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Abstract— In this paper, partially decentralized adaptive
control for a multi-agent dynamic system is studied. There
are many agents in the system, and each agent’s state evolves
like an ARMAX model with unknown parameters while being
intervened by its neighborhood agents, in form of unknown
linear interactions. Each agent adopts recursive WLS (weighted
least-square) algorithm to estimate its local unknown param-
eters and designs its local adaptive controller by “certainty
equivalence” principle. Generally speaking, it is a question
whether such local adaptive controllers can guarantee stability
of whole system. In this paper, we not only give the affirmative
answer to this question, but also rigorously prove the optimality
of decentralized WLS adaptive controller.

Keywords: decentralized adaptive control, multi-agent dy-

namic system, coupled ARMAX model, weighted least-

square algorithm

I. INTRODUCTION

In recent years, complex systems ([1], [2], [3], [4], [5])

have attracted many researchers’ interests mainly because

of their wide range of background and applications. Their

typical features, such as nonlinearity, multi-hierarchy and

uncertainty, can be roughly classified into architecture com-

plexity and information uncertainty, which may bring many

difficulties in theoretical analysis of the whole systems.

Hence, adaptive control of complex systems is a challenging

research direction and few efforts are devoted in this area.

In the area of conventional adaptive control, which has

been developed for several decades, many fruitful results

have been obtained and systematic theories have been es-

tablished ([6], [7], [8], [9], [10]); however, these well-

known theories mainly focused on schemes of centralized

control, which may not meet increasing demands for the

control of complex systems. Recognizing the demands for

the control of complex or large-scale systems, the approach

of robust control has been applied in some examples of

decentralized control (see e.g. [11], [12], [13], [14], [15]),

where uncertainties are dealt with in sense of worst-case

analysis. To use this approach in practice, we need to know

the a priori information on the nominal model and make sure

that the uncertainty is in a small range. Comparing with the

approach of robust control, the approach of adaptive control

can usually deal with a large range of uncertainties rather

than a small range of uncertainties, therefore it is necessary to

develop theory of decentralized adaptive control, which has

also attracted many researchers in the past two decades [16],

[17], [18], [19], [20], [21]. Among these existing work, most

of them were devoted to analyze the stabilization problem

of continuous-time systems with uncertain interconnections

via Lyapunov methods, while a few of them [19] focused

on decentralized adaptive control of discrete-time systems.

We shall remark that, in some work (e.g. [19]), only weak

coupling uncertainties can be dealt with by the designed

decentralized controller.

Noticing the above background and potential wide appli-

cations of adaptive control for complex systems, the authors

proposed a theoretical problem framework in [23], [24] to

study the discrete-time adaptive control of complex sys-

tems, and as two concrete examples in this framework, two

discrete-time multi-agent adaptive control problems, adaptive

control problem for a coupled ARMAX multi-agent system

using decentralized ELS (extended-least-squares) algorithm

in [24], and adaptive synchronization problem in [22], have

been investigated, respectively.

In this paper, in the same framework as the above, we

shall study a multi-agent dynamic complex control system,

where each agent has connections with its neighborhood

agents by unknown linear interactions. The dynamics of

each agent is modeled by an ARMAX model with unknown

parameters, which is a widely-used frequency-domain rep-

resentation of linear systems, and each agent can design

its local control by using its history information and its

neighborhood agents’ state information. In this paper, each

agent is supposed to use the recursive WLS (weighted-least-

squares) algorithm to estimate the unknown parameters and

unknown interactions, and it designs its own local adaptive

control with all available local information by using the so-

called “certainty equivalence” principle. Generally speaking,

it is still unclear whether the local WLS-based adaptive

controller can guarantee the stability of whole system. We

will answer this question in this paper; furthermore, we shall

rigorously prove that the decentralized WLS-based adaptive

control is optimal in dealing with the external noise.

We shall remark that the scheme of adaptive control

discussed in this paper is only partially decentralized in

sense that each local agent requires also measurement of

its neighbour agents to design the local controller. However,

we need to point out that, while totally decentralized control

schemes for continuous-time systems may be relatively easy

to find by means of high-gain feedback design, totally

decentralized schemes for discrete-time systems (even linear

systems) may not always exist since generally each agent

cannot “overwhelm” the possible strong interactions by the

so-called high-gain feedback without using any information
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on its neighbor agents. This is why we consider only partially

decentralized adaptive control scheme based on WLS algo-

rihtm for the discrete-time model investigated here. And in

this contribution, we term the considered coupled ARMAX

model as a multi-agent system rather than a large-scale

system simply because the latter emphasizes only the scale of

the system and its effects, while the former emphasizes that

each agent can take active actions (e.g. WLS-based learning

and control) in the evolution of the whole system.

