinge

loss, squared error loss, exponential loss, negative binomial

log-likelihood, huber loss, huberized hinge loss and so on.

Let

J2(β ) = ‖β‖2
2 =

p

∑
j=1

β 2
j , J1(β ) = ‖β‖1 =

p

∑
j=1

|β j|.

The popular penalties used in machine learning are:

2-norm penalty : λ2 > 0 and λ1 = 0

1-norm penalty : λ2 = 0 and λ1 > 0

Elastic net penalty : λ2 > 0 and λ1 > 0

A variety of learning machines can be constructed by

combing the aforementioned losses and penalties: the stan-

dard SVM [18] (hinge loss+2-norm penalty), 1-norm SVM

[22] (hinge loss+1-norm penalty), the ridge regression

(squared error loss+2-norm penalty), lasso [17] (squared

error loss+1-norm penalty), huber support vector regression

[13] (huber loss+2-norm penalty), the naive elastic net [25]

(squared error loss+elastic net penalty) and so on. From the

shrinking point of view, all the 2-norm penalized methods

can reduce the variance of the estimates and improve the

prediction accuracy. However, it can not do automatic gene

selection and therefore the additional gene selection methods

should be used. Due to its singularity at the origin, 1-

norm penalty shrinks some of the coefficients to be exactly

zero. Thus the 1-norm penalized methods [1], [22], [17] can

do simultaneous gene selection and classification. Although

these methods have achieved promising results, they lack the

ability to reveal the grouping information in dealing with

gene-interactions and the number of the selected genes is

upper bounded by the sample size. The elastic net penalty

not only retains the benefits of the L1 norm penalty but also

tends to generate similar coefficients for highly correlated

variables. However, as shown in Introduction, the elastic net

penalized methods still suffer several challenges. This paper

is devoted to solving the aforementioned challenges.

In the following, we describe our notation used in the

paper. All vectors in this paper will be column vectors

unless transposed to a row vector by prime T . For x ∈ Rp,

‖x‖1 and ‖x‖2 will denote the 1- and 2-norms of x. Let

X =
(

x(1),x(2), · · · ,x(p)

)

be the model matrix, where x( j) =
(x1 j, · · · ,xn j)

T , j = 1, · · · , p are the predictors.

III. MAIN RESULTS

A. Adaptive huberized support vector machine

Given the set of training pairs (xi, yi), the coefficient of

the marginal regression could be represented as

β̃ j =
∑n

i=1 xi jyi

∑n
i=1 x2

i j

, (4)

where i = 1,2, · · · ,n, j = 1,2, · · · , p. Since the magnitude of

β̃ j implies the importance of the corresponding gene in some

sense, |β̃ j| can be used to produce a rough gene ranking.

Define a weight vector as follows

w j =

{

|β̃ j|−1, if |β̃ j| ≥ δ

1/δ , otherwise
(5)

where 0 < δ ≪ 1 is a given threshold value. Let
√

W = diag{√w1,
√

w2, · · · ,
√

wp},
W = diag{w1,w2, · · · ,wp}.

By combining the weighted 1-norm penalty and the weighted

2-norm penalty, we propose the adaptive elastic net penalty

λ2

2
‖
√

Wβ‖2 +λ1‖Wβ‖1, (6)

where ‖
√

Wβ‖2 =
p

∑
j=1

w jβ
2
j , ‖Wβ‖1 =

p

∑
j=1

w j|β j|. Applying

the adaptive elastic net penalty to the huberized hinge loss,

we propose the following adaptive huberized support vector

machine(AHSVM)

min
β0,β

n

∑
i=1

LHH(yi f (xi))+
λ2

2
‖
√

Wβ‖2 +λ1‖Wβ‖1, (7)

where λ2,λ1 are regularization parameters, f (xi) is the linear

decision function (1), and

LHH(yi f (xi))=











0, if yi f (xi) > 1,

(1− yi f (xi))
2/(2t), if 1− t < yi f (xi) ≤ 1,

1− yi f (xi)− t/2, otherwise.

