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Abstract— This work focuses on optimal boundary control
of highly dissipative Kuramoto-Sivashinsky equation (KSE)
which describes the long-wave motions of a thin film over
vertical plane. A standard transformation is initially used
to reformulate the original boundary control problem as
an abstract boundary control problem of the KSE partial
differential equation (PDE) in an appropriate functional space
setting. Low dimensional representation of the KSE is used in
the synthesis of a finite dimensional linear quadratic regulator
(LQR) in the full-state feedback control realization and in
a compensator design with a Luenberger-type observer. The
proposed control problem formulation and the performance
and robustness of the closed-loop system in the full state-
feedback, output-feedback and in the output-feedback with
the presence of noise controller realization have been evaluated
through simulations.
Key words: Distributed-Parameter Systems, Kuramoto-
Sivashinsky Equation, Boundary control, LQR, State/Output
Feedback Control

I. INTRODUCTION

This paper focuses on optimal boundary control of highly
dissipative fourth-order PDEs given by the Kuramoto-
Sivashinsky equation, which describes a variety of physic-
ochemical phenomena like long-wave motions of the liquid
thin film over a vertical plate, or evolution of laminar fronts
[1], or which serves as a model for description of the
phase turbulence in reaction-diffusion systems [2]. Due to
its ability to describe a large variety of physical phenomena
and due to its complexity, the Kuramoto-Sivashinsky equa-
tion (KSE) has been extensively studied. In particular, the
pioneering works of Nicolaenko et al. [3] and Foias et al.
[4] provided first description of complex dynamical features
such as global attractors and inertial manifold of the KSE.

Although there is a significant amount of research de-
voted to the description of complex dynamical features of
the KSE, a lot remains to be done in the control problem
formulations associated with the KSE [5]. Recently, the
problem of stabilization of the Kuramoto-Sivashinsky equa-
tion with the actuators placed within the system’s domain
has been addressed within the output feedback formulation
by Christofides and Armaou [6], [7]. In the same vein,
Lee and Tran [8] explored two reduced-order methods, the
approximate inertial manifolds and the proper orthogonal
decomposition to obtain a reduced-order models which
are utilized in synthesis of linear and nonlinear quadratic
regulators for the distributed control of the KSE. In all
aforementioned controller realizations, an important issue

of actuation applied at the domains’ boundary has not been
explored. Namely, in a large number of implementable
controlled systems, the implementation specifications rarely
permit placement of the actuation devices within the sys-
tems’ domain, but more frequently the control implementa-
tion is achieved by a finite number of actuators places on
the boundary of the system [9], see Fig.1. Along the line
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Fig. 1. Schematic representation of the two-phase annular flow in vertical
pipes in which the evolution of the thin film layer height is described by
the Kuramoto-Sivashinsky Equation.

of boundary applied actuation in the context of control of
the KSE, Liu and Krstic [5] explored the problem of global
boundary control in the case when control appears under
Dirichlet and Neumann boundary conditions. However, an
important notion of the optimality within boundary control
of the KSE setting has not been explored due to fol-
lowing two complexities, the model complexity associated
with highly dissipative fourth-order spatial operator and
distributed nature of the KSE on one side, and due to
the complexity of formulating optimal boundary control
problem, on the other. The latter exactly accounts for the
point actuation applied at the domains’ boundary and leads
possibly to the large scale nonlinear programing control
problems which are difficult to be realized and implemented
in practice.

