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Abstract— The Least Squares (LS) problem has been popular in
industrial modeling applications due to its speed, efficiency and
simplicity. However, the LS solution is known to be unreliable when
the data distribution is not Gaussian and is flat-tailed and such data
anomalies occur frequently in the industry. The Least Absolute Value
(LAV) problem overcomes these difficulties but at the expense of
greatly increasing the complexity of the solution. This was partly
addressed when it was shown that the LAV problem could be
formulated as a Linear Programme (LP). However, the LP formulation
is not suitable for implementation in all types of applications. In this
paper, a very fast direct search algorithm is developed to solve the
general dimension LAV problem using only elementary operations.
The algorithm has been shown to be significantly faster than the LP
approach through several experiments.

I. INTRODUCTION TO DATA DRIVEN MODELING

Data driven modeling is an important tool in industrial control
and monitoring projects. From forecasting, to condition monitoring
and soft-sensor applications, data driven modeling techniques are
the superior choice for many routine requirements in the industry.

There are practical reasons why analytical modeling techniques
are not popular in the industry. First, they are extremely labor
intensive and time consuming projects and unless there are strong
reasons, funds will not be available for this amount of resources.
In addition, unless they are meticulously updated, they generally
have a very short life. An industrial plant may be subject to daily,
if not hourly changes. In case of a typical paper machine operating
with 5 shifts, there can be multiple changes made to the machine
in each of these shift. Changes could be as minor as a new agitator
for a mixing tank, to a major new steam system for the dryers.
There also frequent modifications to the process, such as new
chemical additions, piping reconfigurations etc. Evidently it is a
cumbersome task to want to update a model every time there is a
process change.

Finally there are also more fundamental reasons such as the dif-
ficulty of modeling some of the processes involved. Paper making
for example involves several complex mechanical and chemical
processes which are heavily interacting. This is especially the
case at the Wet End of the machine where important factors
such as filler and ash retention are sharply affected by both the
performance of the chemical reactions taking place, and also the
physical characteristics of the Wire and the set up of the forming
foils and vacufoils. Some of these phenomena cannot be easily
medelled. These and other reason have led to the popularity of
simple data driven modeling in industry. These have the advantage
of being able to continuously and rapidly update themselves with
the process which could change either due to a change to the
process, or because the plant has been shifted to make another
grade of product (Indeed, A typical paper machine produces a
large variety of products. Products are classified according to their
Basis Weight, grade of finish, and coating. Together they may lead
to over a hundred combinations of product grammage/grade/finish.
A run of a given product/grade may last only as little as 1 hour).

The de facto modeling method of choice in these situations is
the least squares regression . The dominance and popularity of the
least squares regression can be ascribed, at least partially, to the
fact that the theory is simple, well developed and documented. The
least squares regression is optimal and results in the maximum
likelihood estimators of the unknown parameters of the model
if the errors are independent and follow a normal distribution
with mean zero and a common variance [1]. The least squares
regression is very far from optimal in many non-Gaussian situa-
tions, especially when the errors follow distributions with longer
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tails[2]. For the regression problems, Huber [3] stated that “just
a single grossly outlying observation may spoil the least squares
estimate, and, moreover, outliers are much harder to spot in the
regression than in the simple location case”. The outliers occurring
with extreme values of the regressor variables can be especially
disruptive.

This sensitivity of the LS to bad data is a major weakness
in terms of industrial applications. Here, very large disturbances
can happen for a variety of reasons which could be as simple
as a technician unplugging a sensor, to a chemical addition line
filter not being correctly primed, to a sensor which was very
badly calibrated during a routine maintenance. There are also
more complex reasons for unforeseen and very large process
disturbances. For example the Stock Preparation section could
be running a trial with a new chemical, which ends up severely
affecting the performance of another chemical used in the Wet
End. Regardless, the point is that very large disturbances, bad data,
and large anomalies occur frequently in an industrial environment
and the modeling technique needs to exhibit a certain degree of
robustness to these. A method which is related to the LS method
is the Least Absolute Value problem which as we will show does
have inherent bad data rejection properties.

