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Abstract— The robust H∞ control problem for the generator
excitation system with the damping coefficient uncertainty and
external disturbances, is addressed. Storage functions of the
control system are constructed based on modified adaptive
backstepping sliding mode control method and Lyapunov
method. A nonlinear robust H∞ controller and a parameter
updating law are obtained simultaneously. The controller can
not only attenuate the influences of external disturbances on
the system output, but also has strong robustness for system
parameters variation. Since the controller design is based
completely on the nonlinear dynamic system without any
linearization, the nonlinear property of the dynamic system
is well preserved. The simulation results show that more rapid
speed response and stronger robustness can be obtained by the
proposed method than the conventional adaptive backstepping
and adaptive backstepping sliding mode control methods.

I. INTRODUCTION

Modern power systems are in large scale, distributed

and with highly nonlinear characteristics as well as the

complicated transients. The control systems are supposed

to suppress the potential instability and poorly damped

power angle oscillations. Synchronous generator excitation

control is one of the most important, effective and economic

methods to enhance the stability of power systems. Generator

excitation control can not only enhance the power system

static stability limit, but also attenuate low-frequency elec-

tromechanical oscillations inherent to power systems, during

transient conditions. Therefore it is a very active area of

research [1-7].

The traditional controllers that are designed based on

linearized model around an operating point, such as pro-

portion integral differential (PID) control, power system sta-

bilizer (PSS) and linear optimal excitation control (LOEC),

vary significantly with respect to the changes of operating

condition. Recently, nonlinear control techniques such as
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feedback linearization [8-9], Hamiltonian techniques [10],

and sliding mode control [11] have been successfully ap-

plied to achieve high dynamic performance under large and

unexpected contingencies. The design synthesis based on

feedback linearization using the differential geometric ap-

proach has the disadvantage that the parameters of the system

have to be exactly and precisely known. In the feedback

linearization approach the parameter uncertainties problem

can be tackled only if combined with the some other robust

control method. Therefore, in many cases, it cannot achieve

robustness to system model and parameter variations. In most

control system, however, there exist various uncertainties

due to modelling errors, parametric variations, unknown

dynamics, disturbances, unmodeled dynamics et al. Power

systems are subject to several disturbances including line

faults and sudden change in the system loading. There is

thus a need for controllers which are insensitive to changes in

the parameters of the plant. To improve system stability and

performance, modern nonlinear robust control approaches

were applied to power systems. Robust controllers based on

H∞ control theory are particularly suited for this purpose.

In terms of the sliding mode control method, a dynamic

system is insensitive to model uncertainties and external dis-

turbances with matching conditions. However, uncertainties

and external disturbances in power systems sometimes do not

conform to matching conditions. In the past decades, there

have been more research results on adaptive backstepping

control [12-13]. Adaptive backstepping method is based on

a systematic procedure for the design of feedback control

strategies suitable for the design of a large class of feedback

linearizable nonlinear systems with constant uncertainties,

and guarantees global regulation and tracking for the class

of nonlinear systems transformable into the parametric-strict

feedback form. Adaptive backstepping sliding mode control

method combines the advantages of both adaptive back-

stepping and sliding mode control [14]. In [15], nonlinear

excitation controller was designed by using adaptive back-

stepping method. In [16], an adaptive backstepping sliding

mode controller was designed to control the position of the

mover of the linear induction motor (LIM).

Transient response and controller gain are two important

performance indexes in power systems. Transient response

is expected to be as fast as possible, while the controller

gain which represents input energy requires to be as small as

possible. However, a faster transient response usually needs a

larger controller gain. Therefore, some ”trade-off” between

fast response and small controller gain is needed. How to

achieve a fast response when the error is large without

exploiting a large controller gain in a long term is a very
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important problem, which motivates the present study.

In this paper, a nonlinear robust H∞ controller for gener-

ator excitation system based on a modifying adaptive back-

stepping sliding mode control method is proposed. Transient

response and controller gain are considered simultaneously.

In the recursive design procedure of the feedback control

law, the class-κ functions are introduced into the selection

of virtual stabilizing functions to obtain faster convergent

speed. The controller gain tends to that of the conventional

backstepping method, when time goes to infinity. In this

way, the response is greatly improved without remarkably

increasing the controller gain. The adjustable parameters in

the class-κ functions keep the balance between transient

response and controller gain. The proposed method not only

improves the comprehensive performance index of transient

response and controller gain, but also retains the advantages

of adaptive backstepping sliding mode control with mis-

matched uncertainties and strong robustness. For a single

machine infinite bus system with excitation control, when the

damping coefficient is measured inaccurately and there are

the external disturbances, a nonlinear robust H∞ controller

and a parameter updating law are obtained simultaneously

via the proposed method. The simulation results show that

this proposed controller gives better performances. This

paper is organized as follows. Section II gives the system

model and control objective. The novel design synthesis is

derived in Section III. Section IV presents simulation results.

