
Least-squares based iterative parameter estimation for

two-input multirate sampled-data systems

Jing Lu, Xinggao Liu, Feng Ding

Abstract— This paper studies identification problems for two-
input multirate systems with colored noises (The method in the
paper can be easily extended to multi-input multirate systems).
The state-space models are derived for the multirate systems
with two different input sampling periods and furthermore
the corresponding transfer functions are obtained. To solve
the difficulty of identification models with unmeasurable noises
terms, the least-squares based iterative algorithm is presented
by replacing the unmeasurable variables with their iterative
estimates. Finally, the simulation results indicate that the
proposed algorithm has good performances.

I. INTRODUCTION

FOR traditional discrete-time sampled systems, the oper-

ation frequencies of hold and sampler are equal and

synchronous at time. Systems existing two or over two

operation frequencies are called multirate systems. For a two-

input system, if the updating periods of the two inputs, T1

and T2, are not equal, then we get a multirate sampled-data

system.

For decades, the studies of multirate systems have focused

on not only petroleum chemical process control, but also

achieved a series of research results in theory such as

adaptive control [1]–[3], optimal control [4], [5], and so

on. In the multirate identification literature, Li et al used

multirate input-output data and system states to estimate the

parameters of lifted state-space models for multirate systems

[6]; Ding and Chen proposed a hierarchical identification

method of lifted state-space models for general dual-rate

systems [7], [8]; Li et al used the subspace approach to

directly identifiy a residual model for fault detection and

isolation for systems with non-uniformly sampled multirate

data without any knowledge of the system [9]; Ding and

Ding applied the extended least squares algorithm to identify

the dual-rate systems directly from the available input-output

data [10].

This paper focuses on parameter identification for two-

input multirate sampled-data systems with colored noises.

The fundamental idea of the proposed methods is to use the

iterative techniques to deal with the identification problem

of the multirate systems by adopting the iterative estima-

tion theory: when computing the parameter estimates, the

unknown variables in the information vector are replaced
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with their corresponding estimates at the current iteration,

and these estimates of the unknown variables are again com-

puted by the preceding parameter estimates. Based on this

idea, we present a least-squares based iterative identification

algorithm. The main advantage of such iterative algorithms

is that they can produce more accurate parameter estimates

than the recursive methods [11], see the example later. In

addition, the iterative methods can be extended to other cases

such as multi-input multi-output multirate systems.

This paper is organized as follows. Section II derives the

state-space models and obtains the corresponding transfer

functions. Section III presents a least-squares based iterative

algorithm for two-input multirate systems and Section IV

gives the recursive least-squares identification algorithm

compared with least-squares based iterative algorithm. Sec-

tion V provides an illustrative example. Finally, concluding

remarks are given in Section VI.

II. PROBLEM FORMULATION

The focus of this paper is a class of multirate sys-

tems – two-input single-output multirate systems with col-

ored noises as depicted in Figure 1, Pc1 and Pc2 are two

continuous-time processes, the inputs u1(t) and u2(t) to Pc1

and Pc2 are produced separately by zero-order holds HT1
and

HT2
with periods T1 and T2, processing two discrete-time

signals u1(kT1) and u2(kT2); the noise output e(t) is produced

by the v′(t) through the continuous-time process PN ; the

output y(t) by the superposition of the unmeasurable outputs

y1(t) and y2(t), which is corrupted by the noise e(t), are

sampled by the sampler ST with period T , yielding a discrete-

time signal y(kT ). Without loss of generality, we assume

that T1 = p1h, T2 = p2h, p1 and p2 are two coprime integers,

T := p1 p2h is f rame period (h is called base period). Since

the two input updating periods are not equal to the output

sampling period, the system in Figure 1 is a multirate system.

