

Abstract—For the congestion problems in high-speed

networks, a multi-agent flow controller (MFC) based on

Q-learning algorithm conjunction with the theory of Nash

equilibrium is proposed. Because of the uncertainties and highly

time-varying, it is not easy to accurately obtain the complete

information for high-speed networks, especially for the

multi-bottleneck case. The Nash Q-learning algorithm, which is

independent of mathematic model, shows the particular

superiority in high-speed networks. It obtains the Nash Q-values

through trial-and-error and interaction with the network

environment to improve its behavior policy. By means of

learning procedures, MFCs can learn to take the best actions to

regulate source flow with the features of high throughput and

low packet loss ratio. Simulation results show that the proposed

method can promote the performance of the networks and avoid

the occurrence of congestion effectively.

I. INTRODUCTION

HE growing interest on congestion problems in high-

speed networks arise from the control of sending rates of

traffic sources. Congestion problems result from a mismatch

of offered load and available link bandwidth between network

nodes. Such problems can cause high packet loss ratio (PLR)

and long delays, and can even break down the entire system

because of congestion collapse. Therefore, high-speed

networks must have an applicable flow control scheme not

only to guarantee the quality of service (QoS) for the existing

links but also to achieve high system utilization.

The flow control of high-speed networks is difficult owing

to the uncertainties and highly time-varying of different traffic

patterns. The flow control mainly checks the availability of

bandwidth and buffer space necessary to guarantee the

requested QoS. A major problem here is the lack of

information related to the characteristics of source flow.

Devising a mathematical model for source flow is the

fundamental issue. However, it has been revealed to be a very

difficult task, especially for broadband sources. In order to

overcome the above-mentioned difficulties, the control

schemes with learning capability have been employed in flow

control [1, 2]. The basic advantage is the ability to learn the

This work is supported by the National Natural Science Foundation of

China under Grant 60274009 and Specialized Research Fund for the

Doctoral Program of Higher Education under Grant20020145007.

Yuanwei Jing, Xin Li, Yan Zheng, and Siying Zhang are with Faculty of

Information Science and Engineering, Northeastern University, Shenyang,

Liaoning, 110004, P.R. of China (e-mail: lixin820106@126.com).

Georgi M. Dimirovski is with Faculty of Engineering, Computer Engg.

Dept, Dogus University of Istanbul, TR-347222 Istanbul, Rep. of Turkey

(e-mail: gdimirovski@dogus.edu.tr).

source traffic characteristics from sufficiently big and

representative data samples. But it is obvious that the accurate

data, needed to train the parameters, are hard to get for the

disturbance and error in instrument measuring.

In this case, the reinforcement learning shows its particular

superiority, which just needs very simple information such as

estimable and critical information, “right” or “wrong” [3]. It is

independent of mathematic model and priori-knowledge of

system. It obtains the knowledge through trial-and-error and

interaction with environment to improve its behavior policy.

So it has the ability of self-learning. Because of the advantages

above, it has been played a very important role in the flow

control in high-speed networks [4-7]. The Q-learning of

reinforcement learning is easy for application and has a firm

foundation in the theory. In [8], we combined the Q-learning

and simulated annealing to solve the problems of ABR flow

control in ATM networks. In [9], authors extended the

environment to multi-bottleneck network and propose a

cooperative multi-agent congestion controller. But, the

convergence of the controller was not demonstrated.

In this paper, based on the Q-learning algorithm, a

multi-agent flow controller (MFC) for high-speed networks is

proposed. The fuzzy inference system is adopted to generate

the reward signal in Q-learning. In the controller proposed,

each learning agent in bottleneck node has a separate memory

structure to explicitly implement its own objectives to achieve

Nash equilibrium Q-values. The Nash equilibrium solution

serves as the optimal sending rate of traffic sources. By means

of learning procedures, the proposed controller adjusts the

source sending rate to the optimal value to reduce the average

length of queue in the buffer. The convergence of the

proposed learning algorithm is demonstrated and some

simulation results show that the proposed method can avoid

the occurrence of congestion effectively with the features of

high throughput, low PLR, low end-to-end delay and high

utilization.