The main contributions of this paper are summarized as

follows: (i) The considered decentralized adaptive control

scheme is based on the recursive WLS (weighted-least-

squares) estimation algorithm, which was not examined in

previous literature on decentralized adaptive control. (ii)

With the decentralized WLS-based adaptive control scheme,

various uncertainties (including unknown internal parame-

ters, unknown strength of interactions, unobservable colored

noise) can be easily dealt with. Note that in general the

connections need not be very weak as required in some

existing study, that is to say, the strength of interactions can

be arbitrarily large. (iii) Comparing with the decentralized

adaptive control based on LS (least-squares) algorithm, the

scheme studied in this paper can provide some extra benefits

under very weak conditions. Especially, the high freqency

gains of agents are not very necessary to be known a priori

like in decentralized LS algorithm [24] so as to avoid the

so-called singularity problem since the parameter estimates

obtained by the WLS algorithms are convergent almost

surely.

The rest of this paper is organized as follows. In Section

II, we shall introduce the complex system model, i.e. coupled

ARMAX model, and the decentralized WLS estimation algo-

rithm, and consequently the local adaptive controllers will be

designed based on given decentralized WLS algorithm. Then,

in Section III, we shall present preliminary assumptions and

lemmas, which will be used in later proofs. Next, in Section

IV, we shall establish global stability and optimality of the

whole closed-loop system and the rigorous theoretical proof

of the main theorem will be given. Simulation study will be

given in Section V, where simulation examples can verify

our theoretical results. Finally, we shall finish this paper with

some concluding remarks in Section VI.

II. PROBLEM FORMULATION

In this paper, we consider the system with N agents, and

each of them evolves as coupled ARMAX model:

Ai(z)xi(t + 1) = Bi(z)ui(t) + Ci(z)wi(t + 1)
+

∑
j∈Ni

gijxj(t) (1)

where xi(t), ui(t) and wi(t) are the state, input and noise

of Agent i respectively; xj(t) is the state of agent j;

Ni = {ni1, ni2, · · · , ni,mi
} ⊆ {1, 2, · · · , N} (2)

is the set of Agent i’s neighborhood agents;

Ai(z) = 1 + ai1z + ai2z
2 + · · · + ai,pi

zpi

Bi(z) = bi1 + bi2z + · · · + bi,qi
zqi−1

Ci(z) = 1 + ci1z + ci2z
2 + · · · + ci,liz

li

(3)

and gij is the intensity of influence of agent j towards Agent

i.

For convenience, we can rewrite the above equation as the

following regression model

xi(t + 1) = θτ
i φ0

i (t) + wi(t + 1) (4)

with

φ0
i (t) = [xi(t), · · · , xi(t − pi + 1),

ui(t), · · · , ui(t − qi + 1),
wi(t), · · · , wi(t − li + 1), X̄τ

i (t)]τ

θi = [−aτ
i , bτ

i , cτ
i , gτ

i ]τ

(5)

where

aτ
i = [ai1, · · · , ai,pi

]
bτ

i = [bi1, · · · , bi,qi
]

cτ
i = [ci1, · · · , ci,li ]

gτ
i = [gi,ni1

, gi,ni2
, · · · , gi,ni,mi

]
X̄τ

i (t) = [xni1
(t), xni2

(t), · · · , xni,mi
(t)].

(6)

As parameters θi are unknown, we need to estimate them.

Here we use the following recursive WLS algorithm:

θ̂i(t + 1) = θ̂i(t) + ai(t)Pi(t)φi(t) × (7)

(xi(t + 1) − θ̂τ
i (t)φi(t)) (8)

Pi(t + 1) = Pi(t) − ai(t)Pi(t)φi(t)φ
τ
i (t)Pi(t) (9)

ai(t) = (α−1
i (t) + φτ

i (t)Pi(t)φi(t))
−1 (10)

ŵi(t + 1) = xi(t + 1) − θ̂τ
i (t + 1)φi(t) (11)

where

φi(t) = [xi(t), · · · , xi(t − pi + 1),
ui(t), · · · , ui(t − qi + 1),
ŵi(t), · · · , ŵi(t − li + 1),

X̄τ
i (t)]τ

(12)

and the initial values θ̂i(0) and Pi(0) > 0 can be chosen

arbitrarily; {αi(t)} is the weighting sequence defined by

αi(t) =
1

h(ri(t))
, ri(t) = ||P−1

i (0)|| +
t∑

k=0

||φi(k)||2

(13)

with h(x) = log1+γ x, (γ > 0) or more generally, see [25].