- HT2

- HT1

- Pc2

- Pc1

6

?h+ - h+
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? - ST
-

u2(kT2)

u1(kT1)

u2(t)
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y2(t)

y1(t)

y(t) y(kT )
e(t)
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Fig. 1. The two-input single-output multirate sampled-data systems

Throughout the paper, we assume that Pci, i = 1,2 are liner

time-invariant continuous-time processes with the following
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state-space representation:

Pci :

{

ẋi(t) = Acixi(t)+Bciui(t), i = 1,2,
yi(t) = Cixi(t)+Diui(t),

(1)

where xi(t) ∈ R
ni is the state vector of the ith subsystem,

ui(t) is the control input of the ith subsystem, yi(t) is the
unmeasurable output of the ith subsystem, Aci,Bci,Ci,Di are
matrices of appropriate sizes. For such multirate systems,
the input-output data available are {u1(kT + j1T1),u2(kT +
j2T2),y(kT ): ji = 1,2, · · · ,qi − 1, k = 0,1,2, · · ·} (qi =
p1 p2/pi). Since the zero-hold technique is used, the input
ui(t) keeps invariant over interval [kT +( j−1)Ti,kT + jTi),
i = 1,2, j = 1,2, · · · ,qi. We discretize Pci with the sampling
period T to get [7]

xi((k +1)T )

= eAciT xi(kT )+
∫ (k+1)T

kT
eAci((k+1)T−τ)Bci ui(τ)dτ

= eAciT xi(kT )

+
qi

∑
j=1

∫ kT+ jTi

kT+( j−1)Ti

eAci(kT+qiTi−τ)Bci ui(τ)dτ

= eAciT xi(kT )

+
qi

∑
j=1

eAci(qi− j)Ti

∫ Ti

0
eAcitdt Bci ui(kT +( j−1)Ti)

= Aixi(kT )+
qi

∑
j=1

Bi j ui(kT +( j−1)Ti),

yi(kT ) = Cixi(kT )+Diui(kT ),

where

Ai = eAciT ∈ R
ni×ni , i = 1,2,

B1 j = eAc1(p2− j)T1

∫ T1

0
eAc1tdtBc1 ∈ R

n1 , j = 1,2, · · · , p2,

B2 j = eAc2(p1− j)T2

∫ T2

0
eAc2tdtBc2 ∈ R

n2 , j = 1,2, · · · , p1.

The output equation is

y(kT ) = y1(kT )+ y2(kT )+ e(kT ).

Let z−1 be a unit backward shift operator, i.e., z is a unit

forward shift operator, z−1ui(kT + Ti) = ui(kT + Ti − T ),
zx(kT ) = x(kT +T ), we have

y(kT ) = C1(zI −A1)
−1

p2

∑
j=1

B1 ju1(kT +( j−1)T1)

+C2(zI −A2)
−1

p1

∑
j=1

B2 ju2(kT +( j−1)T2)

+D1u1(kT )+D2u2(kT )+ e(kT )

=:
1

α1(z)

p2

∑
j=1

β ′
1 j(z)u1(kT +( j−1)T1)

+
1

α2(z)

p1

∑
j=1

β ′
2 j(z)u2(kT +( j−1)T2)+ e(kT ), (2)

where

αi(z) = z−ni det [zI −Ai]

=: 1+αi1z−1 +αi2z−2 + · · ·+αini
z−ni , i = 1,2,

β ′
i1(z) = z−niCiadj [zI −Ai]Bi1 +Diαi(z)

=: β ′
i1(0)+β ′

i1(1)z−1 +β ′
i1(2)z−2 + · · ·+β ′

i1(ni)z
−ni ,

β ′
1 j(z) = z−n1C1adj [zI −A1]B1 j

=: β ′
1 j(1)z−1 +β ′

1 j(2)z−2 + · · ·+β ′
1 j(n1)z

−n1 ,

j = 2,3, · · · , p2,

β ′
2 j(z) = z−n2C2adj [zI −A2]B2 j

=: β ′
2 j(1)z−1 +β ′

2 j(2)z−2 + · · ·+β ′
2 j(n2)z

−n2 ,

j = 2,3, · · · , p1.

Similarly, we discretize PN with the period T to get

e(kT ) =
η(z)

γ(z)
v(kT ), (3)

where

γ(z) = 1+ γ1z−1 + γ2z−2 + · · ·+ γncz−nc ,

η(z) = 1+η1z−1 +η2z−2 + · · ·+ηnez−ne .