II. DESIGN OF CONTROLLER

A. Architecture of MFC

In the AIMD case, the agent senses the network system’s

states and makes a decision based on a rate control scheme to

avoid packet losses and increase the utilization of

multiplexer’s output bandwidth [10]. However, it is hard to

achieve high system performance by reactive AIMD scheme

because of the propagation delay and the dynamic nature of

Nash Q-Learning Multi-Agent Flow Control for High-Speed

Networks

Yuanwei Jing, Xin Li, Georgi M. Dimirovski, Senior Member, IEEE, Yan Zheng, and Siying Zhang

T

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB20.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3304

high-speed networks. Whereas the proposed MFC can behave

optimally only rely on the interaction with unknown

environment and provide the best action for a given state. The

architecture of MFC in n node case is shown in Fig.1.

node 1

buffer 1

MFC 1

2r 3r nr"

1r

#

Traffic

sources

1

t
a

(q,u)

node 2

buffer 2

MFC 2

1r 3r nr"

2r

#

T raffic

sources

2

t
a

(q,u)

node n

buffer n

MFC n

1r 2r 1nr −
"

nr

#

T raffic

sources

n

t
a

(q,u)

"

"

Fig.1. Architecture of the proposed MFC in n node case

The high-speed network has n bottleneck nodes, with

controllable sources. Each MFC has its own state variables (S),

which is composed of the current queue length q , the current

rate of queue length change q� , and the current rate of source

sending rate change u� irrespective of other MFCs in the

network. The output of each MFC is the feedback signal a to

the traffic sources, which is the ratio of the sending rate. It

determines the sending rate u of traffic sources. However, all

agents have incomplete but perfect information, meaning

agents do not know other agents’ reward functions and state

transition probabilities, but they can observe other agents’

immediate rewards and actions taken previously. The sample

for each MFC is same. By way of multi-agent strategy-search

learning, the proposed MFC could converge to Nash

equilibrium. In contrast to single-agent flow controller (SFC),

MFC uses joint-action learning algorithms to learn values for

joint actions to avoid the bias in individual action decision.

The sending rate is controlled by the feedback control

signal ta periodically. The controlled sending rate is defined

by the equation

 ,t tu a FL= (1)

where [0.2,1.0]ta ∈ is the feedback signal by the flow

controller, F is a relative value in the ratio of source offered

load to the available output bit rate, L denotes the outgoing

rate of link, and [0.2 ,]tu FL FL∈ ⋅ is the controlled sending

rate at sample time t .

B. Reward Signal

Q-learning is to learn what to do and how to map situations

to actions, so as to maximize the reward signal r . The reward

r is the only information for the controller to judge whether

the sending rate taken is good or bad, so it is vital to choose an

appropriate r . r is in the range [0,1] , the larger r is, the

better control affects.

In high-speed networks, the fuzzy reward evaluator (FRE)

[11] evaluates the reward for environmental states. FRE relies

on three parameters (), ,q q u� � to generate a reward or a

punishment for the action (the ratio of the source sending rate)

in a state. If the state of the network is enhanced toward

positive evolution, the action will be rewarded; otherwise

punished.

The term set should be determined at an approximate level

of granularity to describe the values of linguistic variables.