In order to address the issue of boundary control of
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spatially distributed systems, a significant research work
has focused on the development of a general framework
from the stand point of necessary conditions under which
a system can be stabilized by the state feedback controller
(see e.g., [10],[11],[12],[13]). Commonly, the issue of stabi-
lization for a parabolic system is resolved by the state space
decomposition based on system modes, as the “relocation”
of finite number of unstable modes using well-known fi-
nite dimensional algorithms stabilizes the original system.
This implies that the dominant dynamics described by a
finite number of possibly unstable modes, once stabilized,
and along with the exponential stable infinite dimensional
modal complement, renders asymptotic stability to the entire
infinite dimensional system. Along this paradigm, the class
of results that follows explores boundary identification and
control of distributed parameter systems using singular
functions [14], boundary static and dynamic output reg-
ulation of nonlinear distributed parameter systems [15],
comprehensive development of the state feedback bound-
ary control laws based on the backstepping methodology
by Krstic and coworkers [16], [5], [17], stabilization by
the control Lyapunov function and application of finite-
dimensional LQR [18], and development of model predic-
tive methodology that includes input and state constraints
in the boundary control design [19]. The model predictive
control methodology within the boundary control setting
[19], has been based on the development of a general
framework for the synthesis of low-order controllers for
parabolic PDE systems and other highly dissipative PDE
systems that arise in the modeling of spatially-distributed
systems on the basis of low-order ODE models derived
through the Galerkin method.
Building on these results associated with the control of
parabolic PDE systems, in this work optimal boundary
control of Kuramoto-Sivashinsky equation is developed.
In particular, the evolution of the fourth-order highly dis-
sipative PDE state of the KSE is given by an abstract
evolution equation which is appropriately defined on the
Hilbert space. A standard transformation is initially used
to reformulate the original boundary control problem as
an abstract boundary control problem. Low dimensional
representation of the KSE is used in the synthesis of
a finite dimensional linear quadratic regulator (LQR) in
the full-state feedback control realization and in a com-
pensator design with a Luenberger-type observer. As an
example of the proposed controller synthesis methodology,
we consider the optimal stabilization of spatially-uniform
unstable steady state of the Kuramoto-Sivashinsky equa-
tion subject to Dirichlet boundary conditions. A boundary
control actuation in this work appears as the control of
the flux at the boundary, as one possible boundary control
realization; hence the synthesis in the case of Neumann or
any other combination of the boundary applied actuation
would follow in the same steps as the ones presented in
this work. The proposed control problem formulation has
been evaluated through simulations in the case of full-state

feedback control, output-feedback control and the influence
of output noise on close-loop stability is investigated.

II. PRELIMINARIES

A. Kuramoto-Sivashinsky equation
In this work, we consider the following uncontrolled

Kuramoto-Sivashinsky equation given in the following
form:

ut + νuζζζζ + uζζ + uuζ = 0 (1)

y(t) =

∫ l

0

cdj
(ζ)u(ζ, t)dζ (2)

with the following boundary and initial conditions:

u(0, t) = 0 u(l, t) = 0 (3)

uζ(0, t) = 0 uζ(l, t) = v(t) (4)

u(ζ, 0) = u0(ζ) (5)

where u(ζ, t) ∈ H denotes the state variable, ζ ∈ [0, l]
is the coordinate, t ∈ [0,∞) is the time, v(t) ∈ U

denotes the manipulated input, y(t) ∈ Y is the output
variable obtained by dj-th sensor. The terms uζζζζ and uζζ

denote the fourth-order and second-order spatial derivative
of u(ζ, t) and u0(ζ) is a sufficiently smooth function of
ζ. The functions cdj

(ζ) ∈ L2(0, l) are square integrable
functions of ζ that describe how the sensing is distributed
within the spatial interval [0, l]. The state space of interest
is H = L2(0, l), with the standard inner product (·, ·) and
norm ‖ · ‖ defined on it. Additional restriction on the space
H, which is coming from the unique conservation property
of the KS PDE model [20], is given by the property that
any function ψ(ζ) ∈ H also satisfies,∫ l

0

ψ(ζ)dζ = 0 (6)

We consider a linearized form of Eq.1 around the spatially
uniform unstable steady state u(ζ, t) = 0, and in order to
reformulate it in the abstract equation setting, the following
operator is defined:

A0 =
d4

dζ4
(7)

with its dense domain

D(A0) = {ψ(ζ) ∈ L2(0, l)|ψ,ψζ , ψζζ , ψζζζ , (8)

are abs. cont., ψζζζζ ∈ L2(0, l), ψ(0) = 0 = ψ(l),

ψζ(0) = 0}

The operator Eq.7 with its domain Eq.8 belongs to the
class of nonsymmetric linear differential operators whose
eigenfunction expansions converge in much the same way as
Fourier series [21] and thus enjoy many of the properties of
systems generated by self-adjoint operators. The input to the
system is given by the boundary operator B : L2(0, l) → IR,