Remark 1: As shown in [13], [19], [20], hinge loss func-

tion and huberized hinge loss function have similar shape and

hence have similar classification performance. Most impor-

tantly, the huberized hinge loss function is differentiable ev-

erywhere, which is not the case for hinge loss function. This

differentiability can significantly reduce the computational

cost for developing regularization path algorithm, especially

for the initial setup.

Remark 2: The weighted 1-norm penalty is used to adap-

tively penalize each component such that the coefficients
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of irrelevant genes are shrunken to zero, while reducing

the shrinkage bias for the large coefficients of significant

variables(see, [24]). The rationale behind the weighted 2-

norm penalty is to adaptively penalize the coefficients of

significant genes such that the highly correlated genes are

adaptively selected in groups according to their ranking

significance(see, III-B).

Remark 3: It should be noted that there are several popu-

lar methods [7], [23] for ranking genes in terms of their clas-

sification performance. They will work more efficiently than

the marginal regression method in the sense of gene ranking.

However, introducing marginal regressor in AHSVM is not

to select genes but to adaptively penalize coefficients of gene

expressions, and the real genes selection is automatically

achieved by 1-norm shrinkage.

Since the huberized hinge loss function has different

definitions in different regions, we define each region as

• R = {: yi f (xi) > 1} (R for right of the Elbow),

• E = {i : 1− t ≤ yi f (xi) ≤ 1} (E for Elbow),

• L = {i : yi f (xi) ≤ 1− t} (L for left of the Elbow),

define the indices for non-zero β j as the active set A as

• A = { j : β j 6= 0, j = 1,2, · · · , p} (A for active set).

B. Adaptive grouping effect

Theorem 1: Let β̂0 and β̂ denote the optimal solution for

(7). Let x( j) and x(l) be the gene expressions corresponding

to β̃ j and β̃l . If |β̃ j| ≥ δ , |β̃l | ≥ δ and β̂ jβ̂l > 0, then we have

|β̂ j − β̂l | ≤
1

λ2

n

∑
i=1

∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣
. (8)

Furthermore, if x( j) and x(l) are centered and normalized,

then we have

|β̂ j − β̂l | ≤
√

n

λ2

√

1− γρ
√

β̃ 2
j + β̃ 2

l
(9)

where ρ = xT
( j)x(l) = ∑n

i=1 xi jxil , and γ = 2|β̃ jβ̃l |/(β̃ 2
j + β̃ 2

l ).

Proof: If β̂ jβ̂l > 0, then β̂ j and β̂l are non-zero and

sign(β̂ j) = sign(β̂l). Let

L(λ1,λ2,β ) = LHH(yi f (xi))+
λ2

2
‖
√

Wβ‖2 +λ1‖Wβ‖1.

(10)

Since problem (7) is an unconstrained convex optimization

problem, the derivatives of objective function with respect to

β̂ satisfie

∂L(λ1,λ2,β )

∂βk

∣

∣

∣

∣

β=β̂ ,β0=β̂0

= 0 if β̂k 6= 0. (11)

Hence, for β̃ j ≥ δ and β̂ j 6= 0, we have

∑
i∈E

1

t
( f (xi)− yi)xi j − ∑

i∈L

yixi j +λ2w jβ̂ j +λ1w jsign(β̂ j) = 0.

(12)

Since w j = |β̃ j|−1 > 0, (12) is equivalent to

β̂ j =
1

λ2

[

∑
i∈E

1

t
(yi − f (xi))|β̃ j|xi j

+ ∑
i∈L

yi|β̃ j|xi j −λ1sign(β̂ j)

]

.

(13)

Analogously, for β̃l ≥ δ and β̂l 6= 0, we have

β̂l =
1

λ2

[

∑
i∈E

1

t
(yi − f (xi))|β̃l |xil

+ ∑
i∈L

yi|β̃l |xil −λ1sign(β̂l)

]

.

(14)

Note that sign(β̂ j) = sign(β̂l). Subtracting (14) from (13)

gives

β̂ j − β̂l =
1

λ2

[

∑
i∈E

1

t
(yi − f (xi))(|β̃ j|xi j −|β̃l |xil)

+ ∑
i∈L

yi(|β̃ j|xi j −|β̃l |xil)

]

.