Conclusions follows thereafter.

II. SYSTEM MODEL AND CONTROL OBJECTIVE

Consider a dynamic model of single-machine infinite-bus

(SMIB) electrical power system with generator excitation,

which is widely known and used as a benchmark example

in the literature[15]. The schematic diagram is depicted in

Figure 1.
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Fig. 1. A Single Machine Infinite Bus system with generator excitation

The dynamics of this plant system can be expressed by

means of the following nonlinear differential equations [15]:



























δ̇ = ω −ω0

ω̇ = −
D

H
(ω −ω0)+

ω0

H
Pm −

ω0E
′

qVssinδ

HX
′

dΣ

+w1

Ė
′

q = −
1

T
′

d

E
′

q +
Xd −X

′

d

Td0X
′

dΣ

Vscosδ +
1

Td0

Vf +w2

(1)

where δ and ω are the angle and speed of the generator

rotor, respectively; H is the inertia constant; Pm is the

mechanical power on the generator shaft; D is the damping

coefficient; E ′
q and Vs are the inner generator voltage and

infinite bus voltage, respectively; X ′
dΣ = X ′

d +XT +XL, X ′
d ,XT ,

and XL are the direct axis transient reactance of the generator,

the reactance of the transformer, and the line reactance,

respectively; Td0 and T
′

d are the time constants of excitation

winding with excitation winding and stator winding in closed

circuit; Vf is the input. We assume the disturbance vector

w = [w1 w2]
T with w1,w2 unknown functions in L2 space,

which is also a realistic assumption[12].

It should be noted that, generally speaking, the damping

coefficient D can not be measured accurately. Hence D is an

unknown and/or uncertain constant parameter. Therefore θ =

−
D

H
is also an unknown and/or uncertain constant parameter.

Let (δ0,ω0,E
′

q0) represent an operating point of the power

system. Define the system state variables as x1 = δ −δ0,x2 =

ω − ω0, and x3 = E
′

q − E
′

q0. Then define
ω0

H
= a0 , k1 =

− ω0Vs

HX
′
dΣ

and k2 =
Xd −X

′

d

Td0X
′

dΣ

Vs. The system (1) is thus trans-

formed into the following form















ẋ1 = x2

ẋ2 = θx2 +a0 + k1sin(x1 +δ0)(x3 +E
′

q0)+w1

ẋ3 = −
1

T
′

d

(x3 +E
′

q0)+ k2cos(x1 +δ0)+
1

Td0

Vf +w2

z =

[

q1x1

q2x2

]

.

(2)

where vector z = [q1x1 q2x2]
T is representing the regulated

output. Quantities q1 and q2 are nonnegative weighted coeffi-

cients, representing the weighted proportion of state variables

x1 and x2 into the system output, which are to be determined

by the designer in each particular case study.

The control problem addressed in this paper is as follows:

for any given γ > 0, find a controller u and positive storage

function V (x) such that the following dissipativity inequality

holds for any final time T > 0:

V (x(t))−V (x(0)) =
∫ T

0
(γ2‖w‖2 −‖z‖2)dt. (3)

And when w1 = 0,w2 = 0, the closed-loop system is asymp-

totically stable at x = 0. Then the L2 gain from the distur-

bance to the output of the system is smaller than or equal to

γ , where γ is disturbance attenuation constant.

III. DESIGN OF NONLINEAR ROBUST H∞

CONTROLLER

In the following procedure, the control law by using

modified adaptive backstepping sliding mode control method

for the system (2) with the damping coefficient uncertainty

and external disturbance will be designed.
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Step1: For the first subsystem of system (2), x2 is assumed

to be the virtual control variable. Then choose the virtual

control of x2 as x∗2 = −(ϕ1(|e1|) + c1)e1, where c1 > 0 is

a design parameter, and ϕ1(·) is a class-κ function to be

designed. Define error variable e2 = x2−x∗2 and e1 = x1. Then

ė1 = −(ϕ1(|e1|)+ c1)e1 + e2. (4)

For system (4), choose the first storage function

V1 =
σ

2
e2

1 +
ε1

4
e4

1. (5)

where σ > 0,ε1 > 0 are design constants. Then the time

derivative of V1 along the system (4) trajectory is V̇1 =
σe1ė1 + ε1e3

1ė1 = σe1e2 − σ(ϕ1(|e1|) + c1)e
2
1 + ε1e3

1e2 −
ε1(ϕ1(|e1|) + c1)e

4
1. Select ϕ1(·) as ϕ1(|e1|) = ε1e2

1. It is

apparent that V̇1 ≤ 0 when e2 = 0.