To make sure ri(t) > 1, we need only take Pi(0) such that

0 < Pi(0) < e−1I , where e is the base of natual logarithm.

In this case, the control objective of each agent is, for

Agent i (i = 1, 2, · · · , N ), at any time instant t, to design a

local feedback control ui(t) based on the past measurements

{xi(0), · · · , xi(t), ui(0), · · · , ui(t − 1)} and its neighbors’

states {xj(t), j ∈ Ni} so that the average tracking error

Ji(t)
∆
=

1

t

t∑

i=1

|xi(t) − x∗
i (t)|

2

is asymptotically minimized, where the deterministic signal

{x∗
i (t)} is the local tracking goal of Agent i.

Then, by using the “certainty equivalence” principle,

Agent i can choose its local control ui(t) such that

φτ
i (t)θ̂i(t) = x∗

i (t + 1) (14)
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where the estimate θ̂i(t) is given by the above WLS algo-

rithm. From Eq. (14), we can obtain that

ui(t) = 1
bi1(t)

{x∗
i (t + 1)

+[ai1(t)xi(t) + · · · + ai,pi
(t)xi(t − pi + 1)]

−[bi2(t)ui(t − 1) + · · · + bi,qi
(t)ui(t − qi + 1)]

−[ci1(t)ŵi(t) + · · · + ci,li(t)ŵi(t − li + 1)]
−gτ

i (t)X̄i(t)}.
(15)

Note that the above local control laws only utilize local

information rather than global information of all the agents.

Intuitively, each agent has all the necessary information

available to design the local controller, however, we shall

remark that the decentralized update laws Eqs. (8)—(12)

cannot be obtained from the centralized WLS estimation

algorithm for the whole system because we cannot directly

get any knowledge on the bounds of Xi(t) and gτ
i (t). There-

fore, it is not possible to directly use the established results

of centralized WLS-based adaptive control [25] to yield

the closed-loop stability of the whole system. Due to this

reason, we give rigorous mathematical proof for the stability

and optimality of the WLS-based decentralized adaptive

controller, which is the key merit of this contribution.

III. PRELIMINARY ASSUMPTIONS AND LEMMAS

In order to analyze the decentralized WLS-based adaptive

controller, here we introduce the following standard condi-

tions:

Assumption 3.1: (noise condition) {wi(t),Ft} is a mar-

tingale difference sequence, with {Ft} being a sequence of

nondecreasing σ-algebras, such that

sup
t≥0

E[|wi(t + 1)|β |Ft] < ∞, a.s. (16)

for some β > 2 and

lim
t→∞

1
t

t∑
k=1

|wi(k)|2 = σi > 0, a.s. (17)

Assumption 3.2: (minimum phase condition) Bi(z) 6=
0,∀z ∈ C : |z| ≤ 1.

Assumption 3.3: (reference signal) {x∗
i (t)} is a bounded

deterministic signal.

Assumption 3.4: (strict-positive-real condition) C−1
i (z)−

1
2 is strictly positive real, i.e.,

|Ci(z) − 1| < 1,∀z ∈ C : |z| = 1. (18)

Remark 3.1: Assumption 3.1 is very weak, for example,

i.i.d. Gaussian noise or noise with other commonly-seen

probability distribution all satisfy this assumption. Assump-

tion 3.2 is one standard structure condtion for controlling

linear system. And Assumption 3.4 is a standard technical

condition to deal with colored noise.