Thus, substituting (3) into (2) gives

y(kT ) =
1

α1(z)

p2

∑
j=1

β ′
1 j(z)u1(kT +( j−1)T1)

+
1

α2(z)

p1

∑
j=1

β ′
2 j(z)u2(kT +( j−1)T2)+

η(z)

γ(z)
v(kT ). (4)

Multiplying both sides of (4) by α1(z)α2(z), and let α(z) :=
α1(z)α2(z), β1 j(z) := α2(z)β

′
1 j(z), β2 j(z) := α1(z)β

′
2 j(z),

ζ (z) := α1(z)α2(z)η(z), then the above equation can be

rewritten as

α(z)y(kT ) =
p2

∑
j=1

β1 j(z)u1(kT +( j−1)T1)

+
p1

∑
j=1

β2 j(z)u2(kT +( j−1)T2)+
ζ (z)

γ(z)
v(kT ), (5)

where

α(z) = 1+α1(z)z
−1 +α2z−2 + · · ·+αnz−n,

βi1(z) =: βi1(0)+βi1(1)z−1 +βi1(2)z−2 + · · ·+βi1(n)z−n,

i = 1,2,

β1 j(z) =: β1 j(1)z−1 +β1 j(2)z−2 + · · ·+β1 j(n)z−n,

j = 2,3, · · · , p2,

β2 j(z) =: β2 j(1)z−1 +β2 j(2)z−2 + · · ·+β2 j(n)z−n,

j = 2,3, · · · , p1,

γ(z) =: 1+ γ1z−1 + γ2z−2 + · · ·+ γnc
z−nc ,

ζ (z) = 1+ζ1z−1 +ζ2z−2 + · · ·+ζnd
z−nd .

The objective of the paper is to present the least-squares

based iterative identification algorithm to identify the param-

eters α j, βi j(r), γ j and ζ j.
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III. THE LEAST-SQUARES BASED ITERATIVE

ALGORITHMS

Define the information vector ψ(kT ) and the parameter

vector ϑ as

ψ(kT ) :=

[

ϕs(kT )
ϕn(kT )

]

∈ R
n0 , n0 := m+nc +nd ,

m = (p1 + p2 +1)n+2,

ϕs(kT ) := [−y(kT −T ),−y(kT −2T ), · · · ,

−y(kT −nT ),φ T

1(kT ),φ T

2(kT )]T ∈ R
m,

φ i(kT ) := [ui(kT ),ui(kT −T ),ui(kT −2T ), · · · ,

ui(kT −nT ),ui(kT −T +Ti),

ui(kT −2T +Ti), · · · ,ui(kT −nT +Ti) · · · ,

ui(kT −T +(qi −1)Ti),

ui(kT −2T +(qi −1)Ti), · · · ,

ui(kT −nT +(qi −1)Ti)]
T ∈ R

qin+1,

ϕn(kT ) := [−e(kT −T ),−e(kT −2T ), · · · ,

−e(kT −ncT ), v(kT −T ),v(kT −2T ), · · · ,

v(kT −ndT )]T ∈ R
nc+nd ,

ϑ :=

[

θ s

θ n

]

∈ R
n0 ,

θ s := [α1,α2, · · · ,αn,β11(0),β11(1),β11(2), · · · ,

β11(n),β12(1),β12(2), · · · ,β12(n), · · · ,

β1p2
(1),β1p2

(2), · · · , β1p2
(n),β21(0),β21(1),

β21(2), · · · ,β21(n),β22(1),β22(2), · · · ,β22(n),

· · · ,β2p1
(1),β2p1

(2), · · · ,β2p1
(n)]T ∈ R

m,

θ n := [γ1,γ2, · · · ,γnc ,ζ1,ζ2, · · · ,ζnd
]T ∈ R

nc+nd .