Step2: Augment storage function of Step 1 as

V2 = V1 +
1

2
e2

2. (6)

Define function H1 = V̇2 +
1

2
(‖z‖2 − γ2‖w1‖

2), thus

H1 = V̇1 + e2ė2 + 1
2
(‖z‖2 − γ2‖w1‖

2)

= σ(ϕ1(|e1|)+ c1)e
2
1 − ε1(ϕ1(|e1|)+ c1)e

4
1 + e2w1

+e2[σe1 + ε1e3
1 +θx2 +a0 + k1sin(x1 +δ0)(x3 +E

′

q0)

+3ε1e2
1x2 + c1x2]+

1
2
q2

1e2
1 + 1

2
q2

2[e2 − (ϕ1(|e1|)+ c1)e1]
2

− 1
2
γ2w2

1

= −(σc1 −
1
2
q2

1 −
1
2
q2

2c2
1)e

2
1 − (σ + c1 −q2

2c1)ε1e4
1 −

(1− 1
2
q2

2)ε
2
1 e6

1 − ( γ
2
w1 −

e2
γ )2 − 1

4
γ2w2

1 +
e2

2

γ2 + 1
2
q2

2e2
2

−q2
2ε1e3

1e2 −q2
2c1e1e2 + e2[σe1 + ε1e3

1 +θx2 +a0

+k1sin(x1 +δ0)(x3 +E
′

q0)+3ε1e2
1x2 + c1x2]

= −λe2
1 − (σ + c1 −q2

2c1)ε1e4
1 − (1− 1

2
q2

2)ε
2
1 e6

1 −

( γ
2
w1 −

e2
γ )2 − 1

4
γ2w2

1 + e2[m1x1 +m2x2 +m3x3
1

+3ε1x2
1x2 +θx2 +a0 + k1sin(x1 +δ0)(x3 +E

′

q0)],

where λ = σc1 −
1

2
q2

1 −
1

2
q2

2c2
1,m1 =

c1

γ2
−

1

2
c1q2

2 + σ ,m2 =

1

γ2
+

1

2
q2

2 + c1,m3 =
ε1

γ2
+

1

2
q2

2ε1 + ε1.

x3 is assumed to be the virtual control variable. Define

error variable e3 = x3 − x∗3. Then choose the virtual control

of x3 as x∗3 =−
1

ksin(x1 +δ0)
[m1x1 +m2x2 +m3x3

1 +3ε1x2
1x2 +

θ̂x2 + a0 +(ϕ2(|e2|)+ c2)e2]−E
′

q0, where θ̂ stands for the

estimate of θ , c2 > 0 is a design parameter, and ϕ2(·) is a

class-κ function to be designed. Next, define the estimation

error θ̃ = θ − θ̂ , and then it follows:

H1 = −λe2
1 − (σ + c1 −q2

2c1)ε1e4
1 − (1− 1

2
q2

2)ε
2
1 e6

1 − ( γ
2
w1

− e2
γ )2 − 1

4
γ2w2

1 − (ϕ2(|e2|)+ c2)e
2
2 + e2θ̃x2 + k1sin(x1

+δ0)e2e3.

Then select ϕ2(·) as ϕ2(|e2|) = ε2e2
2, where ε2 > 0 is a design

parameter.

Step3: Define the sliding surface s = d1e1 + d2e2 + e3 =
0, where d1,d2 are the design parameters. Augment storage

function of Step 2, and thus the new storage function is

V3 = V2 +
1

2
s2 +

1

2ρ
θ̃ 2, (7)

where ρ > 0 is the adaptive gain coefficient.