Furthermore, assume that {di(t)} is a positive nondecreas-

ing deterministic sequence such that

w2
i (t) = O(di(t)) a.s. di(t + 1) = O(di(t)) (19)

It can be proved that under condition (A.1), di(t) can be

taken as

di(t) = tδ, ∀δ ∈ (
2

β
, 1) (20)

To make rigorous analysis, we introduce the following

notations firstly:

θ̃i(t)
∆
= θi − θ̂i(t)

δi(t)
∆
= tr(Pi(t) − Pi(t + 1))

βi(t)
∆
= (φτ

i (t)θ̃i(t))
2

α−1

i
(t)+φτ

i
(t)Pi(t)φi(t)

(21)

The following properties of WLS algorithm are to be

applied in later proof of global stability and optimality:
Lemma 3.1: If Assumptions 3.1 and 3.4 hold, then the

recursive WLS algorithm defined by Eqs. (8)—(10) has the

following properties almost surely:

||P
− 1

2

i (t + 1)θ̃i(t + 1)||2 = O(1) (22)
∞∑

t=1

αi(t)(φ
τ
i (t)θ̃i(t + 1))2 < ∞ (23)

∞∑

t=1

αi(t)(ŵi(t) − wi(t))
2 < ∞ (24)

∞∑

t=1

(φτ
i (t)θ̃i(t))

2

α−1
i (t) + φτ

i (t)Pi(t)φi(t)
< ∞ (25)

And θ̂i(t) converges almost surely to a finite random vector

θ̄i (not necessarily equal to θi).
Proof: See [25, Lemma 1] for proof of properties (22)—(25)

and [25, Theorem 1] for proof of the last property. 2

Remark 3.2: The last property is called self-convergence

of the WLS algorithm, which is not available in recursive

least-square (LS) algorithm and provides significant benefits

in theoretical analysis of WLS-based adaptive controller. And

because of this property, in this paper, it is not very necessary

to impose the assumption on high-frequency gains, “bi1 (i =
1, 2, · · · , N ) are known a priori”, so as to avoid the so-

called singularity problem. A detailed comparison between

WLS algorithm and LS algorithm can be found in [25].

IV. STABILITY AND OPTIMALITY

The closed-loop system of the decentralized adaptive

controller based on local WLS estimators has the following

stability and optimality:
Theorem 4.1: Under Assumptions 3.1—3.4, the closed-

loop system is stable in sense of

lim sup
t→∞

1

t
[

t∑

k=1

x2
k(t) + u2

k(t)] < ∞, a.s. ∀i = 1, 2, · · · , N

and optimal in sense of

lim sup
t→∞

1
t

t∑
k=0

|xi(k + 1) − x∗
i (k + 1) − wi(k + 1)|2 = 0,

a.s. ∀i = 1, 2, · · · , N
(26)

And furthermore, the following order estimates

Ri(t) = O(h(t) + d̄(t)) (27)

hold almost surely for i = 1, 2, · · · , N , where

Ri(t)
∆
=

t∑
k=0

|xi(k + 1) − x∗
i (k + 1) − wi(k + 1)|2

d̄(t) = max(d1(t), · · · , dN (t))
(28)
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Proof: First, we need to emphasize that both stability and

optimality are implied by Eq. (27). In fact, by definitions

of h(·) and d̄(t), if Eq. (27) holds, then obviously we have

Ri(t) = O(h(t) + d̄(t)) = o(t), which means the optimality

of closed-loop system holds. Then, by the optimality and

Assumption 3.1, we can obtain that

t∑

k=0

(xi(k + 1))2 = O(t);

then, by Assumption 3.2, i.e. minimum phase condition, we

can obtain that

t∑

k=0

(ui(k))2 = O(t).

Thus, the stability

lim sup
t→∞

1

t
[

t∑

k=1

x2
k(t) + u2

k(t)] < ∞

also holds if Eq. (27) is true.

By the discussions above, we need only to prove Eq. (27).

We divide the whole proof into 4 steps. In Step 1, we try to

analyze each agent individually, and give rough estimates of

x2
i (t+1) and ui(t), i = 1, 2, · · · , N . Since the results in Step

1 involve coupling agents, we need to make a global analysis

for all the agents, which establishes further ||X(t)|| ≤ Lt,

where Lt satisfies an linear inequality. In Step 3, based on

results in Step 2, we shall give order estimate of Lt, which

is critical in the whole proof. In the last step, we shall

analyze each agent again so as to give estimates of ri(t)
(i = 1, 2, · · · , N ) in terms of r̄(t), which in turn establishes

a key relationship on order of r̄(t) and then accurate estimate

r̄(t) = O(t) can be obtained, from which validity of Eq. (27)

can be deduced finally.