By the above definition, we have

e(kT ) = ϕT

n(kT )θ n + v(kT ), (6)

y(kT ) = ϕT

s(kT )θ s + e(kT ). (7)

Then (5) can be written as

y(kT ) = ψT(kT )ϑ + v(kT ). (8)

The information vector ψ(kT ) in (8) contains unmeasurable

variables e(kT − jT ) and v(kT − jT ). To solve the difficulty,

these unmeasurable variables are replaced with their iterative

estimates by the iterative method. For convenience, let t =
kT , ψ(t) := ψ(kT ). Thus, (8) can be written as

y(t) = ψT(t)ϑ + v(t). (9)

Consider the newest q and define the stacked output vector

Y (t), stacked information vector Ψ(t) and white noise vector

V (t) as

Y (t) :=











y(t)
y(t −T )

...

y(t −qT +T )











∈ R
q, (10)

Ψ(t) :=











ψT(t)
ψT(t −T )

...

ψT(t −qT +T )











∈ R
q×n0 , (11)

V (t) :=











v(t)
v(t −T )

...

v(t −qT +T )











∈ R
q. (12)

If we take q = L, t = L (L is the data length), then Y (t) and

Ψ(t) contain all the measured data. From (9)-(12), we have

Y (t) = Ψ(t)ϑ +V (t). (13)

Notice that V (t) is a white noise vector with zero mean and

define a quadratic criterion function [12],

J(ϑ) = [Y (t)−Ψ(t)ϑ ]T[Y (t)−Ψ(t)ϑ ]. (14)

Provided that ψ(t) is persistently exciting, ΨT(t)Ψ(t) is an

invertible matrix. Minimizing J(ϑ) in (14) gives the least-

squares estimate of ϑ :

ϑ̂(t) = [ΨT(t)Ψ(t)]−1ΨT(t)Y (t). (15)

Since ψ(t − jT ) in Ψ(t) contains unmeasurable variables

e(t − jT ) and v(t − jT ) (see the definitions of ϕn(t) and

Φ(t)), so the estimate of ϑ is impossible to compute by

(15). Here, a new iterative identification algorithm based on

the hierarchical identification principle is developed to solve

the difficulty. The details are as follows. Let l = 1,2,3, · · · be

an iteration variable, and ϑ̂ l(t) :=

[

θ̂ s,l(t)

θ̂ n,l(t)

]

be the estimate

of ϑ :=

[

θ s

θ n

]

∈ R
n0 , the unknown variables e(t − jT ) and

v(t − jT ) in the information vector are replaced with their

estimates êl(t− jT ) and v̂l(t− jT ), then the estimate of ϕn(t)
is

ϕ̂n,l(t) := [−êl(kT −T ),−êl(kT −2T ), · · · ,

−êl(kT −ncT ), v̂l(tT −T ), v̂l(t −2T ), · · · ,

v̂l(t −ndT )]T ∈ R
nc+nd . (16)

Replacing ϕ(t) in ψ(t) with ϕ̂n,l(t), then we have the

estimate of ψ(t) as

ψ̂ l(t) =

[

ϕs(t)
ϕ̂n,l(t)

]

∈ R
n0 . (17)

From (7), we have

e(t − jT ) = y(t − jT )−ϕT

s(t)θ s.
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If θ s in the above equation is replaced with θ̂ s,l−1(t), then

the estimate of e(t − jT ) can be computed by

êl(t − jT ) = y(t − jT )−ϕT

s(t − jT )θ̂ s,l−1(t). (18)

From (9), we have

v(t − jT ) = y(t − jT )−ψT(t − jT )ϑ .

Replacing ψ(t) and ϑ in the above equation with their

estimates ψ̂ l−1(t) and ϑ̂ l−1, respectively, we can compute

the estimate v̂l(t − jT ) by

v̂l(t − jT ) = y(t − jT )− ψ̂T

l−1(t − jT )ϑ̂ l−1(t). (19)

Define

Ψ̂l(t) = [ψ̂ l(t), ψ̂ l(t −T ), · · · , ψ̂ l(t −qT +T )]T ∈ R
q×n0 .