(15)

Since yi f (xi) > 1 − t > 0 for i ∈ E , we have sign(yi) =
sign( f (xi)). On the other hand, from yi f (xi) < 1 for i ∈ E

and |yi| = 1, we have 1− t < |yi f (xi)| = | f (xi)| ≤ 1. Hence,

it can be easily obtain that

|yi − f (xi)| = |yi|− | f (xi)| < 1− (1− t) = t (16)

From (15) and (16), we have

|β̂ j − β̂l |

≤ 1

λ2

[

∑
i∈E

1

t
|(yi − f (xi))|

∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣

+ ∑
i∈L

|yi|
∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣

]

≤ 1

λ2

[

∑
i∈E

∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣
+ ∑

i∈L

∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣

]

≤ 1

λ2

n

∑
i=1

∣

∣

∣
|β̃ j|xi j −|β̃l |xil

∣

∣

∣
=

1

λ2

∥

∥

∥
|β̃ j|xT

( j) −|β̃l |xT
(l)

∥

∥

∥

1
.

(17)

Furthermore, if x( j) and x(l) are centered and normalized, it

can be easily obtained that
∥

∥

∥
|β̃ j|xT

( j) −|β̃l |xT
(l)

∥

∥

∥

1
≤
√

n

∥

∥

∥
|β̃ j|xT

( j) −|β̃l |xT
(l)

∥

∥

∥

2

≤
√

n

√

β̃ 2
j + β̃ 2

l −2β̃ jβ̃lx
T
( j)

x(l)

=
√

n

√

β̃ 2
j + β̃ 2

l

√

1− γρ .

(18)

From (17) and (18), (9) can be easily obtained. This com-

pletes the proof.

It should be noted that Theorem 1 still holds if |β̃ j| ≥ δ
and |β̃l | < δ . The only difference is substituting |δ | for β̃l .

If |β̃ j| < δ and |β̃l | < δ , we have the following Corollary:
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Corollary 1: Let β̂0 and β̂ denote the optimal solution for

(7). Let x( j) and x(l) be the gene expressions corresponding

to β̃ j and β̃l . If |β̃ j| ≤ δ , |β̃l | ≤ δ and β̂ jβ̂l > 0, then we have

|β̂ j − β̂l | ≤
δ

λ2

∥

∥x̄ j − x̄l

∥

∥

1
=

δ

λ2

n

∑
i=1

∣

∣xi j − xil

∣

∣ . (19)

Furthermore, if x( j) and x(l) are centered and normalized,

then we have

|β̂ j − β̂l | ≤
δ
√

n

λ2

√

2(1−ρ). (20)

According to the results in [19], [20], given the same as-

sumption as Theorem 1 or Corollary 1, the doubly regularized

support vector machine (DRSVM) and the hybrid huberized

support vector machine (HHSVM) satisfy

|β̂ j − β̂l | ≤
√

n

λ2

√

2(1−ρ). (21)

This implies that the both support vector machines tend to

generate similar coefficients for highly correlated genes, i.e.,

encouraging a grouping effect. However, since the whole

groups will be automatically included into the model once

one of them is selected, the fitted model may include more

redundant genes. From Theorem 1 and Corollary 1, the

proposed AHSVM can adaptively control the grouping effect

according to sample correlation and the ranking significance

of genes. For the case |β̃i|, |β̃ j| < δ ≪ 1, from (20) and

(21), we know that AHSVM has stronger grouping effect

compared with HHSVM and DRSVM. This means that the

more genes (the bigger size of group ) are removed together

by 1-norm shrinkage if they are less important to the classi-

fication. According to the mean inequality, γ = 1 if and only

if |β̃i|= |β̃ j|. From Theorem 1, AHSVM can assign identical

coefficients to the genes only if the sample correlation ρ = 1

and the ranking significance |β̃i|= |β̃ j|> δ . It is easy to see

that the more genes with similar ranking significance (|β̃i| ≈
|β̃ j|), the bigger size of the selected groups. This means that

AHSVM can adaptively select the highly correlated genes by

evaluating their ranking significance. This also implies that

adaptive gene selection can be automatically achieved within

the selected group.

