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Abstract—We show how dynamic price mechanisms
can be used for decomposition and distributed opti-
mization of feedback systems.

A classical method to handle large scale optimiza-
tion problems is dual decomposition, where the cou-
pling between sub-problems is relaxed using Lagrange
multipliers. These variables can be interpreted as
prices in a market mechanism serving to achieve
mutual agreement between solutions of the sub-
problems. In this paper, the same idea is used for
decomposition of feedback systems, with dynamics
in both decision variables and prices. We show how
the prices can be used for a decentralized test, to
verify that the global feedback system stays within
a prespecified distance from optimality.

I. BACKGROUND

Decision making when the decision makers have

access to different information concerning underlying

uncertainties has been studied since the late 1950s

[11], [13]. The subject is sometimes called team theory,
sometimes decentralized or distributed control. The

theory was originally static, but work on dynamic

aspects was initiated by Witsenhausen [19], who also
pointed out a fundamental difficulty in such problems.

Some special types of team problems were solved in

the 1970’s [17], [9], but the problem area has re-

cently gain renewed interest. Spatial invariance was

exploited in [2], [3], conditions for closed loop convexity
were derived in [16] and methods using linear matrix
inequalities were given in [10], [14].

Dual decomposition has been used in large-scale

optimization since the early 1960s [7] and a closely
related tool is Usawa’s algorithm [1]. Decomposition
was applied to linear quadratic optimal control in [18]
and more general methods for decomposition and coor-

dination of dynamic systems were introduced in [12],
[8], [5], [6]. The purpose of this paper is to investigate
how the same methods can be used for analysis and

synthesis of distributed feedback controllers.

In our previous paper [15], we used dual decompo-
sition for iterative decentralized feedback synthesis in

a vehicle formation. Here we generalize the approach

to coupled dynamic systems and combine distributed

performance validation with control synthesis.
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II. DUAL DECOMPOSITION AND THE SADDLE ALGORITHM

The following example explains the idea of dual de-

composition. Suppose that the minimization problem

Ĵ = min
zi
[V1(z1, z2) + V2(z2) + V3(z3, z2)]

is to be solved by three computers working in parallel,

with one computer devoted to each term of the objec-

tive function. If V1, V2 and V3 are all convex [4], the
problem can be rewritten as

Ĵ =max
pi
min
zi,vi

[
V1(z1,v1) + V2(z2) + V3(z3,v3)

+ p1(z2 − v1) + p3(z2 − v3)
]

This decomposes the problem into five separate opti-

mization problems:

Computer 1: minz1,v1
[
V1(z1,v1) − p1v1

]

Computer 2: minz2
[
V2(z2) + (p1 + p3)z2

]

Computer 3: minz3,v3
[
V3(z3,v3) − p3v3

]

Between 1 and 2: maxp1 [p1(z2 − v1)]

Between 2 and 3: maxp3 [p3(z2 − v3)]

The decomposition has a natural interpretation in

economic terms: The three functions V1, V2 and V3
can be interpreted as costs that arise for each of three

agents given certain values of the variables z1, z2 and

z3. When all agents try to minimize their own cost,

they arrive at different opinions about the desirable

value of z2. With introduction of prices, the agents can

pay each other to modify the values and find a common

equilibrium. This is what happens at the saddle point,

where the prices p1, p3 create a consensus among the

three agents about the desirable values of z2.

In game theoretic terms, one can say that the orig-

inal minimization problem is a team problem where

three different agent are acting to optimize the com-

mon objective function Ĵ. After decomposition, we

are instead dealing with non-cooperative game of five

players. In addition to the three computers, there are

two “market makers” who adjust the price variables

p1 and p3 to take advantage of any violations of the

constraints z2 = v1, z2 = v3. A Nash equilibrium of
the five player game corresponds to a global optimum

of the original optimization problem. In fact, also

the search for optimal values of the variables can be

decomposed, using a gradient search:

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB06.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 884



Computer 1:

{
ż1 = −�V1/�z1

v̇1 = −�V1/�z2 + p1

Computer 1 and 2: ṗ1 = z2 − v1

Computer 2: ż2 = −�V2/�z− p1 − p3

Computer 2 and 3: ṗ3 = z2 − v3

Computer 3:

{
ż3 = −�V3/�z3

v̇3 = −�V3/�z2 + p3

A remarkable theorem from 1958 proves global con-

vergence towards the saddle point under general con-

ditions:

Proposition 1 (Arrow, Hurwicz, Usawa [1]):