Least Absolute Value (LAV) regression overcomes these draw-
backs and provides an attractive alternative [4]. It is less sensi-
tive than least squares regression to extreme errors, has implicit
mechanics to reject bad data and does not require a normal
distribution of data which is very unrealistic in practical situations
[5]. To see why the LAV approach offers this implicit bad data
rejection property, let xi be an arbitrary number and define m2 by
the value of m which minimizes the sum of the squared differences
(i.e. the least squares solution) between m and x,

m2 := arg min
m

N
∑

i=1

(m − xi)
2

(1)

It is straightforward to find the minimum by setting the partial
derivative of the sum with respect to m equal to zero. We obtain,

0 =

N
∑

i=1

2(m2 − xi) (2)

or,

m2 =
1

N

N
∑

i=1

xi (3)

Notice that in the LS case, the solution is the mean of the data
observation values. In this case if any of the xi are very large (say
due to a measurement error) it will directly effect the solution. To
see the same effect in the LAV case, define now m1 to be the
solution obtained by minimizing the least absolute value as,

m1 := arg min
m

N
∑

i=1

| m − xi | (4)

To find the minimum, the partial derivative with respect to m is
set equal to zero,

0 =

N
∑

i=1

sgn(m1 − xi) (5)
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where,

sgn(x) =

{

+1, x > 0
−1, x < 0
0, x = 0

(6)

The solution indicates that m1 should be chosen so that m1

exceeds xi for N/2 terms; m1 is less than xi for N/2 terms;
and if there is an xi left in the middle, m1 equals that x1. This
defines m1 as the median (for N even, the solution is an interval).
Relating the mean and the median to the LS and LAV problems
helps to easily see why the LAV approach is inherently more
robust. For example suppose that there are three observations from
an experiment {1, 1.1, 0.9}. The LAV solution in this case is 1 and
the LS solution is also 1. However, if due to equipment error, or
a measurement anomaly, the observations became {1, 100, 0.9},
then the LAV solution is still 1, but the LS solution will change
to ≈ 10. This is because in the LAV case, as long as the bad data
remains in the same side of the median, it has zero effect on the
actual value of the median, but in the LS case, any change will
directly affect the LS solution.

II. THE LAV REGRESSION PROBLEM

Let the linear regression model with n observations be identified
as shows below,

yi =

m
∑

i=1

xijβj + ǫi, i = 1, 2, . . . , n, j = 1, 2, . . . , m (7)

Let (xi1, xi2, . . . , xim, yi) be the ith observations and let
b0, b1, . . . , bm estimated by minimizing the overall absolute values
of the differences between the values of ŷ and y be the estimates
of β0, β1, . . . , βm. So the LAV method is given as follows,

min

(

n
∑

i=1

| yi − ŷi |

)

(8)

The LAV regression problem actually predates the least squares
solution [6] [7]. It’s use however was not popular for many
years because unlike least squares, the solution is difficult and
not straightforward. It was not until the implementation of the
linear programming algorithms on the digital computer that LAV
estimates could be obtained for problems of reasonable size [8].
Charnes et al [9] appear to be the first to point out that (8)
could be rewritten as a linear programming problem. Subsequently
several other LP versions of the LAV problem were developed
by [10],[11], [12], [13]. The best known model for the linear
regression model is the primary linear regression model developed
by [10] and [14]. In this model, the aim is to minimize the overall
absolute difference between observations and estimation values,
in other words, minimizing the overall error terms. In this respect
, goal programming is used to develop the linear programming
model which will be used to minimize the overall total positive
and negative deviations. That is achieved by [15],

min

(

n
∑

i=1

(d+
i + d−

i )

)

(9)

subject to,

yi − (b0 +

m
∑

i=1

xijbj + d+
i − d−

i ) = 0, (10)

i = 1, 2, . . . , n (11)

j = 1, 2, . . . , m (12)

A. A direct search approach

Although as demonstrated the LAV problem is inherently robust
to bad data, its calculation is a nontrivial problem. Even in case
of the LP formulations which is now regarded as the fastest
and most convenient formulation of the LAV problem, there
are still difficulties. In particular it is often the case that the
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Fig. 1. Simple bisection approach to find the LAV minimum

modeling and estimation needs to be implemented on older legacy
systems or within a limited programming environment. Under
these circumstances it is difficult to solve the LP either using the
simplex method or using some sort of interior point algorithm.