C. The solution path

Although SVM training algorithms [2], [8], [14], [16] have

been widely studied, most of the methods cannot deal the

model selection problem. Recently, a novel approach has

emerged that seeks to explore the entire solution path for

all parameter values without having to re-train the model

multiple times [3], [4], [11], [19], [20], [22], [24]. Unfortu-

nately, these methods could not be efficiently extended to the

AHSVM since two regularization parameters are involved.

In general, increasing λ1 tends to eliminate more irrelevant

variables, and increasing λ2 makes the grouping effect more

prominent. It seems that λ1 and λ2 are not correlative.

Note that eliminating more variables should encourage more

stronger grouping effect. Hence, one natural correlation is

that λ2 should decrease with decreasing λ1. Motivated by

the aforementioned idea, we see λ2 is the monotonically

nondecreasing constant function of λ1. Similar to [19], if we

continuously decrease λ1, some of sets of L , E , R, and A

will change. We call this an event, and four types of events

may occur:

• 1. A point reaches the boundary between L and E ;

• 2. A point reaches the boundary between R and E ;

• 3. A parameter β j becomes zero, i.e., j leaves A ;

• 4. A zero-valued parameter β j becomes non-zero.

We use the superscript l to index the sets above im-

mediately after lth event has occurred. Suppose |A l | = m,

and let β l
0, β l , λ l

1, λ l
2 be the values of these parameters

at the point of entry. Likewise f l is the function at this

point. We continuously decreases λ1 until it reaches 0. For

λ l
1 ≥ λ1 > λ l+1

1 , we let

λ l
2 = max

{

a, b− b−a

ln(e+λ l
1)

}

(22)

where 0 < a < b are the given constants. It should be noted

that λ2 is the monotonically nondecreasing constant function

of λ1 in the interval [λ l+1
1 ,λ l

1].
Let x̄A E 1 and x̄A E 2 be the m×1 vectors with jth entrys

∑
i∈E

xi j and ∑
i∈E

xi jsign(β l
j)/w j for j ∈ A , respectively. let A

be the m×m matrix with jkth entry

A jk =























∑
i∈E

xi jxiksign(β l
j)/(tw j), for j 6= k

(

∑
i∈E

x2
i j

tw j

+λ2

)

sign(β l
j), for j = k

for j,k ∈ A .

Theorem 2: If the regularization parameters of AHSVM

satisfy (22), then the optimal coefficient β̂0(λ1) and β̂ (λ1)
of (7) are piecewise linear with respective to regularization

parameter λ1. Furthermore, for λ l
1 ≥ λ1 > λ l+1

1 , we have

{

β̂0 = β̂ l
0 +(λ1 −λ l

1)b̄0

β̂ j = β̂ l
j +(λ1 −λ l

1)b̄ j, for j ∈ A
l

(23)

f (xi) = f l(xi)+(b̄0 + ∑
j∈A

xi jb̄ j)(λ1 −λ l
1) (24)

where b̄ j is the j + 1 element of vector Ā−1
l 1α , and Āl and

1α are defined as

Āl =

(

m x̄T
A E 1

1
t
x̄A E 2 A

)

, 1α =

(

0

1m

)

.

Proof: Since (7) is an unconstrained convex opti-

mization problem, the derivatives of objective function with

respect to β̂0, β̂ satisfy

∂L(λ1,λ2,β )

∂β0

∣

∣

∣

∣

β=β̂ ,β0=β̂0

= 0

∂L(λ1,λ2,β )

∂βk

∣

∣

∣

∣

β=β̂ ,β0=β̂0

= 0 if β̂k 6= 0.

