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Abstract— In this paper, a novel interacting multiple model
(IMM) algorithm is proposed, which utilizes a multi-sensor
optimal information fusion rule to combine multiple models
in the linear minimum variance sense instead of famous Bayes’
rule. Furthermore, the diagonal matrices are used as the
updated weights of models, which are applied to distinguish
the effects produced by different dimensions of state, so the
new algorithm is named as diagonal interacting multiple model
(DIMM) algorithm. Extensive Monte Carlo simulations indicate
that the proposed DIMM algorithm has better accuracy of
estimation than the IMM algorithm with no increase in the
execution time, which confirm that the DIMM algorithm is a
competitive alternative to the classical IMM algorithm.

I. INTRODUCTION

The Interacting Multiple Model (IMM) algorithm is a

well-known state estimation algorithm for hybrid systems,

whose unique feature is that the state estimates and the

covariance matrices from multiple models are combined

according to a Markov model for the transition between

target maneuver states. It has been widely applied in many

fields [1-8]. For example, in [6], the IMM method is applied

to the problem of object tracking with a video system in a

car. The authors in [7] develop the IMM algorithm to detect

lane change maneuvers based on laser, radar, and vision data.

Craig O. Sayage and Bill Moran propose waveform selection

for maneuvering targets within the IMM framework [8].

However, in the classical IMM algorithm, multiple models

are combined based on the analysis of ’non-pure’ probability,

to be accurate, the normalized product of the likelihood func-

tion of target measurement and the prior model probability

mass is used as the updated weight of model. It is known

that any probability mass must be in the interval [0,1], but

any likelihood function has no such restriction. The two

values are at different levels (magnitudes), so the resulting

weight of model is only an approximate probability mass.

Moreover, the scalar weight used in the IMM algorithm

can not distinguish the effects of different dimensions of

state, especially, the position dimensions and the velocity

dimensions.
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In this paper, an improved IMM algorithm reweighted by

diagonal matrices is proposed, which is named as diagonal

interacting multiple model (DIMM) algorithm. The novelty

of DIMM algorithm can be compressed into two aspects.

First, a multi−sensor optimal information fusion rule is

introduced into the DIMM algorithm for interacting models,

which can obtain the optimal estimation in the linear min-

imum variance sense [9]. We utilize the fusion rule instead

of the likelihood function of target measurement at the step

of updating weight. This can avoid the mixture of likelihood

function and probability mass.

Second, the weight of model is the diagonal matrix, instead

of the scalar in the classical IMM algorithm, through which

we can distinguish the effects produced by different dimen-

sions of state. This point is motivated by the work in [10],

which proposes the reweighted IMM (RIMM) algorithm that

uses some matrices as updated weights. Nevertheless, the

RIMM algorithm needs to compute a mass of inverse matri-

ces, which not only increases the computational complexity

but also constrains the choice of the initial state and the initial

error covariance. Extensive Monte Carlo simulations indicate

that the DIMM algorithm has better accuracy of estimation

than the classical IMM algorithm with no increase in the

execution time, which confirm that the DIMM algorithm is

a competitive alternative to the IMM algorithm.

The remaining part of the paper is outlined as follows. The

classical IMM algorithm is reviewed in section II. Section III

describes the multi−sensor optimal information fusion rule.

The DIMM algorithm is proposed in section IV. Section V

shows the computer simulation results. The conclusions and

future work are provided in section VI.

II. REVIEW OF THE IMM ALGORITHM

We consider the following jump Markov linear system:

x(k +1) = A jx(k)+B jω j(k) (1)

z(k) = C jx(k)+ν j(k) (2)

Without loss of generality, the exogenous input D(rk+1)uk

can be considered in (1). For notational convenience, we

omit it here. The state vector x(k) is an n−dimension vector,

whereas the observation process z(k) is an m−dimension

vector, and the subscript j ∈ S (S = {1,2, · · · ,s}) denotes

the model. The matrix functions A j(·), B j(·) and C j(·)
are assumed known. The model-dependent process noise is

assumed to be a Gaussian random process with the following

mean and covariance:

E[ω j(k)] = 0, E[ω j(k)ω j(k)
T ] = Q j (3)
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The model-dependent measurement noise term is also

assumed to be a Gaussian random process with the following

mean and covariance:

E[ν j(k)] = 0, E[ν j(k)ν j(k)
T ] = R j (4)

The model-independent system parameters for each of the

models see [11,12].