Indeed, the background to this particular work was a project
on online estimation of the Base Sheet Ash measurement at a
paper mill in the UK. The modeling and estimation programme
had to be implemented on a legacy Honeywell DCS system from
the 1980s using the Measurex Programming Language (MPL).
This imposed severe memory limitations and no access to more
advanced mathematical operators. This led to the development of
the algorithm presented in this paper which is able to calculate the
LAV solution with a much reduced memory requirement and using
only elementary operations. We envisage that the algorithm be use-
ful whenever fast online LAV estimation is required, in embedded
systems, or when the LAV problem needs to be implemented in
an environment not designed for mathematical programming.

To see the motivations for the choice of algorithm made here,
consider Figure 1 which shows the simplest case of the LAV
problem. This is a one dimensional problem where the task is
to find x which minimizes y = | x − d |. Note that the LAV
problem in any dimension is always convex and this feature is
useful in developing a simple search method. One way to find the
minimum is a direct bisection search heuristic. This might start off
by making two initial guesses; points A and B at points x = a and
x = b respectably. We can now find the point which corresponds
to the mid-point between these two points, in this case, point C
at x = c. This new point C can the be evaluated, if it leads to
a lower function potential, it will replace point A (since it has a
higher potential than point B) and the process is repeated between
points C and B. Evidently, due to the convexity of the function, if
this process is repeated enough times, the solution will converge
to point D.

There are however two potential bottlenecks. If both initial
choices are on the same side of the minima, then the bisection
will converge to the point closest to the minima and not the
minima itself. To circumvent this problem, one therefore needs
to generate many initial choices (investigate several points in
parallel). Secondly, a pure bisection approach is likely to lead to
many iterations. Consider what would happens if the new solution
from the bisection (i.e. point C) was multiplied by some sort of a
correction or weighting factor. In this case one could potentially
reach D in just two steps. The reader familiar with optimization
techniques should now realize that the features we are looking
for, are in fact some of the principal properties of Evolutionary
Algorithms, and in particular a recently proposed algorithm called
Differential Evolution (DE). As the name suggests, DE works
principally by calculating the ‘difference vector’ between its
population members and is an extremely efficient algorithm. Based
on a modified version of the DE, i.e. RADE [16] [17], a new
simplified algorithm is developed here for fast computation of the
LAV solution.
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III. DIFFERENTIAL EVOLUTION

One of the most successful family of direct search stochastic
optimization techniques has been the Evolutionary Algorithm (EA)
class of optimisers. Differential Evolution, introduced recently
by Storn and Price [18], may also be classed within the family
of Evolutionary Algorithms. Nonetheless, they remain principally
different to both the Genetic Algorithms (GA) and Evolution
Strategies (ES). Amongst the DE’s advantages are its simple struc-
ture, ease of use and speed of convergence. DE has consistently
been ranked as the best search algorithm in several case studies.
In [18], DE is compared with two very powerful optimisers; the
annealed version of the Nelder and Mead Simplex algorithm and
the Adaptive Simulated Annealing (which is claimed to outperform
GAs). The DE outperformed both of these algorithms and it was
the only one to converge for all of the test problems. In [19],
the DE was compared with the simulated annealing M-SIMPSA
algorithm [20] and Genetic Algorithms , and was again found to
be the only one converging on all problems and providing a better
solution when other converged as well. Lin et al [21] applied
several MINLP case problems and compared the DE with the
MIBBGRG (Mixed Integer Branch and Bound using the General-
ized Reduced Gradient algorithm), the MINSLIP (Mixed Integer
Nonlinear Sequential Linearisation Programming Algorithm) and
the MDSA (Mixed Discrete Simulated Annealing). They found
that the DE was the only one able to simultaneously solve all
the problems to optimality and satisfy the constraints. In [22]
Lampinen and Zelinka report that the DE outperformed several
algorithms, including the Branch and Bound, using Sequential
Programming, Sequential Linearisation Algorithm, Simulated An-
nealing, GAs , Evolution Programming and ESs, when tested on
Sandgren’s problem set.