Bψ(ζ) =
dψ

dζ
(l), with D(A0) ⊆ D(B) (9)

and the output operator as:
Cu(t) = (cdj

(·), u(ζ, t)) (10)
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We define an associated operator A as:
Aψ(ζ) = A0ψ(ζ) and D(A) = D(A0) ∩ ker(B) =

{ψ ∈ L2(0, l) : ψ,ψζ , ψζζ , ψζζζ , are abs. cont.,

Aψ(ζ) ∈ L2(0, l), ψ(0) = 0 = ψ(l), ψζ(0) = 0 = ψζ(l)}
(11)

with an assumption that the operator A is the infinitesimal
generator of a strongly continuous C0-semigroup. One can
easily check that the operator A is a self-adjoint, positive
and boundedly invertible, with discrete spectrum. In order
to completely characterized operator A one needs to solve
the following eigenvalue problem:

d4ψ

dζ4
= λψ, ζ ∈ [0, l]

ψ(0) = 0 = ψ(l) (12)

ψζ(0) = 0 = ψζ(l)

and the characteristic equation of Eq.12 is s4 = λ, with its
solutions given as s1 = α, s2 = −α, s3 = iα, s4 = −iα,
where α = (λ)1/4. Thus the general solution of Eq.12 is
given by

ψ(ζ) = C1e
αζ + C2e

−αζ + C3cos(αζ) + C4sin(αζ)
(13)

which, by boundary conditions, renders the following sys-
tem of linear equations:

C1 + C2 + C3 = 0
C1e

αl + C2e
−αl + C3cos(αl) + C4sin(αl) = 0
C1 − C2 + C4 = 0

C1e
αl − C2e

−αl − C3sin(αl) + C4cos(αl) = 0
(14)

Setting the determinant of the coefficient matrix of the
above system to zero, renders the expression for the nonzero
eigenvalues of the problem Eq.12:

1

cos(αl)
= cosh(αl) (15)

The Eq.15 for the αn has an infinite number of solutions
which can be obtained by plotting the graphs of the func-
tions 1

cos(αl) and cosh(αl). The set of eigenvalues λn =

(αn)4, for all n ≥ 1 with the corresponding eigenfunctions
is given as,

ψn(ζ) = κn

[
N1(αn, l)

P1(αn, l)
eαnζ + e−αnζ+

+
N2(αn, l)

P2(αn, l)
cos(αnζ) +

N3(αn, l)

P3(αn, l)
sin(αnζ)

]
(16)

where the normalizing factor κn is given so that (ψn, ψn) =∫ l

0
ψ2

ndζ = 1 holds, and functions P1(αn, l), P2(αn, l), and
P3(αn, l) are given as follows, P1(αn, l) = 2 cos(αn l) −
2 eαn l + cos(αn l) e2 αn l − cos(2αn l) eαn l, P2(αn, l) =
2 cos(αn l) − eαn l + cos(αn l) e2 αn l − 2 cos(αn l)

2
eαn l,

P3(αn, l) = cos(αn l) eαn l − 1, and N1(αn, l) =

−(sin(αn l) − sin(2 αn l)
eαn l ), N2(αn, l) = eαn l + 2

eαn l −

sin(αn l) + cos(αn l)
(

2 sin(αn l)
eαn l − 3

)
− 2 sin(αn l)2

eαn l and

N3(αn, l) = sin(αn l)
eαn l − cos(αn l)

eαnl +1. The eigenvalue α0 = 0

with the corresponding eigenfunction ψ = 1 does not satisfy
Eq.6.

We make an assumption that function B exists, that B ∈
D(A0) so that the following holds:

BBv(t) = v(t) (17)

In other words, an ansatz for the function B can be written
as follows:

B(ζ) = aζ3 + bζ2 + cζ + d (18)

and the conditions given by Eq.17 and B ∈ D(A0) render
the following expression:

B(ζ) =
1

l2
ζ3 −

1

l
ζ2 (19)

In order to completely define abstract boundary problem,
we define another operator Ã0 = − d2

dζ2 with its domain,

D(Ã0) = {ψ(ζ) ∈ L2(0, l)|ψ,ψζ , are abs.cont., (20)

ψζζ ∈ L2(0, l), ψ(0) = 0 = ψ(l)}

The new operator Ã0 is self-adjoint, positive and boundedly
invertible, so that the following holds:

