
  

  

Abstract—For the congestion problems in high-speed 

networks, a multi-agent flow controller (MFC) based on 

Q-learning algorithm conjunction with the theory of Nash 

equilibrium is proposed. Because of the uncertainties and highly 

time-varying, it is not easy to accurately obtain the complete 

information for high-speed networks, especially for the 

multi-bottleneck case. The Nash Q-learning algorithm, which is 

independent of mathematic model, shows the particular 

superiority in high-speed networks. It obtains the Nash Q-values 

through trial-and-error and interaction with the network 

environment to improve its behavior policy. By means of 

learning procedures, MFCs can learn to take the best actions to 

regulate source flow with the features of high throughput and 

low packet loss ratio. Simulation results show that the proposed 

method can promote the performance of the networks and avoid 

the occurrence of congestion effectively. 

I. INTRODUCTION 

HE growing interest on congestion problems in high- 

speed networks arise from the control of sending rates of 

traffic sources. Congestion problems result from a mismatch 

of offered load and available link bandwidth between network 

nodes. Such problems can cause high packet loss ratio (PLR) 

and long delays, and can even break down the entire system 

because of congestion collapse. Therefore, high-speed 

networks must have an applicable flow control scheme not 

only to guarantee the quality of service (QoS) for the existing 

links but also to achieve high system utilization. 

The flow control of high-speed networks is difficult owing 

to the uncertainties and highly time-varying of different traffic 

patterns. The flow control mainly checks the availability of 

bandwidth and buffer space necessary to guarantee the 

requested QoS. A major problem here is the lack of 

information related to the characteristics of source flow. 

Devising a mathematical model for source flow is the 

fundamental issue. However, it has been revealed to be a very 

difficult task, especially for broadband sources. In order to 

overcome the above-mentioned difficulties, the control 

schemes with learning capability have been employed in flow 

control [1, 2]. The basic advantage is the ability to learn the 
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source traffic characteristics from sufficiently big and 

representative data samples. But it is obvious that the accurate 

data, needed to train the parameters, are hard to get for the 

disturbance and error in instrument measuring. 

In this case, the reinforcement learning shows its particular 

superiority, which just needs very simple information such as 

estimable and critical information, “right” or “wrong” [3]. It is 

independent of mathematic model and priori-knowledge of 

system. It obtains the knowledge through trial-and-error and 

interaction with environment to improve its behavior policy. 

So it has the ability of self-learning. Because of the advantages 

above, it has been played a very important role in the flow 

control in high-speed networks [4-7]. The Q-learning of 

reinforcement learning is easy for application and has a firm 

foundation in the theory. In [8], we combined the Q-learning 

and simulated annealing to solve the problems of ABR flow 

control in ATM networks. In [9], authors extended the 

environment to multi-bottleneck network and propose a 

cooperative multi-agent congestion controller. But, the 

convergence of the controller was not demonstrated. 

In this paper, based on the Q-learning algorithm, a 

multi-agent flow controller (MFC) for high-speed networks is 

proposed. The fuzzy inference system is adopted to generate 

the reward signal in Q-learning. In the controller proposed, 

each learning agent in bottleneck node has a separate memory 

structure to explicitly implement its own objectives to achieve 

Nash equilibrium Q-values. The Nash equilibrium solution 

serves as the optimal sending rate of traffic sources. By means 

of learning procedures, the proposed controller adjusts the 

source sending rate to the optimal value to reduce the average 

length of queue in the buffer. The convergence of the 

proposed learning algorithm is demonstrated and some 

simulation results show that the proposed method can avoid 

the occurrence of congestion effectively with the features of 

high throughput, low PLR, low end-to-end delay and high 

utilization. 

II. DESIGN OF CONTROLLER 

A. Architecture of MFC 

In the AIMD case, the agent senses the network system’s 

states and makes a decision based on a rate control scheme to 

avoid packet losses and increase the utilization of 

multiplexer’s output bandwidth [10]. However, it is hard to 

achieve high system performance by reactive AIMD scheme 

because of the propagation delay and the dynamic nature of 
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high-speed networks. Whereas the proposed MFC can behave 

optimally only rely on the interaction with unknown 

environment and provide the best action for a given state. The 

architecture of MFC in n node case is shown in Fig.1.  
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Fig.1.  Architecture of the proposed MFC in n node case 