Let M j(k) denotes the model j at time k. The model

dynamics are modeled as a finite Markov chain with known

model-transitions probabilities from model i at time k to

model j at time k +1 [13].

πi j , Prob{M j(k +1) | Mi(k)} (5)

0 ≤ πi j ≤ 1,
s

∑
j=1

πi j = 1, i, j ∈ S (6)

The initial state distribution of the Markov chain is ϕ =
[ϕ1, · · · ,ϕs], where

0 ≤ ϕ j ≤ 1,
s

∑
j=1

ϕ j = 1, j ∈ S (7)

This Markov chain description of the models is used to model

as the unknown input.

The steps of classical IMM algorithm are as follows:

1) Calculation of the mixing weight (i, j ∈ S): Here, the

weight is defined as a probability mass, which is that model

Mi was in effect at k given that M j is in effect at k +1 con-

ditioned on the sequence of measurement Zk = [z1, · · · ,zk].

µi| j(k|k) , P{Mi(k)|M j(k +1),Zk}

=
1

c̄ j

P{M j(k +1)|Mi(k),Z
k} ·P{Mi(k)|Z

k}

(8)
The formula is the mixing weight, which can be written as

µi| j(k|k) =
1

c̄ j

πi jµi(k) (9)

where c̄ j is the normalization constant.

2) Mixing ( j ∈ S): Starting with x̂i(k) and Pii(k), the

mixed initial estimation for the filter matched to M j(k + 1)
is

x̂0 j(k|k) =
s

∑
i=1

x̂i(k)µi| j(k|k) (10)

The initial covariance corresponding to the above estimation

is

P0 j(k|k) =
s

∑
i=1

µi| j(k|k) · {Pii(k)+ [x̂i(k)− x̂0 j(k|k)]

×[x̂i(k)− x̂0 j(k|k)]T}
(11)

where x̂i(k) is the estimation of state based on the ith Kalman

filter at time k, and the corresponding covariance is Pii(k).

3) Updating the weight of model ( j ∈ S): The estimate

(10) and covariance (11) are used as input to the filter

matched to M j, which uses z(k+1) to yield x̂0 j(k+1|k+1)
and P0 j(k +1|k +1). The likelihood function

Λ j(k +1) = p[z(k +1)|M j(k +1),Zk] (12)

corresponding to the jth filter is computed using the mixed

initial estimation and covariance as

Λ j(k +1)
= p[z(k +1)|M j(k +1), x̂0 j(k +1|k +1),P0 j(k +1|k +1)]

(13)
that is,

Λ j(k +1)
= N [z(k +1); x̂0 j(k +1|k +1),P0 j(k +1|k +1)]

(14)

where N (x; x̄,P) denotes a probability density function

(PDF) of x with mean x̄ and covariance P.

Updated weight of model M j(k +1) is

µ j(k +1) , P{M j(k +1)|Zk+1}

=
1

c
p[z(k +1)|M j(k +1),Zk]P{M j(k +1)|Zk}

=
1

c
Λ j(k)c̄ j

(15)
where c is the normalization constant.

4) Estimate and covariance combination: Combination of

the model-conditioned estimates is done according to the

mixture equations

x̂(k +1|k +1) =
s

∑
j=1

x̂ j(k +1|k +1)µ j(k +1) (16)

Combination of the model-conditioned covariances:

P(k +1|k +1) =
s

∑
j=1

µ j(k +1){P j j(k +1|k +1)

+ [x̂ j(k +1|k +1)− x̂(k +1|k +1)]

× [x̂ j(k +1|k +1)− x̂(k +1|k +1)]T}
(17)

Note that the combination is only for output, it is not a part

of the algorithm recursions.

III. OPTIMAL INFORMATION FUSION RULE

In this section, an optimal information fusion rule is

described. The rule will be as the origin of updated weights

of proposed IMM algorithm, which can obtain the optimal

estimation in the linear minimum variance sense based on

the following lemma.