Assume that V ∈ C1(Rn) is strictly convex with
gradient ∇V , while G and H are positive definite
and R has full row rank. Then, all solutions to

ż = −G
[
(∇V )T − RT p

]
(1)

ṗ = −HRz (2)

converge to the unique saddle point (z∗, p∗) attaining

max
p
min
z

[
V (z) − pTRz

]
(3)

Proof. Let φ(z, p) = V (z) − pTRz. Then

ż = −G
[
∇zφ(z, p)

]T
ṗ = H

[
∇pφ(z, p)

]T

where G and H are positive definite. Define the

Lyapunov function

W(z, p) =
1

2

(
pz− z∗p

2
G−1 + pp− p∗p

2
H−1

)

Then convexity of φ implies that

Ẇ = żTG−1(z− z∗) + ṗ
TH−1(p− p∗)

=
[
∇zφ(z, p)

]
(z∗ − z) +

[
∇pφ(z, p)

]
(p− p∗)

≤
[
φ(z∗, p) − φ(z, p)

]
+

[
φ(z, p) − φ(z, p∗)

]

=
[
φ(z∗, p∗) − φ(z, p∗)

]
+

[
φ(z∗, p) − φ(z∗, p∗)

]
≤ 0

with equality if and only if z = z∗. Hence, by LaSalle’s
theorem, (z(t), p(t)) tends towards M , the largest in-
variant set in the subspace z = z∗. Invariance means
that z is constant. Hence ∇V (z)T = RT p, so also p
is constant and the only point in M is (z∗, p∗). This
completes the proof. 2

Yet another important feature of dual decomposi-

tion is that strict upper and lower bounds on the

optimal cost are obtained even before optimum has

been reached. In particular, if p1, p3, z̄1, z̄2, z̄3 satisfy

the distributed test

V1(z̄1, z̄2) − p1 z̄2 ≤ α min
z1,v1

[V1(z1,v1) − p1v1]

V2(z̄2) + (p1 + p3)z̄2 ≤ α min
z2
[V2(z2) + (p1 + p3)z2]

V3(z̄3, z̄2) − p3 z̄2 ≤ α min
z3,v3

[V3(z3,v3) − p3v3]

for some α ≥ 1, then the globally optimal cost J∗ is

bounded as

J∗ ≤ V1(z̄1, z̄2) + V2(z̄2) + V3(z̄3, z̄2) ≤ α J∗

The first inequality follows trivially from the definition

of J∗. The second follows by adding up the three

previous inequalities and noting that the resulting

right hand side has more freedom in the minimization

than the definition of J∗.

III. DYNAMIC DUAL DECOMPOSITION

With notation pxp2Q = x
TQx, define

{i
(
xi,ui

)
= pxip

2
Qi
+ puip

2
Ri

with Qi,Ri > 0 for i = 1, . . . , J. Consider the stochastic
optimal control problem

Ĵ = min
µ
E

J∑

i=1

{i
(
xi,ui

)
(4)

with minimization over control laws ui(t) = µ i(x(t))
and stationary solutions xi(t) to the state equations

xi(t+ 1) =

J∑

j=1

Ai jx j(t) + Biui(t) +wi(t) (5)

where i = 1, . . . , J and w1, . . . ,wJ are independent

white noise processes. The problem has an associated

graph, with one node for every i and an edge connect-

ing j and i if and only if Ai j and A ji are not both zero.

To decompose this problem, we introduce variables

vi as in [6] and write the state equations as

xi(t+ 1) = Aiixi(t) + Biui(t) + vi(t) +wi(t) (6)

with the additional constraints that

vi(t) =
∑

j ,=i

Ai jx j(t) for all t (7)

The constraints are then relaxed by introduction of cor-

responding Lagrange multipliers in the cost function:

max
p
min

µ,η

J∑

i=1

E
[
{i

(
xi,ui

)
+ 2pTi

(
vi −

∑
j ,=iAi jx j

) ]

= max
p

∑

i

min
µ i,ηi
E

[
{i

(
xi,ui

)
+ 2pTi vi − 2

(∑
j ,=ip

T
j A ji

)
xi

]

︸ ︷︷ ︸
Ji(xi,ui,vi,p)

The prices pi(t) are stationary processes and mini-
mization is over control laws ui = µ i(x), vi = ηi(x).
As in the previous section, the introduction of dual

variables decomposes the optimization problem into
separate criteria for every node in the graph. The
objective of the agent in node i is to minimize

E{i
`
xi,ui

´
| {z }
his own cost

what he expects others to charge him
z }| {
2EpTi vi −2E

“P
j ,=ip

T
j A ji

”
xi

| {z }
what he receives from others

The variable vi can be interpreted as the expected

influence of other agents in the update of xi.
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The following theorem, a standard application of du-

ality theory, shows how bounds on the global distance

from optimality can be obtained from corresponding

bounds for individual agents.