The high-speed network has n bottleneck nodes, with 

controllable sources. Each MFC has its own state variables (S), 

which is composed of the current queue length q , the current 

rate of queue length change q� , and the current rate of source 

sending rate change u�  irrespective of other MFCs in the 

network. The output of each MFC is the feedback signal a  to 

the traffic sources, which is the ratio of the sending rate. It 

determines the sending rate u  of traffic sources. However, all 

agents have incomplete but perfect information, meaning 

agents do not know other agents’ reward functions and state 

transition probabilities, but they can observe other agents’ 

immediate rewards and actions taken previously. The sample 

for each MFC is same. By way of multi-agent strategy-search 

learning, the proposed MFC could converge to Nash 

equilibrium. In contrast to single-agent flow controller (SFC), 

MFC uses joint-action learning algorithms to learn values for 

joint actions to avoid the bias in individual action decision. 

The sending rate is controlled by the feedback control 

signal ta  periodically. The controlled sending rate is defined 

by the equation 

 ,t tu a FL=                                     (1) 

where [0.2,1.0]ta ∈  is the feedback signal by the flow 

controller, F  is a relative value in the ratio of source offered 

load to the available output bit rate, L  denotes the outgoing 

rate of link, and [0.2 , ]tu FL FL∈ ⋅  is the controlled sending 

rate at sample time t . 

B. Reward Signal 

Q-learning is to learn what to do and how to map situations 

to actions, so as to maximize the reward signal r . The reward 

r  is the only information for the controller to judge whether 

the sending rate taken is good or bad, so it is vital to choose an 

appropriate r . r  is in the range [0,1] , the larger r  is, the 

better control affects. 

In high-speed networks, the fuzzy reward evaluator (FRE) 

[11] evaluates the reward for environmental states. FRE relies 

on three parameters ( ), ,q q u� �  to generate a reward or a 

punishment for the action (the ratio of the source sending rate) 

in a state. If the state of the network is enhanced toward 

positive evolution, the action will be rewarded; otherwise 

punished. 

The term set should be determined at an approximate level 

of granularity to describe the values of linguistic variables. 

For queue length, the term set is defined as f(q)={Low (L), 

Medium (M), High (H)}, which is used to describe the degree 

of queue lengths. The term set for the rate of queue length 

change is defined as f( q� )={Decrease (D), Increase (I)}, which 

describes the rate of queue length change as “Decrease” or 

“Increase”. The term set for the rate of source transmission 

rate change is defined as f( u� )={Negative (N), Positive (P)}, 

which describes the rate of source transmission rate change as 

“Negative” or “Positive”. In order to provide a precise graded 

reward in various states, the term set for reward is defined as 

f(yr)={Penalty More (PM), Penalty Slightly (PS), No Reward 

(NR), Reward Slightly (RS), Reward More (RM)}. The 

membership functions (MFs) of the term set are shown in 

Fig.2. 
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Fig. 2.  MFs of the term set (a) f(q), (b) f( q� ), (c) f( u� ), and (d) f(yr) 

The fuzzy rule base is a reward knowledge base, 

characterized by a set of linguistic statements in the form of 

“if-then” rules that describe the fuzzy logic relationship 

between the input variables and the reward (penalty) yr. 

According to fuzzy set theory, the fuzzy rule base forms a 

fuzzy set with dimensions 3×2×2=12. Table I shows a total of 

twelve inference rules in the fuzzy rule base under various 

system states. For example, rule 1 can be linguistically started 

as “if the queue length is low, the queue length change rate is 

decreased, and the transmission change rate is negative, then 

give more penalty.”  
TABLE I 

 RULE TABLE OF FRE 

Rule q q�  u�  yr Rule q q�  u�  yr 

1 L D N PM 7 M I N RS 

2 L D P PS 8 M I P RM 

3 L I N NR 9 H D N PS 

4 L I P NR 10 H D P PM 

5 M D N RS 11 H I N PS 

6 M D P PM 12 H I P PM 

The proposed FRE adopts the max-min inference method 

for the inference engine because it is designed for real-time 

operation. 
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C. The Nash Q-learning Multi-Agent Flow Controller 

Q-learning is a value learning version of model-free 

reinforcement learning that learns utility values (Q-values) of 

state and action pairs [12]. The objective of Q-learning is to 

estimate Q-values for an optimal strategy. The proposed flow 

controller in each bottleneck node acts as a learning agent. 