For queue length, the term set is defined as f(q)={Low (L),

Medium (M), High (H)}, which is used to describe the degree

of queue lengths. The term set for the rate of queue length

change is defined as f(q�)={Decrease (D), Increase (I)}, which

describes the rate of queue length change as “Decrease” or

“Increase”. The term set for the rate of source transmission

rate change is defined as f(u�)={Negative (N), Positive (P)},

which describes the rate of source transmission rate change as

“Negative” or “Positive”. In order to provide a precise graded

reward in various states, the term set for reward is defined as

f(yr)={Penalty More (PM), Penalty Slightly (PS), No Reward

(NR), Reward Slightly (RS), Reward More (RM)}. The

membership functions (MFs) of the term set are shown in

Fig.2.

ry

PMµ RMµRSµNRµPSµ

(d)
0PM 0RM0RS0NR0PS

1

1

1

q�

u�

q

()L qµ ()M qµ ()H qµ ()D qµ � ()I qµ �

()P uµ �()N uµ �

(a) (b)

(c)

1a
M

bL aM
1a

H
1bL

b
M

aH
1b

M
b

H
a

L
a

D−
b

D−
1aI−

1bD
aI

b
I

a
N−

b
N−

1b
N

a
P

b
P

1aP−

Fig. 2. MFs of the term set (a) f(q), (b) f(q�), (c) f(u�), and (d) f(yr)

The fuzzy rule base is a reward knowledge base,

characterized by a set of linguistic statements in the form of

“if-then” rules that describe the fuzzy logic relationship

between the input variables and the reward (penalty) yr.

According to fuzzy set theory, the fuzzy rule base forms a

fuzzy set with dimensions 3×2×2=12. Table I shows a total of

twelve inference rules in the fuzzy rule base under various

system states. For example, rule 1 can be linguistically started

as “if the queue length is low, the queue length change rate is

decreased, and the transmission change rate is negative, then

give more penalty.”
TABLE I

 RULE TABLE OF FRE

Rule q q� u� yr Rule q q� u� yr

1 L D N PM 7 M I N RS

2 L D P PS 8 M I P RM

3 L I N NR 9 H D N PS

4 L I P NR 10 H D P PM

5 M D N RS 11 H I N PS

6 M D P PM 12 H I P PM

The proposed FRE adopts the max-min inference method

for the inference engine because it is designed for real-time

operation.

3305

C. The Nash Q-learning Multi-Agent Flow Controller

Q-learning is a value learning version of model-free

reinforcement learning that learns utility values (Q-values) of

state and action pairs [12]. The objective of Q-learning is to

estimate Q-values for an optimal strategy. The proposed flow

controller in each bottleneck node acts as a learning agent.

During the learning process, an agent uses its experience to

improve its estimate by blending new information into its

prior experience [13].

The difference between single-agent and multi-agent

system exists in the environments. In multi-agent systems,

other adapting agents make the environment no longer

stationary and violate the Markov property that traditional

single-agent behavior learning relies upon. Based on the

framework of stochastic games, the single-agent Q-learning is

extended to multi-agent systems.

In general form, an n-agent is defined by a tuple

<n,S,A
1
,…,A

n
,r

1
,…,r

n
,p>, where n is the number of agents, in

another word the number of bottleneck nodes in high-speed

networks; S is a set of discrete state space of high-speed

networks composed of (), ,q q u� � ; A
1
,…,A

n
 is a collection of

actions (feedback control signal to traffic sources) available to

each agent (A
i
 is the discrete action space available to agent i);

ir is the reward function for agent i; p is the transition

probability map.

In Nash Q-learning flow controller, the objective of each

agent is to maximize the discounted sum of rewards, with

discount factor [0,1)β ∈ . Let �
i
 be the action strategy of agent

i. For a given initial state s, agent i tries to maximize

() ()1 1

0
0

, , , , , , .i n t i n

t
t

v s E r s sπ π β π π
∞

=

= =¦" " (2)

A strategy ()0 , , ,tπ π π= " " is defined over the whole

course of learning process. �t is called the decision rule at

sample time t.