Ã2
0ψ = Aψ, ψ ∈ D(A) (21)

and so that Ã0 = A
1

2 , the square root of A.
The linearized system of the PDE system of Eqs.1-2-3-

4-5 can be equivalently written in the following form of
the abstract boundary control problem:

u̇(t) = −νA0u(t) + A
1

2u(t), u(0) = u0

Bu(t) = v(t)

y(t) = Cu(t)

(22)

where A0 : D(A0) ⊂ H 
→ H and B is a boundary
operator B : D(B) ⊂ H 
→ U , with D(A0) ⊆ D(B),
and output operator C : H 
→ IR. This requirement on
existence of B(ζ) together with an assumption that the
input v(t) ∈ L2([0, t];U), allow us to define the following
transformation p(t) = u(t) −Bv(t), which renders the
well posed abstract differential equation,

ṗ(t)=(−νA + A
1

2 )p(t) + (−νA0 + A
1

2 )Bv(t) −Bv̇(t)

p(0) = p0 ∈ D(A) (23)

which has a well defined mild solution. The operator A is
the infinitesimal generator of a C0-semigroup and due to
bounded property of linear operators B, A0B and A

1

2B

equation Eq.23 is well defined in the infinite dimensional
state space setting. However, the abstract evolutionary
equation Eq.23 includes in its expression a derivative
of the control term, which requires to reformulate the
problem on the extended state space He := H

⊗
U , as
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pe(t) = [v(t) p(t)]′ together with (v̄(t) = v̇(t)) yields,

ṗe(t) =

(
0 0

(−νA0 + A
1

2 )B (−νA + A
1

2 )

)
pe(t)+

+

(
I

−B

)
v̄(t)

pe(0) = [pe
1(0) pe

2(0)]′ = [v(0) p(0)]′

(24)
The new extended space operator Ae is defined as
Ae =

(
0 0; (−νA0 + A

1

2 )B (−νA + A
1

2 )
)

and with

its domain D(Ae) = U
⊗

D(A) is the infinitesimal
generator of a C0-semigroup on He. The operator Ae and
operator Be = [I − B]′ define well posed linear infinite
dimensional system with the mild solution of Eq.24 given
by the following expression:

pe(t) =

(
I 0

S(t) T (t)

)
pe(0)+

+

∫ t

0

(
I 0

S(t− s) T (t− s)

)(
I

−B

)
v̄(s)ds

pe(0) = [pe
1(0) pe

2(0)]′ = [v(0) p(0)]′

(25)

where S(t)p =
∫ t

0
T (t − s)(−νA0 + A

1

2 )Bpds =∫ t

0
T (s)(−νA0 + A

1

2 )Bpds, and T (t) is the operator
associated with the infinitesimal generator A (see for
details [12], [22]). Therefore, by the necessary assumption
that u ∈ L2([0, t];U) and by the continuity of initial
conditions (that is, u(0) = p(0) + Bv(0)), a mild solution
of Eg.22 is given by:

u(t) = Bv(t) − T (t)Bv(0) + T (t)u(0)−

−
∫ t

0
T (t− s)Bv̇(s)ds+

+
∫ t

0
T (t− s)(−νA0 + A

1

2 )Bv(s)ds

(26)

The Riesz spectral operator A generates a C0–strongly
continuous semigroup T (t) given by:

T (t) =

∞∑
n=0

eλnt (·, φn(ζ))ψn(ζ) (27)

so that sup
n≥1

Re(λn) ≤ ∞, and spectrum of A is given

as Ω(A) = {λn, n ≥ 1} where λn = α4
n,∀n ≥ 1, are

simple eigenvalues of A and where αn is obtained, as it
is given in Eq.15, ψn are corresponding eigenfunctions of
A given by Eq.16 and the φn is the biorthogonal vector
so that (ψm, φn) = δmn. The equation Eq.26 suggests that
the type of the boundary control action does not provide
insight into a precise generalization of the finite dimensional
form of the state-feedback control law that can be used
to stabilize the KSE. However, one can deduce a features
of the finite dimensional controller on the premises of the
Eq.24 by exploring the number of unstable eigenvalues of
the extended space operator Ae, which leads to a more

practical controller synthesis for boundary controlled the
KSE.
Remark 1: The proposed procedure for determination of

function B(ζ) is of general nature and it is not associated
with the boundary conditions considered in Preliminaries.
Namely, one could easily consider Neumann boundary
conditions or more general cases when the actuation appears
on both domains boundaries.
Remark 2: The approximate controllability of boundary

controlled system of Eq.24 can be assured by checking that
the following condition holds for all n ≥ 1,

rank[(−νA0 + A
1

2 )B(ζ) − λnB(ζ), ψn(ζ)] = 1 (28)