Theorem 1: Consider control laws ūi = −
∑
j L̄i j x̄ j

and corresponding stationary solutions to the state

equations (5). For given white noise processes wi,
suppose there exist price processes pi such that

Ji(x̄i, ūi,
∑
j ,=iAi j x̄ j , p) ≤ α min

µ i,ηi
Ji(xi,ui,vi, p) (8)

when minimizing over control laws

ui(t) = µ i(x(t)) vi(t) = ηi(x(t))

and stationary solutions of (6), (7). Then

Ĵ ≤ E

J∑

i=1

{i
(
x̄(t), ū(t)

)
≤ α Ĵ

Remark 1. The left hand side of (8) can be interpreted
as a the cost for agent i under the actual influence of

other agents, while the minimum on the right hand

side is the cost for agent i under the most desirable

behavior of other agents.

Remark 2. Even if ūi are given by a distributed control

law, i.e. L̄i j ,= 0 only when j and i are neighbors, the
right hand side of (8) still needs to be evaluated for
control laws with full state information. In a future

publication, we hope to state a more advanced version

of the theorem, where each agent instead compares his

current performance with the performance that would

be achievable with access also to the information that

his neighbors now use.

Proof.

Ĵ ≤
∑

i

E{i
(
x̄i, ūi

)

=
∑

i

Ji(x̄, ū,
∑
j ,=iAi j x̄ j , p)

≤ α
∑

i

min
µ i,ηi
Ji(x,u,vi, p)

≤ α min
µ

∑

i

Ji(x,u,
∑
j ,=iAi jx j , p)

= α min
µ

∑

i

E{i
(
xi,ui

)
= α Ĵ

2

For a converse result, existence of prices that allow
for distributed verification of optimality can be proved
by application of a discrete version of Pontryagin’s
maximum principle, introducing pi(t) through the ad-
joint equations

pi(t− 1) =
P
j(Ai j + Bi L̄i j)

T pj(t) − Qixi(t) −
P
j L̄
T
jiR ju j(t)

(9)

However, prices introduced this way will depend non-

causally on the disturbances w, even though the

anti-causal part is irrelevant for the evaluation of

∑
i Ji(xi,ui,vi, p) when xi, ui and vi have causal

w-dependence. As an alternative, we can introduce

causal prices as follows:

Theorem 2: Suppose (6) and (7) have the form

x(t+ 1) = Āx(t) + Bu(t) + v(t) +w(t) (10)

and vi = Ãix. Let A = Ā+ Ã and let P > 0 and L, M
be determined by

pxp2P = min
u

(
pAx + Bup2P + pxp

2
Q + pup

2
R

)
(11)

L = (R + BTPB)−1BTPA (12)

M = P(A− BL) (13)

Given the white noise w, let x̄, ū and p be defined by

x̄(t+ 1) = Ax̄(t) + Bū(t) +w(t) (14)

ū(t) = −Lx̄(t) (15)

p(t) = −Mx̄(t) (16)

Then (8) holds with α = 1 for i = 1, . . . , J.

Proof. Combining (10) and v = Ãx gives

x(t+ 1) = Ax(t) + Bu(t) +w(t)

By standard theory, the LQ optimal control law is

u = −Lx = argmin
u

`
pAx + Bup2P + pxp

2
Q + pup

2
R

´

An alternative way of writing (11) is

pxp2P = max
p
min
u,v

h
pĀx + Bu + vp2P + pxp

2
Q + pup

2
R + 2p

T(v− eAx)
i

where the saddle-point on right hand side is given by

v = Ãx together with (12)-(13) and (15)-(16). Hence
∑

i

Ji(x̄i, ūi, Ãi x̄, p) = min
µ,η

∑

i

Ji(xi,ui,vi, p) (17)

At the same time we have by definition

min
µ i,ηi
Ji(xi,ui,vi, p) ≤ Ji(x̄i, ūi, Ãi x̄, p) (18)

for every i. Combining (17) and (18) gives (8) with
α = 1 for every i and the proof is complete. 2

The section is concluded by an example with four

agents connected in a one-dimensional graph:

Example 1 Theorem 1 and Theorem 2 will here be

used to perform distributed performance validation of

decentralized control laws for the linear system

x(t+ 1) = Ax(t) + u(t) +w(t) (19)

with

A =




0.6 0.1 0 0

0.3 0.6 0.1 0

0 0.3 0.6 0.1

0 0 0.3 0.6
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The decoupled dynamics (10) can be written

x1(t+ 1) = 0.6x1(t) + u1(t) + v1(t) +w1(t)

x2(t+ 1) = 0.6x2(t) + u2(t) + v2(t) +w2(t)

x3(t+ 1) = 0.6x3(t) + u3(t) + v3(t) +w3(t)

x4(t+ 1) = 0.6x4(t) + u4(t) + v4(t) +w4(t)

with the constraints

v1(t) = 0.1x2(t)

v2(t) = 0.3x1(t) + 0.1x3(t)

v3(t) = 0.3x2(t) + 0.1x4(t)

v4(t) = 0.3x3(t)

Consider the optimal control problem

min
µ
E

4∑

i=1

(
pxip

2 + puip
2
)
= max

p
min

µ,η

∑

i

Ji(xi,ui,vi, p)

where

J1(x1,u1,v1, p) = E
`
px1p

2 + pu1p
2 + 2p1v1 − 0.6p2x1

´

J2(x2,u2,v2, p) = E
`
px2p

2 + pu2p
2 + 2p2v2 − (0.2p1 + 0.6p3)x2

´

J3(x3,u3,v3, p) = E
`
px3p

2 + pu3p
2 + 2p2v2 − (0.2p2 + 0.6p4)x3

´

J4(x4,u4,v4, p) = E
`
px4p

2 + pu4p
2 + 2p4v4 − 0.2p3x4

´

is obtained by

2
64
u1(t)
u2(t)
u3(t)
u4(t)

3
75 = −

2
64
0.3420 0.0737 0.0046 0.0002
0.1839 0.3448 0.0736 0.0047
0.0103 0.1840 0.3447 0.0726
0.0008 0.0104 0.1808 0.3296

3
75

| {z }
L

2
64
x1(t)
x2(t)
x3(t)
x4(t)

3
75

2
64
p1(t)
p2(t)
p3(t)
p4(t)

3
75 = −

2
64
0.3420 0.0737 0.0046 0.0002
0.1839 0.3448 0.0736 0.0047
0.0103 0.1840 0.3447 0.0726
0.0008 0.0104 0.1808 0.3296

3
75

| {z }
M

2
64
x1(t)
x2(t)
x3(t)
x4(t)

3
75

(Notice that L = M when R = BT .) The corresponding
stationary node costs are

J∗
1 = 1.3145

J∗
2 = 1.2705

J∗
3 = 1.2674

J∗
4 = 1.1510

with the total cost

J∗ = E

4∑

i=1

(
pxip

2 + puip
2
)
= 5.0033

The diagonal dominance suggests that L could be

approximated by

L̄ =




0.3420 0 0 0

0 0.3448 0 0

0 0 0.3447 0

0 0 0 0.3296




without too much deviation from optimality. The ac-

curacy of this approximation will now be evaluated

using the distributed test of Theorem 1 with prices

generated by the same approximation p = M̄ x, M̄ = L̄.

Running (19) with the control law u = −L̄x gives
the solution (x̄, ū) with the total cost

E

4∑

i=1

(
px̄i(t)p

2 + pūi(t)p
2
)
= 5.3349

Define p̄ = −M̄ x̄ = ū. The costs in the individual
nodes then become

J1(x̄1, ū1, 0.1x̄2, p̄) = 1.2375

J2(x̄2, ū2, 0.3x̄1(t) + 0.2x̄3(t), p̄) = 1.3710

J3(x̄3, ū3, 0.2x̄2(t) + 0.3x̄4(t), p̄) = 1.3862

J4(x̄4, ū4, 0.1x̄3, p̄) = 1.3403

It should be noted that M̄ only affects the individual

costs, not the total. Moreover, the total cost always

grows with deviations from the optimal control law, but

this is not necessarily the case with individual costs.