The Nash equilibrium solution is a tuple of n strategies
1(, ,)nπ π∗ ∗" such that for all Ss ∈ and i iπ ∈Π ,

() ()1 1 1 1
, , , , , , , , , ,

i n i i i i n
v s v sπ π π π π π π− +

∗ ∗ ∗ ∗ ∗ ∗≥" " " (3)

where �
i
 is the set of strategies available to agent i. The

definition of Nash equilibrium requires that each agent’s

strategy is a best response to the other’s strategy.

The Nash Q-function for the ith agent is defined over

(s,a
1
,…,a

n
) as the sum of its current reward plus its future

rewards when all agents follow a joint Nash equilibrium

strategy. That is,

() () () ()1 1 1 1, , , , , , , , , , , ,i n i n n i n

s S

Q s a a r s a a p s s a a v sβ π π∗ ∗ ∗
′∈

′ ′= + ¦" " " " (4)

where 1(, ,)nπ π∗ ∗" is the joint Nash equilibrium strategy,

r
i
(s,a

1
,…,a

n
) is agent i’s one-period reward in state s under

joint action (a
1
,…,a

n
), 1(, , ,)i nv s π π∗ ∗

′ " is agent i’s total

discounted reward over infinite periods starting from state s´

given that agents follow the equilibrium strategies.

The learning agent, indexed by i, learns about its Q-values

by forming an arbitrary guess at time 0. One simple guess

would be letting 1
0 (, , ,) 0
i n

Q s a a =" for all ,s S∈

1 1
, ,

n n
a A a A∈ ∈" . At each time t, agent i observes the current

state, and takes its action. After that, it observes its own

reward, actions taken by all other agents, others’ rewards, and

the new state s´. It then calculates a Nash equilibrium

�
1
(s´)…�

n
(s´) for 1

((), , ())
n

t tQ s Q s′ ′" , and updates its Q-values

according to

() () () ()1 1

1 , , , 1 , , ,
i n i n i i

t t t t t tQ s a a Q s a a r NashQ sα α β+
′ª º= − + +¬ ¼" " (5)

where [0,1)β ∈ is the discount factor, if β is large, systems

will easily tend to follow the current strategy so that it will not

have more opportunities to find a better strategy; if β is small,

systems will not easily follow a strategy so that it will do

explorations all the time. This will cause the convergence rate

to be slow. On the other hand, [0,1)α ∈ is the learning rate.

The convergence rate is determined by the value of .. If . is

small, the convergence rate will be slow but it will easily tend

to stabilize. If . is large, the convergence rate will be fast but it

will not easily tend to stabilize.

The ()i

tNashQ s′ is defined as

() () () ()1 .i n i
t tNashQ s s s Q sπ π′ ′ ′ ′= " (6)

In order to calculate the Nash equilibrium (�
1
(s´)…�

n
(s´)),

agent i would need to know 1(), , ()n

t t
Q s Q s′ ′" . Information

about other agents’ Q-values is not given, so agent i must learn

about them too. Agent i forms conjectures about those

Q-functions at the beginning of learning, for example,
1

0
(, , ,) 0j nQ s a a =" for all j and all s,a

1
,…,a

n
. As the learning

process, agent i observes other agents’ immediate rewards and

previous actions. That information can then be used to update

agent i’s conjectures on other agents’ Q-functions. Agent i

updates its beliefs about agent j’s Q-function according to the

same updating rule (5) it applies to its own,

() () () ()1 1

1
, , , 1 , , , .j n j n j j

t t t t t t
Q s a a Q s a a r NashQ sα α β+

′ª º= − + +¬ ¼" " (7)

Note that .t=0 for 1 1(, , ,) (, , ,)n n

t t ts a a s a a≠" " . Therefore (7)

does not update all the entries in the Q-functions. It updates

only the entry corresponding to the current state and the

actions chosen by the agents.

D. Convergence of the Proposed Controller

In this section, we would like to demonstrate the

convergence of i

t
Q to the Nash equilibrium iQ∗ for agent i.