The population of a DE is subject to three operators of mu-
tation, crossover and selection. Price and Storn proposed several
variants of the basic DE which are denoted using the notation
DE/vec/num/mode. vec is the vector to be mutated, which is

either a randomly chosen vector ,‘rand’, or ‘best’=~x∗k; the best
vector of the current generation. num is the number of difference
vectors used in the mutation, which is either 1 or 2 and mode is the
method of crossover used. For independent binomial experiments
of the genes, this is set to ‘bin’. Studies have shown that in
general, the two most effective DE strategies are DE/rand/1/bin
and DE/best/2/bin. The latter is typically slower in converging
however is more likely to converge on the global optimum because
it will generate several folds more perturbation vectors and thus
maintain a higher population diversity [23]. The initial population
of the DE is generated uniformly to span the initial boundary of
~x,

P
(0)
i ← ~x

(0)
i = ~xL + ~ρn |10 (~xU − ~xL),

i = {1, . . . , np}. (13)

Subject to,

~xL ≺ ~xU ∈ R
n, (14)

where ~x ≺ ~y iff ∀xi ∈ ~x and ∀yi ∈ ~y, xi < yi.

A. Mutation

Unlike EAs, in DE the mutation amount is derived from a
difference vector which is calculated using members of the current
populations. For the standard DE/rand/1/ . . . strategy, this is as
follows,

~uk+1
i = ~xk

best + F (~xk
s − ~xk

t ), (15)

for ~d = {s, t}. (16)

For the DE/ . . . /2/ . . . strategy, four vectors are used,

~uk+1
i = ~xk

r + F (~xk
s − ~xk

t + ~xk
u − ~xk

v), (17)

for ~d = {r, s, t, u, v}. (18)

Where F is the weighting factor and dj are randomly chosen
integers such that dl 6= dk 6= i, ∀k, l. Since the DE operates a

greedy selection scheme, ~xk
best also equals the best ever solution

found so far. The inherent ‘self-adaptation’ of the DE is seen. As
the population converges to an optimum, any randomly chosen
difference vector will becomes smaller in magnitude. Eventually
when all members converge to a single solution, the difference
vector will be zero and the mutation operator will be disabled all
together. Therefore, the actual amount of mutation at iteration k
is not only determined by F but also by the population diversity.
Indeed [24] has shown that the DE’s mutation behavior closely
matches that of an ES’s correlated self-tuning mutation vectors.

B. Crossover

Once the mutated trial vector ~uk+1
i = (uk+1

i1 , . . . , uk+1
in ) is

created, it will undergo binomial genewise crossover. For each
gene of the trial vector a random number is generated, if this is
lower than the crossover rate Cr set by the user, then the gene of
the new trial vector is used, if not the gene of the original trial
vector ~xk

i = (xk
i1, . . . , x

k
in) is kept,

uk+1
ij =

{

xk
ij , if ρ |10ij

< Cr

uk+1
ij , else

i = {1, . . . , np}

j = {1, . . . , n} (19)

C. Selection

The selection in DE is deterministic and simple: The resulting
trial vector will only replace the original parent if it has a lower
objective function value,

~xk+1
i =

{

~xk
i , if f(~uk+1

i ) > f(~xk
i )

~uk+1
i , else

i = {1, . . . , np} (20)

This is the same for all variants of the DE. Although the selection
pressure is only one, the best individual of the next generation will
be at least as fit as the best individual of the current generation.
Similar to a (β, β)−ES, the spread is one, but the best individual
can get better whilst the least remain the same. Therefore, there is
less loss of diversity than in truncation selection used in ES and
this insures a relatively large selection variance.