Lemma 1:[9] If x̂i (i ∈ S), be an unbiased estimate of the

n−dimensional stochastic column vector x based on the ith

sensor, and the estimation error is x̃i = x̂i−x, the covariance

matrix of error is Pi j = E[x̃ix̃
T
j ] (i, j = 1, · · · ,S), x̂d is the

fused estimation of state x, elements of state and estimations

are described as follows.

x =







x1

...

xn






, x̂ j =







x̂ j1

...

x̂ jn






, x̂d =







x̂d1

...

x̂dn






(18)

1202



then the optimal fusion estimate is

x̂d =
s

∑
j=1

B jx̂ j (19)

which minimizes the performance index J for x

J = trPd (20)

where

B j = diag(b j1, · · · ,b jn), Pd = E[x̃d x̃T
d ], x̃d = x− x̂d (21)

and it is equivalent to fused weight by diagonal matrices in

the linear minimum variance sense as

x̂di =
s

∑
j=1

b jix̂ ji (22)

where b ji is derived from vector bi

bi = [b1i,b2i, · · · ,bsi]

=
eT (Pii)−1

eT (Pii)−1e
, i = 1, · · · ,n

(23)

we define

e =







1
...

1







s×1

, Pii =









P
(ii)
11 · · · P

(ii)
1s

...
. . .

...

P
(ii)
s1 · · · P

(ii)
ss









(24)

where P
(ii)
k j is the ith diagonal element of matrix Pk j. The

covariance of error x̃di is

Pdi = E[x̃dix̃
T
di]

= E[(xi − x̂di)(xi − x̂di)
T ]

= [eT (Pii)−1e]−1
.

(25)

Through Lemma 1, we can obtain the optimal fused

estimation and the weight of estimation from each sensor.

In face, there are many information fusion rules can be

used in the IMM algorithm, but only the information fusion

rule (lemma 1) is weighted by diagonal matrices, which can

distinguish the effects produced by different dimensions of

state with no increase in the execution time.

IV. DIMM ALGORITHM

As can be seen from step 3 (updating the weight of

model) in IMM algorithm, the likelihood function of target

measurement model is used to obtain the updated model

weight µ j(k), which is not a real probability mass but a

PDF . Because any probability mass must be a scalar in

the interval [0,1], but any PDF has no such restriction.

Moreover, used PDFs come from different distributions,

which are at different levels (magnitudes), therefore the

resulting weight of model is only an approximate probability

mass. In this case, we aim at proposing a new IMM algorithm

to avoid the mixture of PDF and probability mass, and

obtaining the optimal estimation of state simultaneously.

In this section, the new IMM algorithm—DIMM algorithm

is proposed in detail. We regard the combination of multiple

models as the fusion of multiple sensors, so the updated

weights of models can be obtained from the fuse rule in

the previous section. The steps of DIMM algorithm are as

follows:

1) Calculation of the mixing diagonal weight (i, j ∈ S):

The probability that model Mi was in effect at k given that

M j is in effect at k + 1 conditioned on the sequence of

measurement Zk = [z1, · · · ,zk] about each dimension of state

is one of elements of following diagonal matrix (26), so the

weight of model can be viewed as

Bi| j(k|k) , P{Mi(k)|M j(k +1),Zk}

=
πi j ·Bi(k)

s

∑
i=1

πi j ·Bi(k)

=

























πi jbi1

s

∑
i=1

πi jbi1

· · · 0

...
. . .

...

0 · · ·
πi jbin

s

∑
i=1

πi jbin

























(26)

where
Bi(k) = diag(bi1,bi2, · · · ,bin)

, P{Mi(k)|Z
k}

(27)

2) Mixing ( j ∈ S): Starting with x̂i(k) and Pii(k), the

mixed initial estimation for the filter matched to M j(k + 1)
is

x̂0 j(k|k) =
s

∑
i=1

Bi| j(k|k) · x̂i(k) (28)

The initial covariance corresponding to the above estimation

is

P0 j(k|k) =
s

∑
i=1

Bi| j(k|k) · {Pii(k)+ [x̂i(k)− x̂0 j(k|k)]

×[x̂i(k)− x̂0 j(k|k)]T}
(29)

3) updating model weight ( j ∈ S): The weight updating

method is based on the optimal information fuse rule (in

Section III) which is weighted by diagonal matrices.

3.1) Bank of kalman filters produce outputs using the

mixed initial estimation x̂0 j(k|k) and covariance P0 j(k|k)
are:

x̂ j(k +1), P j j(k +1) (30)

3.2) updated model weight is:

B j(k +1) = diag(b j1,b j2, · · · ,b jn) (31)

where
b j = [b1 j,b2 j, · · · ,bs j]

= [eT (Σ j j)−1e]−1eT (Σ j j)−1 (32)

e =







1
...