The value of iQ∗ is determined by the joint strategies of all

agents. That means the agent has to learn Q-values of all the

agents and derive strategies from them. The learning objective

is 1(, ,)nQ Q∗ ∗" , and we have to show the convergence of
1(, ,)n
t tQ Q" to 1(, ,)nQ Q∗ ∗" .

The convergence proof requires a basic assumption that

every state and action should be visited infinitely often [14].

The proof relies on the following lemma (Corollary 5 in [15]),

which establishes the convergence of a general Q-learning

process updated by a pseudo-contraction operator. Let Q be

the space of all Q functions.

Lemma. If the mapping Pt:Q:Q satisfies

t t t
PQ PQ Q Qγ λ∗ ∗− ≤ − + (8)

for all QQ ∈ and []tQ E PQ∗ ∗= , where 0<�<1 and �t�0

3306

converging to zero with probability 1, then the iteration

defined by

() []1
1

t t t t t t
Q Q PQα α+ = − + (9)

converges to Q∗ with probability 1.

If the Nash optimal Q-value Q∗ matches the lemma with an

existing operator Pt, then we can have the conclusion that the

iteration converges to Nash optimal Q-value Q∗ with

probability 1.

For Nash Q-learning, we define the operator Pt as follows.

Let Q=(Q
1
,…,Q

n
), where Q

k k
Q ∈ , for k=1,…,n, and

Q=Q
1
×…×Q

n
. 1(, ,)n

t t t
PQ PQ PQ= " , where

() () () () ()1 1 1, , , , , , .k n k n n k

t tPQ s a a r s a a s s Q sβπ π′ ′ ′= +" " " (10)

Let 1(, ,)k nv s π π∗ ∗′ " is agent k’s Nash equilibrium reward for
1(() ())nQ s Q s∗ ∗′ ′" , and 1(() ())ns sπ π∗ ∗′ ′" is the Nash equilibrium

solution, we have

()
() () ()

() () () () ()

() () () () ()()

()

1

1 1 1

1 1 1

1 1 1

1

, , ,

 , , , , , , , ,

 , , , , , ,

 , , , , , ,

 = , , ,

k n

k n n k n

s S

k n n n k

s S

n k n n k

s S

k k n
t

Q s a a

r s a a p s s a a v s

r s a a p s s a a s s Q s

p s s a a r s a a s s Q s

E P Q s a a

β π π

β π π

βπ π

∗

∗ ∗
′∈

∗ ∗ ∗
′∈

∗ ∗ ∗
′∈

∗

′ ′= +

′ ′ ′ ′= +

′ ′ ′ ′= +

ª º
¬ ¼

¦

¦

¦

"

" " "

" " "

" " "

"

for all s,a
1
,…,a

n
. Thus []k k k

tQ E P Q∗ ∗= . Since this holds for all k,

[]tE PQ Q∗ ∗= .

During the learning process of MFC in high-speed

networks, every stage game 1((), , ())n

t t
Q s Q s" , for all t and s,

holds Nash equilibrium, and agents’ reward in this

equilibrium are used to update their Q-functions. In the Nash

equilibrium, each agent effectively holds a correct expectation

about other agents’ behaviors, and acts rationally with respect

to this expectation. Acting rationally means the agent’s

strategy is a best response to the others’ strategies. Any

deviation would make that agent worse off. That is,

() () () () () ()ˆ ,
k k j k k j

s s Q s s s Q sπ π π π− −≥ (11)

() () () () () ()ˆ ,
k k j k k j

s s Q s s s Q sπ π π π− −≤ (12)

for all k, and all ˆ (A)
k kπ π∈ , ˆ (A)

k kπ π− −∈ . Where

() () () () ()1 1 1
 .

k k k n
s s s s sπ π π π π− − += " " (13)

For all ˆ, QQ Q ∈ we have

()

() ()
()

() () () () () ()