(25)
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Note that λ2 is constant value and sets E l , R l , L l , A l will

not change for λ l
1 ≥ λ1 > λ l+1

1 . Hence, we have

∑
i∈E l

1

t
(β̂0 + ∑

k∈A l

xikβ̂k − yi)− ∑
i∈L l

yi = 0 (26)

∑
i∈E l

1

t
(β̂0 + ∑

k∈A l

xikβ̂k − yi)xi j − ∑
i∈L l

yixi j

+λ l
2w jβ̂ j +λ1w jsign(β̂ j) = 0.

(27)

for j ∈ A l . For λ1 = λ l
1, we also have

∑
i∈E l

1

t
(β̂ l

0 + ∑
k∈A l

xikβ̂ l
k − yi)− ∑

i∈L l

yi = 0 (28)

∑
i∈E l

1

t
(β̂ l

0 + ∑
k∈A l

xikβ̂ l
k − yi)xi j − ∑

i∈L l

yixi j

+λ l
2w jβ̂

l
j +λ l

1w jsign(β̂ l
j) = 0.

(29)

for j ∈ A l . Subtracting equation (28) from (26) gives

∑
i∈E l

(β̂0 − β̂ l
0 + ∑

k∈A l

xik(β̂k − β̂ l
k)) = 0. (30)

Note that sign(β̂ j) = sign(β̂ l
j) for j ∈A l and λ l

1 ≥ λ1 > λ l+1
1

(otherwise, β̂ j will becomes zero and therefore the set A has

changed). Subtracting equation (29) from (27) gives

∑
i∈E l

1

t
(β̂0 − β̂ l

0 + ∑
k∈A l

xik(β̂k − β̂ l
k))xi j +λ l

2w j(β̂ j − β̂ l
j)

+(λ1 −λ l
1)w jsign(β̂ l

j) = 0.

(31)

for j ∈ A l . Let
ˆ̃β and

ˆ̃β l be the vectors which elements are

β̂k, β̂
l
k for k ∈ A l , respectively. Note that

∑
i∈E l

∑
k∈A l

xik(β̂k − β̂ l
k)) = ∑

k∈A l

∑
i∈E l

xik(β̂k − β̂ l
k)) = x̄T

A E 1(
ˆ̃β − ˆ̃β l).

Hence, (30) can be rewritten as

m(β̂0 − β̂ l
0)+ x̄T

A E 1(
ˆ̃β − ˆ̃β l) = 0 (32)

Analogously, (31) for j ∈ A l can be rewritten as

1

t
x̄A E 2(β̂0 − β̂ l

0)+A( ˆ̃β − ˆ̃β l) = (λ1 −λ l
1)1m (33)

if Āl has full rank, (23) can be easily obtained by solving

linear system of equations (32) and (33). Furthermore, sub-

stituting (32) and (33) into (1) gives (24). This completes

the proof.

Similar to [4], [19], [20], [22], our algorithm starts from

λ1 →∞; continuously decreases λ1; solves the optimal piece-

wise linear solution along this path. The main algorithm that

computes the whole solution path β̂0, β̂ proceeds as follows:

1) : Calculate β̂ 0
0 , β̂ 0, λ 0

1 , λ 0
2 , E 0, L 0, R0, A 0.

2) : Find the λ l+1
1 and λ l+1

2 .

• Let λ l
2 = max

{

a, b− b−a

ln(e+λ l
1)

}

.

• Calculate β̂0, β̂ j and f (xi) for i = 1,2, · · · ,n, j =
1,2,A l according to (23) and (24).

0.0 0.5 1.0 1.5

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4

||β||1

β

Fig. 1. the coefficients paths of AHSVM.

• Determine the step size d1 for the first event.

• Determine the step size d2 for the second event.

• Determine the step size d3 for the third event.

• Determine the step size d4 for the fourth event.

• Determine the step size d for event which happens

first. d = min{d1,d2,d3,d4}.

3) If any one of the following termination criterion is met,

then stop the algorithm.

• The generalized correlation reduces to zero.

• Two classes have been perfectly separated.

• A pre-specified maximum iteration number is

reached.

4) Otherwise, let l = l + 1, λ l+1
1 = λ l

1 − d, λ l+1
2 =

max

{

a, b− b−a

ln(e+λ l+1
1 )

}

and update β̂ l
0, β̂

l , E l , L l ,

R l . Then goto the step 2.