In the same vein, the condition of approximate observ-
ability for the boundary controlled problem holds if the
rank[(C(B(ζ) + I), ψn(ζ))] = 1 holds for n ≥ 1. The
approximate controllability and observability conditions of
boundary controlled system are transformed from their
standard forms due to the boundary transformation [22].

III. OPTIMAL CONTROLLER DESIGN

The synthesis of the finite dimensional controller stabi-
lizing the KSE is based on the extended space operator
Ae, whose spectrum is partitioned into a finite dimensional
unstable part Ω+(Ae) and an infinite dimensional stable
complement Ω−(Ae), Ω(Ae) = Ω+(Ae) ∪ Ω−(Ae). The
finite dimensional LQR problem for the finite dimensional
state given by p̄e(t) = [v(t) p(t)]′ is formulated in the
following form:

min
v̄
J(p̄e(0); v̄) =

∫ ∞

0

(
p̄e(t)′Qp̄e(t) + v̄(t)

′
Rv̄(t)

)
dt (29)

s.t. ˙̄p
e
(t) = Aup̄

e(t) + Buv̄(t) (30)

where Au and Bu are matrices that correspond by their
dimensions to the dimensions of an unstable eigenspace
Ω+(Ae). Matrices Q and R are positive semidefinite and
definite, respectively. The resulting LQR control law is

v̄(t) = −
1

2
R−1B′

uP p̄
e(t) = −Kp̄e(t), where P is a pos-

itive definite solution to the LQR-ARE:

0 = A′
uP + PAu +Q− PBuR

−1B′
uP (31)

Lyapunov based analysis of stabilization of unstable modes
p̄e(t) by LQR state feedback can be demonstrated by con-
sidering the following standard control Lyapunov function
(CLF), V (t) = p̄e(t)′P p̄e(t), so that:

V̇ (t) = d
dt [p̄

e(t)′P p̄e(t)]
= p̄e(t)′

(
A′

uP + PAu − PBuR
−1B′

uP
)
p̄e(t)

= −p̄e(t)′Qp̄e(t) < 0
(32)

From Eq.32, it can be concluded that the unstable modes
are optimally stabilized and due to the cascaded intercon-
nection between unstable and stable modal states, once the
unstable states are stabilized under the stabilizing feed-
back law, p̄e(t) → 0 and v̄(t) → 0, the stable infinite
modal states evolution is only driven by the zero-input
dynamics which renders asymptotic stability of the infinite
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Fig. 2. Boundary stabilization of the linearized KS PDE Eqs.1-2-3-4-
5 under the full state-feedback LQR control law Eq.36 and with initial
condition p1(0) = 1.5, p2(0) = 0.4.

dimensional closed-loop system. The associated weights
given by Q and R matrices in the formulation of the
LQR control law given by Eqs.29-30, represent weights
on the state evolution p(t), control input evolution v(t),
and derivative of boundary control input v̄(t). The term R

represents the weight on the derivative of the input while
the first diagonal term in the matrix Q represents the weight
that is associated with v(t) and the remaining nonzero
terms are weights on modal states p(t). The motivation
for the synthesis of finite dimensional LQR problem on
the premises of the dimensions of unstable eigenspace
stems from the high dissipative nature of the KS equation.
Namely, a few dominant modes are sufficient to capture the
entire KS state while higher modes are neglected. Along
the line of synthesis of infinite dimensional LQR that
would encompasses entire KS equation state, one needs to
solve set of infinite dimensional algebraic Riccati equations
(ARE) which can provide a unique solution to the feedback
problem under the assumption of exponential detectability
and stabilizability. However, one has to be cautious if the
solution to ARE is obtained by solving a significantly large
system of algebraic equations which may invoke numerical
errors.
In the case where state feedback control can not be realized,
natural extension to the controller synthesis is to incorporate
an observer in the feedback structure. A state observer of the
Luenberger type is considered. Under the assumption that
the approximate observability holds [22], the Luenberger
observer is constructed as,