,

1 1

ˆ

ˆ max

ˆ max max

ˆˆ ˆ = max max

t t

j j

t t
j j

j j

t t
j s j s

n k n k

j s

PQ PQ

PQ PQ

PQ s PQ s

s s Q s s s Q sβπ π βπ π

−

= −

= −

−" "

() () () () () ()ˆˆ ˆ max max
k k k k k k

j s
s s Q s s s Q sβ π π π π− −= − (14)

Based on the property of Nash equilibrium [16], if

() () () () () ()ˆˆ ˆk k j k k j
s s Q s s s Q sπ π π π− −≥ , we have

() () () () () ()

() () () () () ()

ˆˆ ˆ

ˆˆ

k k k k k k

k k k k k k

s s Q s s s Q s

s s Q s s s Q s

π π π π

π π π π

− −

− −

−

≤ −

() () () () () ()

() ()

ˆˆ ˆ

ˆ

k k k k k k

k k

s s Q s s s Q s

Q s Q s

π π π π− −≤ −

≤ −

where

() () () ()
1

1 1

, ,

ˆ ˆmax , , , , , , .
n

k k k n k n

a a

Q s Q s Q s a a Q s a a− = −
"

" " (15)

If () () () () () ()ˆˆ ˆk k j k k j
s s Q s s s Q sπ π π π− −≤ , proof is similar.

So we have

() () () () () () () ()ˆ ˆˆ ˆ .k k k k k k k k
s s Q s s s Q s Q s Q sπ π π π− −− ≤ − (16)

Combining (14) and (16), we have

() ()

ˆ

ˆ max max

ˆ

t t

k k

j s

PQ PQ

Q s Q s

Q Q

β

β

−

≤ −

= −

Because ˆ QQ ∈ , so the Nash optimal Q-value Q∗ satisfies

(8).

Above all, we have the result that the proposed Nash

Q-learning process converges to Nash Q-values.

III. SIMULATION AND COMPARISON

We assume that all packets are with a fixed length of

1000bytes, and adopt a finite buffer length of 20packets in

each node. On the other hand, the offered loading of the

simulation varies between 0.6 and 1.2 corresponding to the

systems’ dynamics; therefore, higher loading results in

heavier traffic and vice versa.

From the knowledge of evaluating system performance, the

parameters of the membership functions for input linguistic

variables in FRE are selected as follows. For ()L qµ , ()M qµ ,

and ()H qµ , 0aL = , 6bL = ,
1

10bL = ,
1

2aM = , 8aM = ,

12bM = ,
1

20bM = ,
1

9aH = , 14aH = , 20bH = , and
1

20bH = ;

for ()D qµ � and ()I qµ � , 4aD = ,
1

2b bD D= = ,
1

2a aI I= = , and

4bI = ; for ()N uµ � and ()P uµ � , 0.8aN = , 0.4bN = ,
1

0.2bN = ,

1
0.2aP = , 0.4aP = , and 0.8bP = . Also, the parameters of the

membership functions for output reward linguistic variables

are given by 0 0PM = , 0 0.25PS = , 0 0.5NR = , 0 0.75RS = , and

0 1RM = .

In the simulation, three schemes of flow control agent,

AIMD, MFC with general Q-learning algorithm and Nash

Q-learning algorithm proposed are implemented individually

in high-speed networks. The first scheme AIMD increases its

sending rate by a fixed increment (0.11) if the queue length is

less than the predefined threshold; otherwise the sending rates

are decreased by a multiple of 0.8 of the previous sending rate

to avoid congestion. Finally, for the second and third schemes,

the sending rates are controlled by the feedback control signal

periodically. For assuring MFCs proposed applied to

high-speed networks to be achievable and feasible,

comparisons among those schemes are analyzed. Four

measures, throughput, PLR, buffer utilization and packets’

mean delay, are used as the performance indices. The status of

the input multiplexer’s buffer in each node reflects the degree

of congestion resulting in possible packet losses. For

3307

simplicity, packets’ mean delay only takes into consideration

the processing time at each node plus time needed to transmit

packets. The details are delineated in the following.