D. DE Control Variables

DE has three control parameters ; np, the population number,
F the mutation weighting factor and Cr the cross over rate. The
difficulty in use of DE arises in that the choice of these is mainly
based on empirical evidence. Moreover many of these guidelines
simply state a good initial starting value and it is invariably the
case that trials and errors will be involved to fine tune these.

The guideline for the number of population is 2n ≤ np ≤ 20n,
and in general the larger np, the more robust will be the search,
with increased computational cost. The choice of Cr is initially
recommended to be 0.3 ≤ Cr ≤ 0.9. A large Cr will lead to large
perturbations and a slow convergence speed, on the other hand a
low Cr will lead to rapid loss of diversity. If Cr = 1, the algorithm
becomes rotationally invariant and the crossover operator will not
yield any new solutions. Cr is typically considered as a ‘fine
tuning’ parameter. The parameter which has by far the largest
effect on the search is the mutation weighting factor F. The
initial range for this is F ∈ [0, 2], with F ∈ [2/np, 1) being
the recommended range. Its not recommended to set F exactly
equal to one as it will mean each potential trial point appears
twice, hence the number of different potential candidate solutions
is reduced. Its also readily seen that if F is small, it will lead to
extensive ‘exploitation’ and thus a much increased likelihood of
misconvergence. On the other hand a large F will lead to over
exploration and a significantly reduced convergence speed.

E. Adaptive DE algorithms

As mentioned although the standard DE is inherently adaptive,
its sensitivity to the control parameters is well known (see [25] for
a general treatment and [23] for the stagnation problem). On the
one hand numerous studies have shown that both the convergence
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rate and convergence speed of the DE is heavily dependant on the
control parameters, especially F. On the other hand, because of the
special mutation mechanism in DE, if for whatever reason (such
as incorrect choice of F) the DE population looses diversity, then
the search will completely stop as mutation value becomes zero.
Evidently it is desirable to not have to chose these parameters,
and if possible for the algorithm to adaptively determine these.

There have been a handful of generic adaptive DEs developed
in the past. Some algorithms such as [26] or [27] rely heavily
in human intervention. For example, Zaharie [27] proposes a
feedback update rule for F that is designed to maintain the
diversity of the population at a given level (and thus stop the
search converging prematurely). However the method requires the
user to tune a γ parameter which determines the update law
for F . Therefore, as the author points out themselves, although
the algorithm seems to perform better than the self-adaptive DE
proposed in [28], in actual fact the problem merely changes from
that of choosing F to choosing γ and there is little real advantage
from a practical sense.

Recently the authors developed a self-adaptive algorithm which
takes into account the inadequacies of the previous methods and
involves no feedback law. This removes the need to have to
determine a generic rule, or replace tuning of F with tuning of
some other parameters (for example the mean and variance of a
distribution). Unlike the standard DE, in the proposed algorithm
each ~xi has its own unique value of F k

i which is subject to change
during the evolution. The Random Adaptive Differential Evolution
(RADE) [17] implements a high level ES type of optimization
for F. This can be thought of a one parameter ES, where the
cost of the ith member, is equivalent to the accumulated objective
function value improvement of xi over the past α iterations. Then
an elitist selection will select the best 50 percent members (which
will survive into the next round), and new offsprings for the next
generation are created at random. Crucially, this means that the
F search and the main optimization, run on different time scales.
Every one generation of the F search, is equivalent to α generations
of the main search. The new F values are created randomly to
ensure a high diversity throughout the search. This means, at all
times, there will be some members with high values of F (which
will exhibit exploratory behavior and are used to escape local
minima), some with small F (which will locate the optimum from
a proximity near by) and the mean value for F somewhere between
the two bounds.