(20)

The least-squares estimate of the parameter vector ϑ is

obtained by replacing Ψ(t) with Ψl(t) in (15),

ϑ̂ l(t) = [Ψ̂
T

l (t)Ψ̂l(t)]
−1Ψ̂

T

l (t)Y (t), l = 1,2,3, · · · . (21)

Equations (16)-(21) form the least-squares based iterative

(LSI) algorithm for estimating ϑ :

ϑ̂ l(t) = [Ψ̂
T

l (t)Ψ̂l(t)]
−1Ψ̂

T

l (t)Y (t), (22)

Y (t) = [y(t),y(t −T ), · · · ,y(t −qT +T )]T, (23)

Ψ̂l(t) = [ψ̂ l(t), ψ̂ l(t −T ), · · · , ψ̂ l(t −qT +T )]T, (24)

ψ̂ l(t) =

[

ϕs(t)
ϕ̂n,l(t)

]

, (25)

ϕs(t) = [−y(t −T ),−y(t −2T ), · · · ,−y(t −nT ),

φ T

1(t),φ
T

2(t)]
T, (26)

φ i(kT ) = [ui(kT ),ui(kT −T ),ui(kT −2T ), · · · ,

ui(kT −nT ),ui(kT −T +Ti),

ui(kT −2T +Ti), · · · ,ui(kT −nT +Ti),

· · · ,ui(kT −T +(qi −1)Ti),

ui(kT −2T +(qi −1)Ti), · · · ,

ui(kT −nT +(qi −1)Ti)]
T, (27)

ϕn,l(t) = [−êl(t −T ),−êl(t −2T ), · · · ,−êl(t −ncT ),

v̂l(t −T ), v̂l(t −2T ), · · · , v̂l(t −ndT )]T, (28)

êl(t − jT ) = y(t − jT )−ϕT

s(t − jT )θ̂ s,l−1(t),

j = 1,2, · · · ,nc, (29)

v̂l(t − jT ) = y(t − jT )− ψ̂T

l−1(t − jT )ϑ̂ l−1(t),

j = 1,2, · · · ,nd . (30)

The LSI algorithm adopts the idea of updating the estimate

ϑ using a fixed data batch with the data length L at each

iteration, and thus has higher parameter estimation accuracy

than the recursive least-squares (RLS) algorithm.

To initialize the LSI algorithm, we take ϑ̂ 0(t) = 1n0
with

1n0
being an n-dimensional column vector whose elements

are all 1, ê0(t − j) and v̂0(t − j) are random numbers.

To summarize, we list the steps involved in the LSI

algorithm to compute ϑ̂ l(t) as l increases:

1) Choose the data window length q ≫ n0, collect the in-

put and output data {u1(kT + j1T1),u2(kT + j2T2),y(t):

ji = 1,2, · · · ,qi − 1, k = 1,2, · · · ,q− 1}, and given the

estimation accuracy ε and let t = kT = qT and ϑ̂ 0(t) =
1n.

2) Collect the input and output data to form output vector

Y (t) by (23), form φ 1(t) and φ 2(t) by (27) and ϕs(t)
by (26).

3) To initialize, let l = 1, ê0(t − jT ) and v̂0(t − jT ) equal

random numbers, form ϕ̂n,0(t) by (28) and ψ̂0(t) by

(25).

4) Compute êl(t) and v̂l(t) by (29) and (30).

5) Form ψ̂n,l(t) by (28), ψ̂ l(t) by (25) and Ψ̂l(t) by (24).

6) Update the estimate ϑ̂ l(t) by (22).

7) Compare ϑ̂ l(t) with ϑ̂ l−1(t): if

‖ϑ̂ l(t)− ϑ̂ l−1(t)‖ < ε,

then terminate the procedure and obtain the iterative

times l0 = l and estimate ϑ̂ l0(t) = ϑ̂ l0(kT ), and incre-

ment k by 1, i.e., t := (k + 1)T , set ϑ̂ 0(t) = ϑ̂ l0(kT )
and go to step 2; otherwise, increment l by 1 and go

to step 4.