Define function H2 = V̇3 +
1

2
(‖z‖2 − γ2‖w‖2). Note that

ė3 = ẋ3 − ẋ∗3 and ṡ = d1ė1 +d2ė2 + ė3, then

H2 = V̇2 + sṡ+ 1
2
(‖z‖2 − γ2‖w‖2)+ 1

ρ θ̃ ˙̃θ

= H1 −
1
2
γ2w2

2 + sṡ− 1
ρ θ̃ ˙̂θ

= −λe2
1 − (σ + c1 −q2

2c1)ε1e4
1 − (1− 1

2
q2

2)ε
2
1 e6

1 −

( γ
2
w1 −

e2
γ )2 − 1

4
γ2w2

1 − (ϕ2(|e2|)+ c2)e
2
2 + e2θ̃x2

+k1sin(x1 +δ0)e2e3 −
1
2
γ2w2

2 −
1
ρ θ̃ ˙̂θ + s[d1x2 +

d2ẋ2 +3ε1e2
1x2 + c1x2 −

1

T
′
d

(x3 +E
′

q0)+ k2cos(x1

+δ0)+ 1
Td0

Vf +w2 − ẋ∗3]

Note that θ = θ̂ + θ̃ ,e3 = s−d1e1 −d2e2, thus

H2 = −(λ −d2
1)e2

1 − (σ + c1 −q2
2c1)ε1e4

1 − (1− 1
2
q2

2)ε
2
1 e6

1

−( γ
2
w1 −

e2
γ )2 − ε2e4

2 − [c2 −
1
4
k2

1sin2(x1 +δ0)+

d2k1sin(x1 +δ0)]e
2
2 − [d1e1 + 1

2
k1sin(x1 +δ0)e2]

2 −

1
2
(γw2 −

s
γ )2 − [ γ

2
w1 −

s
γ (d2 +

3ε2e2
2+c2+m2+3ε1e2

1+θ̂

k1sin(x1+δ0) )]2

+[e2 + s(d2 +
3ε2e2

2+c2+m2+3ε1e2
1+θ̂

k1sin(x1+δ0) )]θ̃x2 −
1
ρ θ̃ ˙̂θ +

s{k1sin(x1 +δ0)e2 + s
γ2 (d2 +

3ε2e2
2+c2+m2+3ε1e2

1+θ̂

k1sin(x1+δ0) )2 +

(d1 +d2θ̂ +3ε1e2
1 + c1)x2 +d2k1sin(x1 +δ0)(x3 +E

′

q0)

+ s
2γ2 +d2a0 −

1

T
′
d

(x3 +E
′

q0)+ k2cos(x1 +δ0)+ 1
Td0

Vf

+ 1
k1sin(x1+δ0) [m1x2 +3m3x2

1x2 +6ε1x1x2
2 + ˙̂θx2 +

(3ε2e2
2 + c2)(3ε1e2

1 + c1)x2 +(3ε2e2
2 + c2 +m2 +

3ε1e2
1 + θ̂)(θ̂x2 +a0 + k1sin(x1 +δ0)(x3 +E

′

q0))]−

cos(x1+δ0)x2

k1sin2(x1+δ0)
[m1x1 +m2x2 +m3x3

1 +3ε1x2
1x2 + θ̂x2

+a0 + ε2e3
2 + c2e2]}
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The real control input is

Vf = Td0{−k1sin(x1 +δ0)e2 −
s

γ2 (
3ε2e2

2+c2+m2+3ε1e2
1+θ̂

k1sin(x1+δ0)

+d2)
2 − (d1 +d2θ̂ +3ε1e2

1 + c1)x2 −d2k1sin(x1 +

δ0)(x3 +E
′

q0)−
s

2γ2 −d2a0 + 1

T
′
d

(x3 +E
′

q0)− k2cos(x1

+δ0)−
1

k1sin(x1+δ0) [m1x2 +3m3x2
1x2 +6ε1x1x2

2 + ˙̂θx2

+(3ε2e2
2 + c2)(3ε1e2

1 + c1)x2 +(3ε2e2
2 + c2 +m2 +

3ε1e2
1 + θ̂)(θ̂x2 +a0 + k1sin(x1 +δ0)(x3 +E

′

q0))]

+ cos(x1+δ0)x2

k1sin2(x1+δ0)
[m1x1 +m2x2 +m3x3

1 +3ε1x2
1x2 + θ̂x2

+a0 + ε2e3
2 + c2e2]−β s}

(8)

where β > 0 is the constant sliding mode gain.

The parameter update law is selected as

˙̂θ = ρ[e2 + sd2 +
s(3ε2e2

2 + c2 +m2 +3ε1e2
1 + θ̂)

k1sin(x1 +δ0)
]x2.