RADE is a generic optimization algorithm which is applicable
for the generic class of nonlinear and discontinuous problems.
However, in this work, some of the special features of the LAV
problem are taken into consideration to develop a faster algorithm
based on RADE which will be referred to as fADE

IV. A FAST ADAPTIVE DE FOR LAV COMPUTATION: fADE

Although the LAV problem is not a smooth function, one
of its key geometric features is that its convex. The use of a
stochastic search algorithm for solving a convex problem may
seem inefficient at first, but as will be shown there are some
distinct advantages in this case.

The convexity of the cost function greatly reduces the effective-
ness of the crossover operator. In this case, the crossover operator
will only yield a better result if the two parent vectors form a dif-
ference vector which is not orthogonal with the main function axis
(See Figure 2). Clearly this is a special case and the computational
cost of performing the crossover operation outweighs the potential
benefits arising from the above geometry. Therefore in the fADE
algorithm, the crossover operator is removed completely.

The second modification made to RADE is regarding the size
of the population. Recall that in the general case of multi-modal
function, an EA needs to maintain a large population to avoid
entrapment in the function’s local minima. However when the
function is convex this is no longer the case. However, if a small
population is used at the start of the search, there is a chance that
there will not be sufficient distribution of initial choices around
the global minima causing the search to stagnate. As mentioned
the special feature of all DE variant algorithms is that they can
stagnate even on a slope.

 

Fig. 2. Showing the crossover operation in case of convex cost function.
The parent vectors are shown in gray and the trial vectors are shown in
black. Note that of the 4 crossover operations, only one has lead to an
improvement in this case

In light of this, the second modification is to dynamically reduce
the size of the population. The benefits of this are that it ensures
good initial coverage of the surface, but it quickly reduces the
size of the population to reduce unnecessary computation at the
later stages. A simple heuristic is used to achieve this. Namely
at each iteration, the worst member of the population is removed
and the size of the population is reduced by one. This approach is
not recommended in all cases. All EA algorithms operate under
the assumption that each member of the population might posses
a set of ‘good’ genes which in later generations and through
recombination with other members will lead to an overall better
solution. However, once again the fact that we know aprioir the
surface is convex allows us to do this. Namely, in case of the
generic multi-modal function, since we never know how many
minima exist, a ‘bad’ member (i.e. poor objective function value),
might in fact be closer to the actual global minima than a ‘good’
member which has just happened to find a local minima. However,
since in the LAV case we know there is only one minimum,
the member whose objective function value is better, is also
guaranteed to be closer to the minimum. In other words, the
worst member has no useful genetic information and can be safely
discarded. For an m dimensional problem, a lower bound of m
members has been defined so that the size of the population will
never drop below the dimension of the problem.

In light of the above, we present the following pseudo code for
the fADE algorithm.

begin

k, Γadapt ← 0
α, αu ← 5
γ∗ ← ∞
for (i = 1, . . . , np)

% Initialize the initial population

P (0) ← ~x
(0)
i = ~xL + ~ρ |10 (~xU − ~xL)

% Evaluate initial members

γ
(0)
i ← f(~x

(0)
i )

if (γ0
i < γ∗) do begin

γ∗ ← γ0
i

~xbest ← ~x0
i

end
% Assign random F to each member

F
(0)
i ← ρ |10

end
% repeat until reached $k_{max}$ or $f_{tol}$
while (not termination condition) do begin

for (i = 1, . . . , np) do begin

~uk+1
i ← ~xbest + Fi(~x

k
s − ~xk

t + ~xk
u − ~xk

v)
(s = ρ ⊢

np

0 , t = ρ ⊢
np

0 , v = ρ ⊢
np

0 , u = ρ ⊢
np

0
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and ∀k, l, dk 6= dl, where ~d = {s, t, u, v})
% Select if fitter than parent