Step 1. For Agent i, i = 1, 2, · · · , N , by putting the

control law Eq. (14) into Eq. (1), we have

xi(t + 1) = φτ
i (t)θi + (φ0

i (t) − φi(t))
τθi + wi(t + 1)

= x∗
i (t + 1) − φτ

i (t)θ̂i(t) + φτ
i (t)θi

+(φ0
i (t) − φi(t))

τθi + wi(t + 1)

= x∗
i (t + 1) + φτ

i (t)θ̃i(t)
+(φ0

i (t) − φi(t))
τθi + wi(t + 1)

(29)

Then, by Lemma 3.1 and Eq. (13),

(φτ
i (t)θ̃i(t))

2

= βi(t)[α
−1
i (t) + φτ

i (t)Pi(t)φi(t)]
= βi(t)[α

−1
i (t) + φτ

i (t)Pi(t + 1)φi(t)
+φτ

i (t)(Pi(t) − Pi(t + 1))φi(t)]
≤ βi(t)[2α−1

i (t) + δi(t)||φi(t)||
2];

(30)

||φ0
i (t) − φi(t)||

2

= O(
t∑

k=1

|ŵi(k) − wi(k)|2)

= O(
t∑

k=1

αi(k)|ŵi(k) − wi(k)|2α−1
i (k))

= O(h(ri(t)));

(31)

And by the definition of βi(t) and Lemma 3.1, we have
∞∑

k=1

βi(k) < ∞, hence βi(t) → 0 as t → ∞. Then

|xi(t + 1)|2 ≤ 2βi(t)δi(t)||φi(t)||
2

+O(h(ri(t))) + O(di(t)).
(32)

Then, by the minimum phase condition, there exists λi ∈
(0, 1) such that

|ui(t)|
2 = O(

t+1∑
k=0

λt+1−k
i (|xi(k)|2 + ||X̄i(k)||2

+|wi(k + 1)|2)).
(33)

This fact holds for all i = 1, 2, · · · , N . Note that in this step,

we cannot obtain order estimate of |ui(t)|
2 directly because

Eq. (33) involves {xj(k), j ∈ Ni} in X̄i(k), whose order

estimates are not available yet.

Step 2. To estimate |ui(t)|
2, here we apply similar idea as

in [23], [24]. By the definition of X(k), obviously we can

get

|xi(k)|2 = O(||X(k)||2), ||X̄i(k)||2 = O(||X(k)||2).
(34)

Take ρ = max{λ1, λ2, · · · , λN}. Now define

Lt
∆
=

t∑
k=0

ρt−k||X(k)||2 (35)

Then we can obtain that

|ui(t)|
2 = O(Lt+1) + O(

t+1∑
k=0

ρt+1−kd̄(k))

= O(Lt+1) + O(d̄(t + 1)).
(36)

Also by the definition of φi(t), together with

ŵi(k) = (ŵi(k) − wi(k)) + wi(k) (37)

we can obtain that

||φi(t)||
2 = O(||X(t)||2) + O(Lt) + O(d̄(t))

+O(h(ri(t)) + di(t))
= O(Lt + h(r̄(t)) + d̄(t))

(38)

where

r̄(t)
∆
= max(r1(t), r2(t), · · · , rN (t)). (39)

Hence from the above, by Eq. (32), for Agent i, there exists

a constant Ci > 0 such that

|xi(t + 1)|2 ≤ Ciβi(t)δi(t)Lt

+O(βi(t)δi(t)[h(r̄(t)) + d̄(t)])
+O(di(t) + h(ri(t))).

(40)

Then, by the definition of δi(t), noting that

∞∑

k=1

δi(k) =

∞∑

k=1

tr(Pi(t) − Pi(t + 1)) < ∞

we can get δi(t) → 0 as t → ∞. Since βi(t)δi(t) → 0 as

t → ∞, we have

|xi(t + 1)|2 ≤ Ciβi(t)δi(t)Lt + O(h(r̄(t)) + d̄(t)) (41)

for i = 1, 2, · · · , N .
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Thus

||X(t + 1)||2 =
N∑

i=1

|xi(t + 1)|2

≤ [
N∑

i=1

Ciβi(t)δi(t)]Lt

+O(h(r̄(t)) + d̄(t)).