It should be noted that the solving procedure is similar to

[19] if the natural correlation between λ1 and λ2 is satisfied,

the main difference (and also the difficulty) is to calculate

the step size d for event which happens first. We skip the

detailed calculation for the limits of space.

IV. EXPERIMENTS ON LEUKAEMIA DATA

To illustrate the effectiveness of AHSVM for microar-

ray, we perform experiments on the classic leukaemia data

(Golub et al., 1999). This dataset consists of 38 training

data and 34 test data for two types of acute leukemia,

acute myeloid leukaemia (AML) and acute lymphoblastic

leukaemia (ALL). Each datum is a vector of p = 7129

genes. The goal is to construct a diagnostic rule to pre-

dict the type of leukaemia based on the expression level

of those 7129 genes. The original data and experimental

methods are available at htt p : //www.broad.mit.edu/cgi−
bin/cancer/datasets.cgi.

To make the computation more manageable, we use the

same pre-processing of the Golub et al (1999). Each time that
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Table 1: The top 10 genes selected by AHSVM

Estimate Gene ID Gene description

0.07546321 D50915−at KIAA0125 gene

-0.05854534 M11722−at Terminal transferase mRNA

0.07034328 M19507−at MPO Myeloperoxidase

0.20476500 M27891−at CST3 Cystatin C (amyloid an-
giopathy and cerebral hemorrhage)

-0.04414178 U05259−rnal−at MB-1 gene

-0.09935767 Z14982−rnal−at MHC-encoded proteasome subunit
gene LAMP7-E1 gene (protea-
some subunit LMP7) extracted
from H.sapiens gene for major his-
tocompatibility complex encoded
proteasome subunit LMP7

0.06957877 X95735−at Zyxin

-0.08471228 U89922−s−at LTB Lymphotoxin-beta

0.04175153 M63438−s−at GLUL Glutamate-ammonia ligase
(glutamine synthase)

0.04874105 U01317−cds4−at Delta-globin gene extracted from
Human beta globin region on chro-
mosome 11

Table 2: Summary of the leukaemia classification results

Method Tenfold CV error Test error Number of genes

Golub 3/38 4/34 50

SVM 2/38 1/34 31

HHSVM 0/38 0/34 84

AHSVM 0/38 0/34 46

a model is fitted, we first select the 3571 most “significant”

genes as the predictors. Then, we compute the regularization

solution path according to the algorithm in III-C, where

parameters b, a, t are selected as 2,0.05, and 0.95, respec-

tively. Fig.1 shows the coefficient paths by using ‖β‖1 as the

parameter. The optimal model is given when ‖β‖1 is equal

to 1.376056. The corresponding regularization parameter λ1

is 0.0373583 and the number of the selected genes is 46.

Table1 lists the top 10 genes that have been selected by

AHSVM. Gene M19507−at is highly correlated with gene

X95735−at (positive correlation), and they have the similar

ranking significance. Hence, their corresponding estimates

are almost equal. Analogously, gene U05259−rnal−at and

gene M63438−s−at have highly negative correlation and

sharing the similar ranking significance. Hence, their corre-

sponding estimates have the similar absolute values with the

different sign. Compared with the optimal HHSVM which

need 84 genes in [19], AHSVM selects less genes. Table

2 compares AHSVM with several competitors including

Golubs method, SVM and HHSVM. AHSVM gives the best

classification.

V. CONCLUSION

The adaptive huberized support vector machine for si-

multaneous microarray classification and gene selection has

been proposed in this paper. It is shown that AHSVM not

only can reduce the shrinkage bias for the large coefficients,

but also can control the size of the selected groups and

therefore automatically identify important genes within each

group. Furthermore, based on a reasonable correlation of

the two regularization parameters, the optimal coefficients

are proved to be piecewise linear with the single regular-

ization parameter and an efficient solution path algorithm

is developed. We compare AHSVM with other methods on

leukemia dataset and AHSVM achieves promising results on

both classification and gene selection.
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