if (f(~uk+1
i ) < γk

i ) do begin

~xk+1
i ← ~uk+1

i
% Update cost vector

γk+1
i ← f(~uk+1

i )
else do begin

~xk+1
i ← ~xk

i

γk+1
i ← γk

i
end
% Update best vector and least cost

if (γk+1
i < γ∗) do begin

γ∗ ← γk+1
i

~xbest ← ~xk+1
i

end
end
% Update accumulative adaption vector

Γadapt ← (Γadapt + Γk − Γk+1)
% Adaptation loop
if k = αu + α do begin
% Sort vector in decreasing order

Γstr = sort(Γadapt)
% Calculate new performance threshold

Tr = γstr
⌊np/2⌋

% new F for below threshold performance
for (i = 1, . . . , np) do begin

if γ
adapt
i < Tr do begin

Fi = ρ |F
U

F L

end
end

Γadapt ← 0
αu ← αu + α
end

% Remove worst performing member, reduce pop
for (i = 1, . . . , np) do begin

if γi = max(Γ) && np > m do begin

~xk+1
i = empty

np = np − 1
end

end
k ← k + 1
end

Remark 1: α is the adaptation update interval. If too large, bad
choices of F will remain in the population for a long time and
adversely effect the search. If on the other hand α is too small, then
temporal transient behaviors will affect the adaptation process. The
α value of 5 has been found to be the most suitable value. F L and
F U define the range within which F varies. Although this may be
changed for each problem, the values of F L = 0.1 and F U = 0.9
has been found to be suitable for most problems. These settings
are fixed and are not required to change for different experiments.

V. BENCHMARK RESULTS

In this section, the regression coefficients of the LP and fADE
algorithms are estimated for benchmarking purposes. Each exper-
iment was repeated 10 times and the results given here are the
average of those 10 runs. The experiments were performed using
MATLAB 7.3 installed on an Intel Pentium Core 2 Due 1.83 GhZ
system with 2Gb of RAM. The CPU times (in seconds) and total
memory allocation in Kb (in MATLAB) are recorded. In case of
the LP problem, MATLAB standard function linprog was used
(fixed to LargeScale option to always use the interior point
algorithm).

In all cases, n is the number of observation data points, and
m is the dimension of the problem. In case of the LP problem,
an interior point (IP) algorithm was used to solve the problem.
For the scale of problems considered here, the IP algorithm
was substantially faster than the Simplex method which is the
other common approach to solve the LP. For fADE, the initial
population was always fixed at 10m and the algorithm had a
100% convergence rate for all the experiments; Then again this is
a convex problem. For both algorithms the same function tolerance
was used. The results are given in Tables 1 and 2 and are shown
graphically in Figure 3 and 4.

Proposed Algorithm LP (Interior Point)

m=2 CPU=0.0344 CPU=0.2641
n=1000 Mem=24 Mem=16040

m=3 CPU=0.0688 CPU=0.2672
n=1000 Mem=32 Mem=16048

m=4 CPU=0.1266 CPU=0.2813
n=1000 Mem=40 Mem=16056

m=5 CPU=0.1812 CPU=0.2875
n=1000 Mem=48 Mem=16064

m=6 CPU=0.2953 CPU=0.3016
n=1000 Mem=56 Mem=16072

m=7 CPU=0.5078 CPU=0.3172
n=1000 Mem=64 Mem=16080

m=8 CPU=0.6656 CPU=0.3234
n=1000 Mem=72 Mem=16088

m=9 CPU=0.8250 CPU=0.3359
n=1000 Mem=80 Mem=16096
m=10 CPU=1.1516 CPU=0.3516

n=1000 Mem=88 Mem=16104

TABLE I

BENCHMARK RESULTS FOR VARYING PROBLEM DIMENSION

Proposed Algorithm LP (Interior Point)