(42)

By the definition of Lt, we have

Lt+1 = ρLt + ||X(t + 1)||2

≤ [ρ + C
N∑

i=1

βi(t)δi(t)]Lt

+O(h(r̄(t)) + d̄(t))

(43)

where
C = max(C1, C2, · · · , CN ). (44)

Step 3. Since ρ ∈ (0, 1), βi(t)δi(t) → 0 as t → ∞,

together with Eq. (43), we know that for any ε > 0, there

exists sufficient large t0 > 0 such that

ρ + C
∞∑

k=t

βi(k)δi(k) ∈ (ρ, ρ + ε) ∀t ≥ t0 (45)

By taking ε ∈ (0, 1 − ρ), we can get

Lt+1 ≤ (ρ + ε)Lt + O(h(r̄(t)) + d̄(t)) (46)

Then, by iterating the above inequality, we obtain that

Lt+1 = O(h(r̄(t)) + d̄(t)) (47)

Thus, by the definition of Lt, we can obtain that

||X(t + 1)||2 ≤ Lt+1 = O(h(r̄(t)) + d̄(t)) a.s. (48)

Consequently, by Eq. (33) and Eq. (38), we have

|ui(t)|
2 = O(h(r̄(t)) + d̄(t))

||φi(t)||
2 = O(h(r̄(t)) + d̄(t)).

(49)

Step 4. By using Eq. (30), Eq. (31) and Eq. (49), we have

Ri(t) =
t∑

k=0

|xi(k + 1) − x∗
i (k + 1) − wi(k + 1)|2

=
t∑

k=0

(φτ
i (k)θ̃i(k) + (φ0

i (k) − φi(k))τθi)
2

=
t∑

k=0

(βi(k)δi(k)||φi(k)||2) + O(α−1
i (t))

= O( max
0≤k≤t

||φi(k)||2) + O(α−1
i (t))

= O(h(r̄(t)) + d̄(t)) a.s.
(50)

Therefore, to prove Eq. (27), we need only to prove r̄(t) =
O(t). In fact, by Assumption 3.1, we have

t∑
k=0

|wi(k + 1)|2 = O(t). (51)

Noting that d̄(t) = O(t), x∗
i (t) = O(1), by Eq. (50), we

obtain that

t∑
k=0

|xi(k + 1)|2

≤ Ri(t) +
t∑

k=0

|wi(k + 1)|2 +
t∑

k=0

|x∗
i (k + 1)|2

= O(t) + O(h(r̄(t))).

(52)

Then, by Assumption 3.2, we can obtain that

t∑
k=0

(ui(k))2 = O(t) + O(h(r̄(t))) (53)

and

t∑
k=0

(ŵi(k))2 =
t∑

k=0

((ŵi(k) − wi(k)) + wi(k))2

≤ 2
t∑

k=0

[(ŵi(k) − wi(k))2 + (wi(k))2]

= O(h(r̄(t))) + O(t) a.s.
(54)

Therefore, by the definition of r̄(t), φi(t) and together with

Eq. (13), we can obtain

r̄(t) = max{ri(t), 1 ≤ i ≤ N}

= max{||P−1
i (0)|| +

t∑
k=0

||φi(k)||2, 1 ≤ i ≤ N}

= O(h(r̄(t))) + O(t).
(55)

Finally, from the definition of h(·), we can obtain that r̄(t) =
O(t). This completes the proof of the theorem. 2

V. SIMULATION STUDY

For the decentralized adaptive controller based on decen-

tralized WLS algorithm, we have given a rigorous proof of

the closed-loop system stability and optimality in last section.

In this section, we shall illustrate several simulation results

to verify the theoretical results obtained.

In the simulation, for simplicity, the number of agents is

taken as N = 4 and parameters of agents are randomly taken

such that Assumptions 3.2 and 3.4 satisfied. And the noise

sequences wi(t) (i = 1, 2, · · · , N ) are all i.i.d. taken from

Gaussian distribution N(0, 1), which satisfy |wi(t)|
2 = O(t)

a.s. The objective of the control for Agent i (i = 1, 2, · · · , N )

is to track a local reference signal x∗
i (t) = 10 sin πt

20 +
5 sin πt

10 .
In the simulation, the parameters of agents are shown

in Table I, and to save place, only the results of the first

two agents are illustrated in Fig. 1 and Fig. 2, respectively.

In each figure, the states xi(t), the reference signals x∗
i (t)

and the tracking errors ei(t) are plotted in the top-left

subfigure; the accumulated squared errors, the control ui(t)
and the driving noise wi(t) are plotted in the top-right

subfigure, bottom-left subfigure, and bottom-right subfigure,

respectively.