Appropriately select parameters σ ,ci,di, i = 1,2, such that

λ −d2
1 ≥ 0, and c2 −

1

4
k2

1sin2(x1 +δ0 +d2k1sin(x1 +δ0) ≥ 0,

then

H2 =−(λ −d2
1)e2

1−(σ +c1−q2
2c1)ε1e4

1−(1−
1

2
q2

2)ε
2
1 e6

1−

(
γ

2
w1 −

e2

γ
)2 − ε2e4

2 − [c2 −
1

4
k2

1sin2(x1 + δ0)+ d2k1sin(x1 +

δ0)]e
2
2− [d1e1 +

1

2
k1sin(x1 +δ0)e2]

2−
1

2
(γw2−

s

γ
)2− [

γ

2
w1−

s

γ
(d2 +

3ε2e2
2 + c2 +m2 +3ε1e2

1 + θ̂

k1sin(x1 +δ0)
)]2 −β s2 ≤ 0.

(9)

Should further it be defined V (x) = 2V3(x), then it follows

at once

V̇ ≤ γ2‖w‖2 −‖z‖2. (10)

because of V (x(0)) = 2V3(x(0)). In turn, the dissipative

inequality (3) is readily obtained by integrating both sides

of the inequality (10). Hence, the system effectively has L2

gain from the disturbance to its output.

At the same time, given this finding and also following

the above derivations, one can conclude that the closed-loop

error system dynamics when w = 0







































































ė1 = −(ε1e2
1 + c1)e1 + e2

ė2 = k1sin(x1 +δ0)e3 − (σ − c1q2
2)e1 − ε1e3

1

−(
1

γ2
+

1

2
q2

2 + c2)e2 − ε2e3
2 + θ̃x2

ė3 = −k1sin(x1 +δ0)(e2 +d2e3)−β s

+
(3ε2e2

2 + c2 +m2 +3ε1e2
1 + θ̂)

k1sin(x1 +δ0)
x2θ̃ −

s

2γ2

−
s

γ2
(d2 +

3ε2e2
2 + c2 +m2 +3ε1e2

1 + θ̂

k1sin(x1 +δ0)
)2

+d2m1e1 +d2m3e3
1 +(d2m2 −d1 − c1)x2

+3(d2 −1)ε1e2
1x2 +d2ε2e3

2 +d2c2e2

(11)

is asymptotically stable. In fact, due to (9), we have

V̇3 +
1

2
‖z‖2 = −(λ − d2

1)e2
1 − (σ + c1 − q2

2c1)ε1e4
1 −

(1 −
1

2
q2

2)ε
2
1 e6

1 −
e2

2

γ2
− ε2e4

2 − [c2 −
1

4
k2

1sin2(x1 + δ0) +

d2k1sin(x1 + δ0)]e
2
2 − [d1e1 +

1

2
k1sin(x1 + δ0)e2]

2 −

s2

γ2
(d2 +

3ε2e2
2 + c2 +m2 +3ε1e2

1 + θ̂

k1sin(x1 +δ0)
)2 − β s2 ≤ 0. Then

V̇3 ≤ 0, implies V3(t) ≤ V3(0), i.e. e1,e2,s,x1,x2 are all

bounded. Define Ω = −V̇3, then

∫ t

0
Ω(τ)dτ = V3(0)−V3(t).

Since V (0) is bounded, and V3(t) is non-increasingly

bounded, then lim
t→∞

∫ t

0
Ω(τ)dτ < ∞. In addition, since Ω̇

is bounded, lim
t→∞

Ω = 0 holds due to Barbalat’s lemma. So

e1 → 0,e2 → 0,s → 0,x1 → 0, and x2 → 0 as t → ∞. From

the definition of x1,x2,x3,x
∗
2,x

∗
3,s, it is apparent that e3 → 0,

and x3 is also bounded.

From the design procedure, the parameters σ ,ci,di, i =
1,2 should be appropriately selected such that λ − d2

1 ≥ 0,

and c2 −
1

4
k2

1sin2(x1 + δ0 + d2k1sin(x1 + δ0) ≥ 0. The other

design parameters ε1,ε2,γ,β can be appropriately selected

according to practical requirements.

Remark 1. If sin(x1 +δ0) = 0, that is if δ = kπ,k = 0,1,2, · ·
·, synchronism of the power system will be lost and there

is no longer normal operation. Fortunately, under the normal

operating conditions in the system 0 < δ < π holds, and

therefore the condition sin(x1 +δ0) 6= 0 can be guaranteed in

(8).