m=5 CPU=0.0859 CPU=0.1922
n=500 Mem=24 Mem=7884
m=5 CPU=0.1266 CPU=0.2266

n=800 Mem=38.4 Mem=10291
m=5 CPU=0.1047 CPU=0.3172

n=1100 Mem=52.8 Mem=19430
m=5 CPU=0.2047 CPU=0.4359

n=1400 Mem=67.2 Mem=31450
m=5 CPU=0.2266 CPU=0.5703

n=1700 Mem=81.6 Mem=46349
m=5 CPU=0.2594 CPU=0.7328

n=2000 Mem=96 Mem=64128
m=5 CPU=0.2375 CPU=0.9125

n=2300 Mem=110.4 Mem=84787
m=5 CPU=0.2484 CPU=1.1000

n=2600 Mem=124.8 Mem=108330
m=5 CPU=0.3406 CPU=1.3250

n=2900 Mem=139.2 Mem=134750
m=5 CPU=0.3681 CPU=1.5703

n=3200 Mem=153.6 Mem=164040

TABLE II

BENCHMARK RESULTS FOR VARYING NUMBER OF OBSERVATIONS
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Fig. 3. Showing the CPU time versus the LAV problem dimension for
fixed number of observations(1000)

Notice that fADE has strikingly different properties when
compared to the LP algorithm. The LP is much less sensitive to the
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Fig. 4. Showing the CPU time versus the number of observations a fixed
number of regression coefficients (5)

dimension of the problem, than fADE. In fact, it is fairly obvious
that the time complexity of the LP algorithm rises linearly with
m, whereas in case of fADE, it rises exponentially. However, the
situation is completely reversed when the number of observations
are increased. In this case, fADE is much less sensitive and
has a slow and almost linear increase in its time complexity.
But the LP solution takes exponentially longer to compute. It
is also noteworthy to underline the huge difference in memory
requirements. For example, in case of 5 regression coefficients
and 2000 observations, the proposed algorithm uses 96Kb of
memory, versus 64Mb required for the data matrices of the LP
formulation (This is simply the allocation space required for the
input data, and does not include the temporary memory required
during computation).

Clearly fADE has an overall advantage in terms of memory
usage. We also argue that for the application it was developed,
it is also superior in terms of computational efficiency. Namely,
when estimating in real life industrial applications, one is generally
dealing with a few coefficients, but many observations. For exam-
ple in case of the Base Sheet Ash model which was mentioned
earlier, the model only has 4 coefficients (Headbox Ash, Headbox
Consistency, Whitewater Ash, Whitewater consistency). In terms
of the number of observations, the paper machine’s DCS system
will log plantwide data every 5 seconds. This translates to over
17280 observations per 24 hours. This will take the LP approach
an estimated 2 minutes to compute the LAV model, but only 1.3
seconds using fADE. This is a very significant speed advantage,
especially when noting that the Interior Point solver used for the
LP problem is already one order of magnitude faster than the
Simplex method which itself is reputed to be a fast algorithm. The
fact that the LP bogs down when the observations are increased in
not altogether a surprise. Recall that in case of the LP formulation,
each new observation adds a new equation and plane to the
problem. However in case of the proposed direct search approach,
a new observation just means an extra multiplication in the cost
function evaluation.

The speed of the proposed algorithm will make it possible
to implement LAV problems online, in the same way that been
traditionally done for many years with LS models. Moreover,
the algorithm is very light on memory usage and is able to
compute the LAV solution using only elementary operations of
addition and multiplication (although a (pseudo) random number
generator is required). Although the proposed algorithm is based
on an EA, it is important to recall that significant modifications
were made to it to increase its speed for the LAV problem. It
is therefore important to realize that the proposed algorithm can
no longer be considered a generic optimization algorithm in the
same way as a standard EA can. It might well be that due to the

removal of the crossover operator and the dynamic reduction of
the population, the proposed algorithm will no longer be able to
solve a multi-modal problem (although it doesn’t have to be, since
other powerful EA algorithms, such as Evolution Strategies (ES)
only use gene mutation).
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