It remains to find α such that (8) holds for all i. In
particular, for i = 1 the value

J1(x̄1, ū1, 0.1x̄2, p̄) = 1.2375

should be compared with

min
µ1,η1

J1(x1,u1,v1, p̄)

when minimizing over u1 = µ1(x), v1 = η1(x) and
stationary solutions to

x1(t+ 1) = A11x1(t) + u1(t) + v1(t) +w1(t)

For each i, a standard LQG optimization gives the

appropriate number for comparison. Writing (8) for all
four nodes gives

1.2375 ≤ 1.2116α

1.3710 ≤ 1.1886α

1.3862 ≤ 1.1853α

1.3403 ≤ 1.1723α

Hence the distributed condition (8) of Theorem 1 holds
with α = 1.3862

1.1853
= 1.17 the theorem concludes that the

control performance of the decentralized controller



u1(t)
u2(t)
u3(t)
u4(t)


 = −L̄x(t) =




−0.3420x1(t)
−0.3448x2(t)
−0.3447x3(t)
−0.3296x4(t)




is at most 17% worse than optimal. Not surprisingly,

the bound is conservative. Comparing the actual total

costs 5.3349
5.0033

= 1.0663 shows that the actual deviation
from optimality is only 6.6%.
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Repeating the same calculations for the control law
2
64
u1(t)
u2(t)
u3(t)
u4(t)

3
75 = −

2
64
0.3420 0.0737 0 0
0.1839 0.3448 0.0736 0
0 0.1840 0.3447 0.0726
0 0 0.1808 0.3296

3
75

2
64
x1(t)
x2(t)
x3(t)
x4(t)

3
75

and the corresponding price generator M̄ verifies that

the deviation from optimality is less than 1%. 2

IV. DISTRIBUTED GRADIENT ITERATIONS FOR SYNTHESIS

Given the successful application of dual decompo-

sition for analysis of optimal control problems, it is

natural to consider also control synthesis. Below, we

will use inspiration from Proposition 1 and Takahara’s

algorithm [18], [6] to sketch how distributed synthesis
of feedback controllers can be done in analogy with the

classical algorithms for distributed optimization.

In section III, the stochastic linear quadratic control

problem was rewritten as

max
p

∑

i

min
µ i,ηi
E

[
{i

(
xi,ui,vi

)
+ 2pTi vi − 2

(∑
j ,=ip

T
j A ji

)
xi

]

where the optimal vi is given by (7). By Pontryagin’s
maximum principle, optimal prices pi are generated by

the adjoint equation (9) and the optimal control law
ui = −

∑
jLi j x j must minimize the Hamiltonian

∑

i

E
[
{i

(
xi,−

∑
jLi j x j ,vi

)
− 2pTi

(∑
jAi jx j − BiLi j x j

)]

Differentiating with respect to Li j gives the gradient

∇i j = −2RiE(uix
T
j ) + 2B

T
i E(pix j) (20)

Hence a distributed gradient algorithm can be con-

structed as follows:

Algorithm 1.

1) Run the system with u = −Lkx for t = 1, . . . ,N
to let each node i compute

∑N
t=1 ui(t)x j(t)

T/N as
an estimate for E(uix

T
j ).

2) Using data for t = 1, . . . ,N compute pi(t) back-
words in time using the adjoint equation (9),
then

∑N
t=1 pi(t)x j(t)

T/N to estimate E(pix
T
j ).

3) Estimate the gradient ∇i j using (20) and let
Lk+1i j = Lki j + γ∇i j for some appropriate step
length γ .

4) If the gradient is smaller than some treshhold,
then stop, else restart from 1).

Example 2 The previous example is reconsidered to

iteratively update control laws of the form



u1(t)
u2(t)
u3(t)
u4(t)


 =




l11 l12 0 0

l21 l22 l23 0

0 l32 l33 l34
0 0 l43 l44







x1(t)
x2(t)
x3(t)
x4(t)




Starting from L0 = 0 with γ = 0.02 gives

L1 =

2
64
0.24 0.32 0 0
0.27 0.46 0.43 0
0 0.39 0.46 0.32
0 0 0.27 0.24

3
75 L2 =

2
64
0.26 0.29 0 0
0.26 0.45 0.39 0
0 0.36 0.45 0.29
0 0 0.26 0.25

3
75

L3 =

2
64
0.26 0.27 0 0
0.25 0.44 0.36 0
0 0.34 0.44 0.27
0 0 0.25 0.26

3
75 L4 =

2
64
0.27 0.25 0 0
0.25 0.43 0.33 0
0 0.33 0.43 0.25
0 0 0.24 0.27

3
75

which asymptotically approaches a tridiagonal ap-

proximation of the LQ optimal control law. Further

analysis of such iterations will be given in a future

publication.

Matlab scripts for the examples of this paper

are available from the web site of this paper at

http://www.control.lth.se/publications. 2
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