Remark 2. When ε1 ≡ 0,ε2 ≡ 0 in (8) and (11), our

results coincide with that of traditional adaptive backstepping

sliding mode design; furthermore, when d1 ≡ 0,d2 ≡ 0, our

results coincide with that of based on traditional adaptive

backstepping design.
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IV. SIMULATION RESULTS

Simulation of the whole system has been carried out by

using Matlab software on the grounds of the above control

design results. The SMIB case system example solved has

the following parameters [15]:

H = 12.922s,Vs = 1.0pu,Td0 = 6.55s,Xd = 0.8258pu,X ′
d =

0.1045pu,XT = 0.0292pu,XL = X2 = 0.0266pu,q1 =
0.4,q2 = 0.6. A set of the responses are depicted in the

following figures corresponding to arbitrary chosen nonzero

initial conditions in the normal range.

The following operating point is considered: δ0 =
57.3◦,ω0 = 314.159rad/s,E ′

q0 = 0.9361pu

In order to show the effectiveness of the proposed modified

adaptive backstepping sliding mode (MAbSM) controller,

we will make comparisons with the conventional adaptive

backstepping (Ab) controller and adaptive backstepping slid-

ing mode (AbSM) controller under the same nonzero initial

condition. The responses of the generator rotor angle δ ,

relative speed ω , and control input Vf , under the MAbSM

controller, Ab controller and the AbSM controller are shown

in Fig. 2-4 with the same initial condition δ (0) = 64.5◦.
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Fig. 2. Transient response curves of the angle

Figure 2 and Figure 3 show that under the modified

adaptive backstepping sliding mode controller, the speed

response is indeed faster, and the system reach the stable

state rather rapidly. Figure 4 shows that under the modified

adaptive backstepping sliding mode controller, the control

input requires the bigger energy in the initial period, but it

reaches the stable state in short time for the same disturbance.

Since the selected class-κ functions also converge to zero

as the errors converge to zero, then the control energy also

coincides with that of adaptive backstepping sliding mode

control.

Simulation experiments show that the larger the error

is, the more useful the improvement of transient response

performances is. Of course, controller gain will increase
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Fig. 3. Transient response curves of the relative speed
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Fig. 4. The control input curves of the excitation voltage

further in the initial period. In fact, the control input of

any practical system is bounded. If we solely pursue the

transient speed response, controller gain will be too high

to be implemented. Therefore, in order to avoid it, the

parameters εi, i = 1,2 are added to tune the comprehensive

performance in the design stage. When the error is larger,

the smaller εi is selected such that the initial controller gain

does not excessively increase; when the error is smaller, the

bigger εi is selected such that the system has better transient

response performance. That is, the speed response can be

tuned by εi in order to satisfy the practical requirements. The

design based on conventional adaptive backstepping does not

have this character.

In order to test the robustness of the MAbSM controller,

we do simulation for different values of D at a different oper-

ating point and for any initial conditions. The result depicted

in Fig. 5 shows that for different values of uncertainties the

responses of the system are almost the same, which validates

the strong robustness of the proposed MAbSM controller.

Transient response curves of the parameter estimations with

the different damping coefficient uncertainty are given in
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Fig.6. The parameter update variable is quickly forced into

its adequate estimated value without oscillations.
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Fig. 5. Transient response curves of the angle with the different damping
coefficient uncertainty
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Fig. 6. Transient response curves of the parameter estimations with the
different damping coefficient uncertainty

Furthermore, simulation experiments demonstrated that

for the smaller value of parameter ρ the effectiveness of

adaptation and stability region increase, thus leading to

improved forcing of disturbance attenuation.

V. CONCLUSION

We have applied modified adaptive backstepping sliding

mode method to design a robust H∞ controller for the

generator excitation system. Since the controller design is

based on the nonlinear model of the plant dynamics without

linearization, the essentialities of the nonlinear nature of

power system dynamics are entirely preserved. The controller

does guarantee the system states remain strictly bounded in

the closed-loop due to the fact that both internal and external

disturbances are taken together into consideration in the

control synthesis problem. Hence practical stability operation

is guaranteed always. Due to the fact that the system output

is also accounted for in the control design, the disturbance

effects on the output remain well attenuated too. With regard

to internal disturbances, the damping coefficient uncertainty

is accounted for hence in this regard the control design

is robust to system parameter variations. In the recursive

design procedure of the feedback control law, the class-κ
functions are introduced to improve the transient response of

the closed-loop system without exploiting a large controller

gain in a long term.
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