During the learning process, an agent uses its experience to 

improve its estimate by blending new information into its 

prior experience [13]. 

The difference between single-agent and multi-agent 

system exists in the environments. In multi-agent systems, 

other adapting agents make the environment no longer 

stationary and violate the Markov property that traditional 

single-agent behavior learning relies upon. Based on the 

framework of stochastic games, the single-agent Q-learning is 

extended to multi-agent systems. 

In general form, an n-agent is defined by a tuple 

<n,S,A
1
,…,A

n
,r

1
,…,r

n
,p>, where n is the number of agents, in 

another word the number of bottleneck nodes in high-speed 

networks; S is a set of discrete state space of high-speed 

networks composed of ( ), ,q q u� � ; A
1
,…,A

n
 is a collection of 

actions (feedback control signal to traffic sources) available to 

each agent (A
i
 is the discrete action space available to agent i); 

ir  is the reward function for agent i; p is the transition 

probability map. 

In Nash Q-learning flow controller, the objective of each 

agent is to maximize the discounted sum of rewards, with 

discount factor [0,1)β ∈ . Let �
i
 be the action strategy of agent 

i. For a given initial state s, agent i tries to maximize 

( ) ( )1 1

0
0

, , , , , ,  .i n t i n

t
t

v s E r s sπ π β π π
∞

=

= =¦" "         (2) 

A strategy ( )0 , , ,tπ π π= " "  is defined over the whole 

course of learning process. �t is called the decision rule at 

sample time t.  

The Nash equilibrium solution is a tuple of n strategies 
1( , , )nπ π∗ ∗"  such that for all Ss ∈  and i iπ ∈Π , 

( ) ( )1 1 1 1
, , , , , , , , , ,

i n i i i i n
v s v sπ π π π π π π− +

∗ ∗ ∗ ∗ ∗ ∗≥" " "       (3) 

where �
i
 is the set of strategies available to agent i. The 

definition of Nash equilibrium requires that each agent’s 

strategy is a best response to the other’s strategy. 

The Nash Q-function for the ith agent is defined over 

(s,a
1
,…,a

n
) as the sum of its current reward plus its future 

rewards when all agents follow a joint Nash equilibrium 

strategy. That is, 

( ) ( ) ( ) ( )1 1 1 1, , , , , , , , , , , ,i n i n n i n

s S

Q s a a r s a a p s s a a v sβ π π∗ ∗ ∗
′∈

′ ′= + ¦" " " " (4) 

where 1( , , )nπ π∗ ∗"  is the joint Nash equilibrium strategy, 

r
i
(s,a

1
,…,a

n
) is agent i’s one-period reward in state s under 

joint action (a
1
,…,a

n
), 1( , , , )i nv s π π∗ ∗

′ "  is agent i’s total 

discounted reward over infinite periods starting from state s´ 

given that agents follow the equilibrium strategies. 

The learning agent, indexed by i, learns about its Q-values 

by forming an arbitrary guess at time 0. One simple guess 

would be letting 1
0 ( , , , ) 0
i n

Q s a a ="  for all ,s S∈  

1 1
, ,

n n
a A a A∈ ∈" . At each time t, agent i observes the current 

state, and takes its action. After that, it observes its own 

reward, actions taken by all other agents, others’ rewards, and 

the new state s´. It then calculates a Nash equilibrium 

�
1
(s´)…�

n
(s´) for 1

( ( ), , ( ))
n

t tQ s Q s′ ′" , and updates its Q-values 

according to 

( ) ( ) ( ) ( )1 1

1 , , , 1 , , ,
i n i n i i

t t t t t tQ s a a Q s a a r NashQ sα α β+
′ª º= − + +¬ ¼" "  (5) 

where [0,1)β ∈ is the discount factor, if β  is large, systems 

will easily tend to follow the current strategy so that it will not 

have more opportunities to find a better strategy; if β  is small, 

systems will not easily follow a strategy so that it will do 

explorations all the time. This will cause the convergence rate 

to be slow. On the other hand, [0,1)α ∈  is the learning rate. 

The convergence rate is determined by the value of .. If . is 

small, the convergence rate will be slow but it will easily tend 

to stabilize. If . is large, the convergence rate will be fast but it 

will not easily tend to stabilize. 