1







s×1

, Σ j j =









P
( j j)
11 (k +1) · · · 0

...
. . .

...

0 · · · P
( j j)
ss (k +1)









(33)
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P
( j j)
ii (k +1) is the jth diagonal element of matrix Pii(k +1)

that comes from (30), and 0 denotes the null matrix.

4) Estimate and covariance combination: Combination of

the model-conditioned estimates is done according to the

mixture equations

x̂D(k +1) =
s

∑
j=1

B j(k +1) · x̂ j(k +1) (34)

Combination of the model-conditioned covariances:

PD(k +1) =
s

∑
j=1

B j(k +1) · {P j j(k +1)+ [x̂ j(k +1)

−x̂D(k +1)]× [x̂ j(k +1)− x̂D(k +1|k +1)]T}
(35)

Remark: we regard the diagonal matrix as the probability

in the DIMM algorithm. Though the diagonal matrix is not

a value in the interval [0,1], the every element of diagonal

matrix must be a scalar in the interval [0,1]. In fact, the

diagonal matrices used in the DIMM algorithm are the joint

probability, the every element denotes a probability mass.

Assume that x is the n dimensional stochastic vector, and

y is the m dimensional measurement vector. We denote the

linear space spanned by y as L(y). The optimal estimate x̂

of x based on L(y) in the linear minimum variance sense is

defined by minimizing

J = trE[(x− x̂)(x− x̂)T ], x̂ ∈ L(y) (36)

Let x̂D and x̂S are estimates of x based in linear

spaces LD(x̂1, · · · , x̂s) and LS(x̂1, · · · , x̂s), respectively, where

Lθ (x̂1, · · · , x̂s)(θ = D,S) are the set {Ω1x̂1 + · · ·+Ωsx̂s}, Ωi

denotes diagonal matrix and scalar, respectively. Denote the

error covariances of estimates x̂D and x̂S as PD and PS,

respectively.

Theorem 1: Under the linear minimum variance sense, the

optimal estimates x̂D and x̂S weighted by diagonal matrices

and probability masses respectively, satisfy the accuracy

relation

trPD ≤ trPS (37)

Proof : Notice that a probability mass is a scalar, a scalar

weight is a special case of diagonal matric weight, and x̂i ∈
L(yi), so we have the relation

LS(x̂1, · · · , x̂s) ⊆ LD(x̂1, · · · , x̂s) (38)

From (38), we obtain (37). This completes the proof.

In the section, we present the DIMM algorithm based on

a multi−sensor optimal information fusion rule in the linear

minimum variance sense. There is no need to calculate the

likelihood function of target measurement, so the DIMM

algorithm keeps away the mixture of probability mass and

likelihood function in the classical IMM algorithm. More-

over, the diagonal matrices are used as the updated weights

of models in the DIMM algorithm, which distinguish the

effects of different dimensions of state, such as position

dimensions and velocity dimensions. Because the updated

weight matrices are derived from the optimal information

fusion rule in the sense of linear minimum variance, the

estimation of state is also optimal in the linear minimum

variance sense in the DIMM algorithm.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the DIMM

and the classical IMM algorithms by using the target tracking

example in [14]. Assume a target moves along a plane with

constant course and speed until t = 400s. Then it starts to

maneuver a slow 90 degree turn in the x direction with

acceleration inputs ux = uy = 0.075m/s2 and completes the

turn at t = 600s . From then on the accelerations are zero. The

second turn, also 90 degree, is fast: it starts at t = 610s with

acceleration inputs ux = −0.3m/s2 and uy = 0.3m/s2 and is

completed at t = 660s . The x− y position trajectory of the

target is shown in Fig. 1. In addition, the velocity trajectory

of the target is depicted in Fig. 2. For target tracking, two

constant velocity (CV) models with different process noises

are employed. The state representations for each CV model

are as follows:

Ai =









1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1









; (39)

Bi =









T 2/2 0

T 0

0 T 2/2

0 T









; C =

[

1 0 0 0

0 0 1 0

]

.

(40)

The covariances are

Qi =

[

qi 0

0 qi

]

; Ri =

[

r r/20

r/20 r

]

(41)

where q1 = 0.01; q2 = 50; whereas r is a parameter in

the simulation. The initial state for the target is x(0) =
[2100;0;10000;−15]. The initial error covariance is chosen

based on the result in [14]

Pi(0) =









r r/T 0 0

r/T 2 0 0

0 0 r r/T

0 0 r/T 2









(42)

the target’s position is sampled every T=10s.