From the simulation results, we can see that, by using

the local adaptive controllers, all agents can track their local

reference signals successfully, which are consistent with our

theoretical results in Theorem 4.1.

VI. CONCLUSION

In this paper, we have studied an adaptive control problem

for multi-agent complex dynamical system with various

uncertainties, where the agents are supposed to use decen-

tralized weighted least-square (WLS) algorithm as the local

estimators of parametric uncertainties and the agents can

design their local adaptive controllers based on decentralized

WLS algorithm by “certainty equivalence” principle. Gener-

ally speaking, it is difficult to analyze such problems because
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TABLE I

SIMULATION SETTINGS

Agent No. ai bi ci gi Ni

1 -0.861724 -0.183611 -1.963973 -0.407137 0.932109 0.679022 0.544034 4 2
2 -0.516674 0.495204 -1.080332 0.713995 0.413996 0.968700 0.148386 3 4
3 -1.258505 -2.246897 1.399799 -0.451906 0.531898 0.220984 0.035710 3 1
4 0.603717 0.578080 1.063012 0.341797 0.680615 0.203578 0.552013 1 2
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Fig. 1. Simulation result for agent 1
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Fig. 2. Simulation result for agent 2

of the complexity caused by existence of the couplings

between the agents and the high nonlinearity of the closed-

loop system. For the sake of theoretical analysis, basic

properties of WLS algorithm are utilized in this paper as key

technical tools. The self-convergence property of WLS algo-

rithm brings certain benefits for the WLS-based decentralized

adaptive controller. To resolve the complex coupling problem

involved, the philosophy of individual analysis plus global

analysis is adopted to yield a rigorous proof on stability

and optimality of closed-loop system. And the simulation

examples also verified our theoretical results.
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Birkhäuser, Boston, MA, 1991.

[11] C. Wen. Decentralized robust control of class unknown interconnected
systems. Automatica, 30(3):543–544, 1994.

[12] G. H. Yang and S. Y. Zhang. Decentralized robust control for
interconnected systems with time-varying uncertainties. Automatica,
31(11):1603–1608, 1996.

[13] Y. Y. Wang, G. X. Guo, and D. J. Hill. Robust decentralized nonlinear
controller design for interconnected systems for multimachine power
systems. Automatica, 33(9):1725–1733, 2007.

[14] M. S. Mahmoud and S. Bingulac. Robust design of stabilizing con-
trollers for interconnected time-delay systems. Automatica, 34(6):795–
800, 1998.

[15] Z. H. Guan, G. R. Chen, X. H. Yu, and Y. Qin. Robust decentralized
stabilization for a class of large-scale time-delay uncertain impulsive
dynamical systems. Automatica, 28:2075–2084, 2002.

[16] P. Ioannou. Decentralized adaptive control of interconnected systems.
IEEE Transactions on Automatic Control, 31:291–298, 1986.

[17] D. J. Hill, C. Wen, and G. C. Goodwin. Stability analysis of
decentralised robust adaptive control. Syst. Control Lett., 11(4):277–
284, 1988.

[18] D. T. Gavel and D. D. Siljak. Decentralized adaptive control: structural
conditions for stability. IEEE Transactions on Automatic Control,
34:413–26, 1989.

[19] C. Wen and D. J. Hill. Global boundedness of discrete-time adaptive
control just using estimator projection. Automatica, 28:1143–1157,
1992.

[20] S. J. Liu, J. F. Zhang, and Z. P. Jiang. Decentralized adaptive output-
feedback stabilization for large-scale stochastic nonlinear systems.
Automatica, 43(2):238–251, 2007.

[21] C. Wen and J. Zhou. Decentralized adaptive stabilization in the
presence of unknown backlash-like hysteresis. Automatica, 43(3):426–
440, 2007.

[22] H. B. Ma. Decentralized Adaptive Synchronization of a Stochastic
Discrete-Time Multiagent Dynamic Model. SIAM Journal on Control
and Optimization, 48(2):859-880, 2009.

[23] H. B. Ma. Capability and Limitation of Feedback Mechanism in
Dealing with Uncertainties of Some Discrete-time Control Systems.
Phd thesis, Graduate School of Chinese Academy of Sciences, Beijing,
China, June 2006.

[24] H. B. Ma, K. Y. Lum, and S. S. Ge. Decentralized Åström-Wittenmark
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