˙̄̂pe = Au ˆ̄pe(t) + Buv̄(t) − L(y(t) − Cu ˆ̄pe(t)) (33)

where Cu is the matrix of appropriate dimensions cor-
responding to the dimensions of the unstable eigenspace
Ω+(A) and the number of measurement sensors. Finally,

under the assumption of exponential stabilizability and
detectability of (Au,Bu) and (Au, Cu), respectively, there
exist K and L so that Au + BuK and Au + CuL are
exponentially stable. The resulting compensator enforces
asymptotic stability in the linearized infinite-dimensional
closed-loop system.

Remark 3: It is of importance to address the issue of
noise in the framework of the compensator design. A small
noise introduced in the output generates perturbations that
propagate through the feedback and may form a standing
wave solution, which is usually, a linear combination of the
unstable eigenspace modes’ eigenfunctions.

IV. SIMULATION STUDY

Kuramoto-Sivashinsky PDE given by Eqs.1-2-3-4-5 with
the parameter ν = 0.12 is considered. The spectrum of
the operator Ω(A) is calculated by solving the eigenvalue
problem given by Eq.12 whereby the eigenvalues λn are
obtained as the solution to Eq.15.The eigenvalues of the
operator A are calculated as λe

n = −νλ4
n +λ2

n and the first
three eigenvalues of the operator Ae are unstable (λe

1 =
0.0, λe

2 = 1.6502, λe
3 = 1.5631), while the remaining infi-

nite eigenvalues are stable. The distribution of eigenvalues
demonstrates the dissipative nature of the underlying PDE,
since the necessary “gap” condition providing that consecu-
tive eigenvalues sufficiently differ among themselves holds.

A high-order finite-dimensional approximation of the in-
finite dimensional abstract boundary control problem given
by Eq.24 is first obtained by considering n = 30 eigenfunc-

tions u(ζ, t) =

30∑
n=1

un(t)ψn(ζ), and it is given by:

ṗe(t) = Āepe(t) + B̄ev̄(t) (34)

yi(t) = C̄epe(t) (35)

where Āe, B̄e and C̄e are matrices of the follow-
ing dimensions (31 × 31), (31 × 1), ((# of spatially
distributed sensors) × 31), respectively, with 3 sensors
used at c(ζ, ζci) = 1

2ε1[ζci−ε,ζci+ε](ζ), where ζci =
[0.1225 1.0964 2.5101]. Standard Galerkin method is
applied, where modal finite dimensional approximation
of Eqs.1-2-3-4-5 is obtained by taking an inner product
on L2(0, l) with operators’ eigenfunctions (u(ζ, t), ψn(ζ)),
n = 1, 2, · · · , 30. Function B(ζ) ∈ D(A0) is selected to
satisfy the following condition BBv(t) = v(t) and it is

chosen to be B(ζ) =
1

π
ζ3 −

1

π
ζ2. In the extended space

D(Ae) = D(A)
⊕
U , the entries of finite dimensional

matrices Āe, B̄e and C̄e are calculated as follows:(
(−νA0 + A1/2)B

)
n

=

(
(−ν

d4

dζ4
−

d2

dζ2
)B(ζ), ψn(ζ)

)

(−νA + A1/2)n =

(
(−ν

d4

dζ4
−

d2

dζ2
), ψn(ζ)

)

Bn =

(
−(

1

π
ζ3 −

1

π
ζ2), ψn(ζ)

)