Sw1

MFC1

Sw2

MFC2

Sw3

MFC3

Sw4

S1

S2

S3

S4

D6

D2

D5

D3

D4S6

D1S5

L1 L2 L3

L1:80Mbps
L2:80Mbps
L3:160Mbps

Fig.3. The configuration of high-speed networks with four switches

The configuration of high-speed networks with multi-node,

as shown in Fig.3, is composed of four switches Sw1, Sw2,

Sw3, and Sw4 in cascade. Three nodes Sw1, Sw2, and Sw3

are implemented with its own control agent, respectively;

hence, the sending rates of sources S1 and S2, S3 and S4, and

S5 and S6 are regulated by MFC1, MFC2 and MFC3,

respectively. Consequently, three agents jointly interact to

reach a common goal with high system performance. For case

of three schemes, each node has the same training loading

pattern, which is generated by a shuffle of loading pattern (0.6,

0.7, 0.8, 0.9, 1.0, 1.1, 1.2), each of which lasts for 0.6s; i.e., a

training epoch will last for a period of 4.2s.

We take Sw2 as an example to consider the performance of

the flow control schemes adopted in simulation. Fig.5 shows

the throughputs of Sw2 controlled by three different kinds of

control agents individually. Analogously, because of the

reactive control, the throughput of nodes for the AIMD

method decrease seriously at loading of about 0.9. Conversely,

the MFC methods remain a higher throughput even though the

offered loading is over 1.0. Fig.4-7 shows the PLR, buffer

utilization and mean delay of Sw2 controlled by four different

kinds of control agents individually. It is obvious that the PLR

of no control is high, even though we adopt the AIMD method.

However, using the MFC with Nash Q-learning method can

decrease the PLR enormously with high throughput and low

mean delay. The MFC with Nash Q-learning algorithm has a

better performance over MFC with general Q-learning in PLR,

buffer utilization and mean delay. It demonstrates once again

that MFC with Nash Q-learning possesses the ability to

predict the network behavior in advance.

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3
x 10

5

offered loading

th
ro

u
g

h
p

u
t

Sw2

AIMD

MFC with General Q-learning

MFC with Nash Q-learning

Fig.4. Throughput versus various offered loading at Sw2

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10

-8

10
-6

10
-4

10
-2

offered loading

p
a
c
k

e
t

lo
ss

 r
a
ti

o

Sw2

No Control

AIMD

MFC with General Q-learning

MFC with Nash Q-learning

Fig.5. PLR versus various offered loading at Sw2

0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

offered loading
m

e
a
n

 b
u

ff
e
r

(p
a
c
k

e
t)

Sw2

No Control

AIMD

MFC with General Q-learning

MFC with Nash Q-learning

Fig.6. Mean buffer versus various offered loading at Sw2

0.6 0.7 0.8 0.9 1 1.1 1.2

10
-4

10
-3

10
-2

10
-1

offered loading

m
e
a
n

 d
e
la

y
 (

se
c
)

Sw2

No Control

AIMD

MFC with General Q-learning

MFC with Nash Q-learning

Fig.7. Mean delay versus various offered loading at Sw2

IV. CONCLUSION

In high-speed networks, most packet losses result from the

dropping of packets owing to congested nodes. The reactive

scheme AIMD could not accurately respond to a time-varying

environment due to the lack of prediction capability. In

contrast, the Nash Q-learning algorithm of reinforcement

learning can cope with the prediction problems. The proposed

MFC, which is applicable to a network of multi-bottleneck,

can respond to the networks’ dynamics. Through a proper

training process, MFC can learn empirically without prior

information on the environmental dynamics. The sending rate

of traffic sources can be determined by the well-trained Nash

Q-values and the convergence is demonstrated. Simulation

results have shown that the proposed method can increase the

utilization of the buffer and decrease PLR and delay

3308

simultaneously. Therefore, MFC with Nash Q-learning

algorithm not only guarantees low PLR for the existing links,

but also achieves high system utilization.