The two-model algorithms have mode transition matrix

[πi j] =

[

0.95 0.05

0.05 0.95

]

(43)

The initial distribution is ϕ1 = 0.5, ϕ2 = 0.5.

The results are obtained from 100 Monte carlo runs. Fig.

3 and Fig. 5 show that the root mean square (RMS) error

of DIMM algorithm is virtually indistinguishable from that

of the IMM algorithm’ in the dimensions of position (x−
position and y− position), when the measurement noise is

low (r=1). Fig. 4 and Fig. 6 show that the performance of

DIMM algorithm is better than the IMM algorithm’ in the

dimensions of x−velocity and y−velocity. As a whole, the

accuracy of estimation of the DIMM algorithm is higher than

the IMM algorithm’s. The average errors of 100 sample times

in Table 1 can validate it, and computational complexity of

the algorithms are also shown from Run-time statistics in

Table 1. The algorithm was implemented in MATLAB 7.0.4
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Fig. 1. Target position trajectory
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Fig. 2. Target velocity versus time step
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Fig. 3. x− position RMS Error (r=1)
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Fig. 4. x− velocity RMS Error (r=1)

on a 2.79 GHz 4 CPU Pentium-based computer operating

under Windows XP (Professional). The Run-time in table 1

is the running time for 100 times’ simulation, each time 100

steps.

When the measurement noise is high (r=1000), Fig. 7-

Fig. 10 show that the proposed DIMM algorithm is obvious

superior to the IMM algorithm in almost all of the time.
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Fig. 5. y− position RMS Error (r=1)
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Fig. 6. y− velocity RMS Error (r=1)

The IMM algorithm is better than the DIMM algorithm in

the dimensions of x− position and y− position during the

second turn (samples time 62-66), which may be due to that

the DIMM algorithm pays more attention to the rapid change

of the velocity in the high maneuver.

Comparing the IMM algorithm with the DIMM algorithm,

we can find that the Run-time of DIMM algorithm is evident

less than the IMM algorithm’s. Moreover, the accuracy of

the DIMM algorithm is better than the IMM algorithm,

especially about the estimations of velocity dimensions (x−
velocity and y− velocity) or in the situation with high mea-

surement noise. Therefore, the proposed DIMM algorithms

is more flexible and applicable than the classical IMM

algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In the paper, the DIMM algorithm is presented, which is

schematically similar to the classical IMM algorithm. The

TABLE I

RMS ERROR VALUES IN EACH DIMENSION AND RUN-TIME STATISTICS

IMM DIMM IMM DIMM
(r=1) (r=1) (r=1000) (r=1000)

x position 0.0993 0.1001 2.8386 2.5834

x velocity 0.0527 0.0331 1.0077 0.1458

y position 0.0977 0.0983 2.7986 2.5657

y velocity 0.0514 0.0328 1.0142 0.1489

Run-time 7.64712 4.4526 8.1469 4.6595
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Fig. 7. x− position RMS Error (r=1000)
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Fig. 8. x− velocity RMS Error (r=1000)
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Fig. 9. y− position RMS Error (r=1000)

0 20 40 60 80 100
0

0.5

1

1.5
y velocity rms error versus time step

time step

RM
SE

 

 

IMM

DIMM

Fig. 10. y− velocity RMS Error (r=1000)

difference lies in the method of updating model weight.

The DIMM algorithm is reweighted by diagonal matrices

based on a multi−sensor optimal information fusion rule in

the linear minimum variance sense instead of Bayes’ rule.

By the combination of the filter input and output based

on this optimal fusion rule, the DIMM algorithm obtains

the optimal state estimation in the linear minimum variance
sense. Simultaneously, the algorithm can avoid the hybrid

computation of likelihood function and probability mass,

and distinguish the effects produced by different dimensions

of state. Computer simulations indicate that the DIMM

algorithm gained better track accuracy than the popular IMM

algorithm. Furthermore, the DIMM algorithm is much more

flexible and has less computational complexity than the IMM

algorithmm.

B. Future Works

In future works, the classical IMM algorithm will be

further improved based on information fusion theory. We

will propose various IMM algorithms that are reweighted

by scalars, diagonal matrices, and general matrices based on

various information fusion rules respectively, and analyze the

stability of the various IMM algorithms [15].
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