Cin = ((c(ζ, ζci), B(ζ)); (c(ζ, ζci), ψn(ζ)))
A simple linear model used for the practical controller
synthesis has three states:
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p̄e(t) = [v(t); p1(t); p2(t)]
with associated matrices of appropriate dimensions (3× 3)
in the case of Āu, (3 × 1) in the case of B̄u, and (3 × 3)
in the case of C̄u, with v̄(t) being a derivative of v(t). The
finite dimensional LQR control law v̄(t) = −Kp̄e(t) is the
solution of the following optimal control problem:

min
v̄
J(p̄e(0); v̄) =

∫ ∞

0

(p̄e(t)′Qp̄e(t) + v̄(t)′Rv̄(t)) dt

s.t. ˙̄p
e
(t) = Āup̄

e(t) + B̄uv̄(t)
(36)

which yields the following stabilizing gain
K =

(
0.6578 −0.8917 1.1715

)
104

that places the unstable eigenmodes of a three-dimensional
closed-loop system at the following locations λcl =
[−16.6960 − 1.5514 − 2.1172] for the following values
of matrices Q = [0.0001 0; 0 I], where I is the unitary
(2×2) matrix and R = 0.001. It is important to emphasize
that the first entry in the Q matrix is associated with the
weights on the evolution of the control input effort, while
the R weight refers to the derivative of the control input.
This adds another degree of freedom in the design of the
controller that is realized as the boundary place actuation.
Furthermore, the gain of the Luenberger observer of Eq.33
is calculated as the gain that shifts the observer eigenvalues
at λLC = λcl − [10.5 2.5 3.5] in order to ensure faster
convergence of the observer dynamics compared to the
systems dynamics. The control law v̄(t) = −Kp̄e

u(t) is
first applied to the linear finite dimensional approximation
of Eqs.34-35 with 30 eigenfunctions, and the solution is
obtained by integrating the closed-loop system by an ex-
plicit Euler integration scheme, where the time step is taken
as �t = 1

1.2max|eig{Ω(A)e}| , so that numerical stability is
ensured. In the simulation study Fig.2, it is demonstrated
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Fig. 3. Boundary stabilization of the linearized KS PDE Eqs.1-2-3-4-5
under the output state-feedback LQR control law Eq.36 and with initial
condition p1(0) = 1.5, p2(0) = 0.4.
that the PDE state, close to the boundary where control is

applied through the flux actuation, brings the state of the KS
PDE to zero. This is achieved with the large excursion of
the state even for a relatively small perturbation of initial
conditions, which is mainly due to the necessity to have
the three unstable modes from the boundary stabilized, see
Figs.2-5. Complementary with Fig.2 is Fig.5 that shows
the evolution of the control v(t) applied at the boundary
ζ = π. The linear output feedback control realized with
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Fig. 4. Boundary stabilization of the linearized KS PDE Eqs.1-2-3-4-5
under the full state-feedback LQR control law Eq.36 with measurement
noise �(t) ≤ 0.01 and with initial condition p1(0) = 1.5, p2(0) = 0.4.

three point measurements achieves successful stabilization
of the KS PDE state in a similar manner as in the case
of the state feedback stabilization, see Fig.3. It is observed
that the state-feedback controller outperforms the output-
feedback controller, see Figs.3-5. In Fig.5, as expected, both
points and dashed lines converge to the same trajectory,
as it takes initially some time for the state estimate to
converge to the actual state. In addition, when the impact
of noisy measurements is included in the output feedback
controller implementation, in the simulation studies, using
the linearized PDE model, it is demonstrated that relatively
small noise level results in deviation of the state u(ζ, t)
from the zero solution. Namely, for noise of magnitude
�(t) ≤ 0.01 that is directly added to y(t) in Eq.33, we
observe, see Fig.4 and Fig.5, that u(ζ, t) behaves like a
near standing wave in the space around u(ζ, t) = 0 with
respect to time.

V. SUMMARY

In this work, a practical boundary control approach
of highly dissipative Kuramoto-Sivashinsky equation by
optimal control is demonstrated. An original boundary
control problem is exactly transformed into an abstract
boundary control problem which provides a model basis
for synthesis of a practical finite dimensional controller.
A low-dimensional model representation of the KSE is

146



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−400

−300

−200

−100

0

100

200

300

400

t

v
(t

)

Fig. 5. Boundary input profiles in the case of the full state feedback-
”dotted”, output feedback-”dashed line” and output feedback with mea-
surement noise-”solid-line”.

utilized in the synthesis of a finite dimensional linear
quadratic regulator (LQR) in the full-state feedback control
realization and in a compensator design with a Luenberger-
type observer. The proposed control problem formulation
and the performance of the closed-loop system have been
explored in the full-state feedback, output-feedback and in
the output-feedback with the presence of noise controller
realization.
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