REFERENCES

[1] R. G. Cheng, C. J. Chang and L. F. Lin, “A QoS-provisioning neural

fuzzy connection admission controller for multimedia high-speed

networks,” IEEE/ACM Transactions on Networking, vol. 7, no. 1, pp.

111-121, 1999.

[2] M. Lestas, A. Pitsillides, P. Ioannou, and G. Hadjipollas, “Adaptive

congestion protocol: a congestion control protocol with learning

capability,” Computer Networks: The International Journal of

Computer and Telecommunications Networking, vol. 51, no. 13. pp.

3773-3798, Sep. 2007.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning an Introduction.

Cambridge, MA.: MIT Press, 1998.

[4] A. Chatovich, S. Okug, and G. Dundar, “Hierarchical neuro-fuzzy call

admission controller for ATM networks,” Computer Communications,

vol. 24, no. 11, pp. 1031-1044, Jun. 2001.

[5] M. C. Hsiao, S. W. Tan, K. S. Hwang, and C. S. Wu, “A reinforcement

learning approach to congestion control of high-speed multimedia

networks,” Cybernetics and Systems, vol. 36, no. 2, pp. 181-202, Jan.

2005.

[6] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu, “Cooperative

multiagent congestion control for high-speed networks,” IEEE

Transactions on System, Man, and Cybernetics-Part B: Cybernetics,

vol. 35, no. 2, pp. 255-268, Apr. 2005.

[7] X. Li, X. J. Shen, Y. W. Jing, and S. Y. Zhang, “Simulated

Annealing-Reinforcement Learning Algorithm for ABR Traffic

Control of ATM Networks,” in Proc. of the46th IEEE Conf. on

Decision and Control, New Orleans, LA, USA, Dec. 2007, pp.

5716-5721.

[8] X. Li, Y. C. Zhou, G. M. Dimirovski, and Y. W. Jing, “Simulated

Annealing Q-Learning Algorithm for ABR Traffic Control of ATM

Networks,” in Proc. of the 2008 American Control Conf., Seattle,

Washington, USA, Jun. 2008.

[9] K. S. Hwang, S. W. Tan, M. C. Hsiao, and C. S. Wu, “Cooperative

multiagent congestion control for high-speed networks,” IEEE

Transactions on System, Man, and Cybernetics-Part B: Cybernetics,

vol. 35, no. 2, pp. 255-268, Apr. 2005.

[10] P. Gevros, J. Crowcoft, P. Kirstein, and S. Bhatti, “Congestion control

mechanisms and the best effort service model,” IEEE Network, vol. 15,

no. 3, pp. 16-26, May/Jun. 2001.

[11] M. L. Littman, “Value-function reinforcement learning in Markov

games,” Journal of Cognitive System Research, vol. 2, no. 1, pp. 55-66,

2001.

[12] L. P. Kaelbling, M. L. Littman and A. W. Moore, “Reinforcement

learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,

no. 1, pp. 237-285, 1996.

[13] C. J. C. H. Watkins, and P. Dayan, “Q-learning,” Machine Learning,

vol. 8, no. 3, pp. 279-292, May 1992.

[14] J. Hu, and M. P. Wellman, “Nash Q-learning for general-sum stochastic

games,” Journal of Machine Learning Research, vol. 4, pp. 1039-1069,

Nov. 2003.

[15] C. Szepesvari, and M. L. Littman, “A unified analysis of

value-function-based reinforcement-learning algorithms,” Neural

Computation, vol. 11, no. 8, pp. 2017-2060, Nov. 1999.

[16] J. F. Nash, “Non-cooperative games,”, Annals of Mathematics, vol. 54,

no. 2, pp. 286-295, Sep. 1951.

3309