IV. THE RECURSIVE LEAST SQUARES ALGORITHMS

For comparison, we give the recursive least squares algo-

rithm to identify parameter vector ϑ to identify (5),

ϑ̂(t) = ϑ̂(t −T )+L(t)[y(t)− ψ̂T(t)ϑ̂(t −T )],

L(t) =
P(t −T )ψ̂(t)

1+ ψ̂T(t)P(t −T )ψ̂(t)
,

P(t) = [I −L(t)ψ̂T(t)]P(t −T ),

ψ̂(t) = [ϕT

s(t),−ê(t −T ),−ê(t −2T ), · · · ,−ê(t −ncT ),

v̂(tT −T ), v̂(t −2T ), · · · , v̂(t −ndT )]T,

ê(t) = y(t)−ϕT

s(t)θ̂ s(t), v̂(t) = y(t)− ψ̂T(t)ϑ̂(t).

To initialize the above algorithm, we take P(0) = p0I with p0

normally a large positive number, e.g., p0 = 106, and ϑ̂(0)
some small real vector, e.g., ϑ̂(0) = 1n0

/p0 with 1n0
being

an n-dimensional column vector whose elements are all 1.

V. EXAMPLE

Example For the system depicted in Figure 1, take the

process model to be

Pc1(s) =
1

50s+1
, Pc2(s) =

1

60s+1
,

and h = 1s, p1 = 2, p2 = 3, hence T1 = 2s, T2 = 3s and T = 6s,

the corresponding discrete-time state space models are






















x1(kT +T ) = 0.88692x1(kT )

+[1.8098,1.8837,1.9605]





u1(kT )
u1(kT +2)
u1(kT +4)





y1(kT ) = 0.02x1(kT ),

and














x2(kT +T ) = 0.90484x2(kT )

+[2.7835,2.9262]

[

u2(kT )
u2(kT +3)

]

y2(kT ) = 0.016667x2(kT ),
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then the input and output representation is

(1−1.91202z−1 +0.91393z−2)y(kT )

= (0.036196z−1 −0.034431z−2)u1(kT )

+(0.037673z−1 −0.035836z−2)u1(kT +2)

+(0.039211z−1 −0.037299z−2)u1(kT +4)

+(0.046392z−1 −0.044573z−2)u2(kT )

+(0.048771z−1 −0.046859z−2)u2(kT +3).

Introducing a noise model e(kT ) = (1−0.7z−1)v(kT ) in the

above equation, we have

(1−1.91202z−1 +0.91393z−2)y(kT )

= (0.036196z−1 −0.034431z−2)u1(kT )

+(0.037673z−1 −0.035836z−2)u1(kT +2)

+(0.039211z−1 −0.037299z−2)u1(kT +4)

+(0.046392z−1 −0.044573z−2)u2(kT )

+(0.048771z−1 −0.046859z−2)u2(kT +3)

+(1−0.7z−1)v(kT ).

Here, {ui(kT + jiTi)} is taken as a persistent excitation

signal sequence with zero mean and unit variance, and

{v(kT )} as a white noise sequence with zero mean and

variance σ2 = 0.802 and σ2 = 2.02. Applying the LSI

algorithm and RLS algorithm to estimate the parameters of

the above transfer function model, the parameter estimation

errors δ := ‖ϑ̂ l(kT )−ϑ‖/‖ϑ‖ (the LSI algorithm with l = 6

iterations) or δ := ‖ϑ̂(kT )−ϑ‖/‖ϑ‖ (the RLS algorithm)

versus t = kT are shown in Figures 2-3.

From Figures 2-3, we can arrive at the following conclu-

sions: For different noise variances, the parameter estimation

errors δ of both the LSI algorithm and RLS algorithm are

becoming gradually smaller as t = kT increases; the param-

eter estimation errors of the LSI algorithm are smaller than

those of the RLS algorithm for the given noise variances.

In other words, under the same data length, the parameter

estimates given by the LSI algorithm have higher accuracy

than those by RLS algorithm.

VI. CONCLUSIONS

This paper presents a least-squares based iterative algo-

rithm for two-input multirate systems with colored noises.

The method can be extended to other cases, for example,

general multi-input multi-output multirate systems with each

of the input and output channels having different sampling

periods, and with colored noises.
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