The ( )i

tNashQ s′  is defined as 

( ) ( ) ( ) ( )1  .i n i
t tNashQ s s s Q sπ π′ ′ ′ ′= "                (6) 

In order to calculate the Nash equilibrium (�
1
(s´)…�

n
(s´)), 

agent i would need to know 1( ), , ( )n

t t
Q s Q s′ ′" . Information 

about other agents’ Q-values is not given, so agent i must learn 

about them too. Agent i forms conjectures about those 

Q-functions at the beginning of learning, for example, 
1

0
( , , , ) 0j nQ s a a ="  for all j and all s,a

1
,…,a

n
. As the learning 

process, agent i observes other agents’ immediate rewards and 

previous actions. That information can then be used to update 

agent i’s conjectures on other agents’ Q-functions. Agent i 

updates its beliefs about agent j’s Q-function according to the 

same updating rule (5) it applies to its own, 

( ) ( ) ( ) ( )1 1

1
, , , 1 , , ,  .j n j n j j

t t t t t t
Q s a a Q s a a r NashQ sα α β+

′ª º= − + +¬ ¼" " (7) 

Note that .t=0 for 1 1( , , , ) ( , , , )n n

t t ts a a s a a≠" " . Therefore (7) 

does not update all the entries in the Q-functions. It updates 

only the entry corresponding to the current state and the 

actions chosen by the agents. 

D. Convergence of the Proposed Controller 

In this section, we would like to demonstrate the 

convergence of i

t
Q  to the Nash equilibrium iQ∗  for agent i. 

The value of iQ∗  is determined by the joint strategies of all 

agents. That means the agent has to learn Q-values of all the 

agents and derive strategies from them. The learning objective 

is 1( , , )nQ Q∗ ∗" , and we have to show the convergence of 
1( , , )n
t tQ Q"  to 1( , , )nQ Q∗ ∗" . 

The convergence proof requires a basic assumption that 

every state and action should be visited infinitely often [14]. 

The proof relies on the following lemma (Corollary 5 in [15]), 

which establishes the convergence of a general Q-learning 

process updated by a pseudo-contraction operator. Let Q be 

the space of all Q functions. 

Lemma. If the mapping Pt:Q:Q satisfies 

t t t
PQ PQ Q Qγ λ∗ ∗− ≤ − +                    (8) 

for all QQ ∈  and [ ]tQ E PQ∗ ∗= , where 0<�<1 and �t�0 
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converging to zero with probability 1, then the iteration 

defined by 

( ) [ ]1
1

t t t t t t
Q Q PQα α+ = − +                     (9) 

converges to Q∗  with probability 1. 

If the Nash optimal Q-value Q∗  matches the lemma with an 

existing operator Pt, then we can have the conclusion that the 

iteration converges to Nash optimal Q-value Q∗  with 

probability 1. 

For Nash Q-learning, we define the operator Pt as follows. 

Let Q=(Q
1
,…,Q

n
), where Q

k k
Q ∈ , for k=1,…,n, and 

Q=Q
1
×…×Q

n
. 1( , , )n

t t t
PQ PQ PQ= " , where 

( ) ( ) ( ) ( ) ( )1 1 1, , , , , ,  .k n k n n k

t tPQ s a a r s a a s s Q sβπ π′ ′ ′= +" " "  (10) 

Let 1( , , )k nv s π π∗ ∗′ "  is agent k’s Nash equilibrium reward for 
1( ( ) ( ))nQ s Q s∗ ∗′ ′" , and 1( ( ) ( ))ns sπ π∗ ∗′ ′"  is the Nash equilibrium 

solution, we have 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( )

1

1 1 1

1 1 1

1 1 1

1

, , ,

     , , , , , , , ,

     , , , , , ,

     , , , , , ,

      = , , ,

k n

k n n k n

s S

k n n n k

s S

n k n n k

s S

k k n
t

Q s a a

r s a a p s s a a v s

r s a a p s s a a s s Q s

p s s a a r s a a s s Q s

E P Q s a a

β π π

β π π

βπ π

∗

∗ ∗
′∈

∗ ∗ ∗
′∈

∗ ∗ ∗
′∈

∗

′ ′= +

′ ′ ′ ′= +

′ ′ ′ ′= +

ª º
¬ ¼

¦

¦

¦

"

" " "

" " "

" " "

"

 

for all s,a
1
,…,a

n
. Thus [ ]k k k

tQ E P Q∗ ∗= . Since this holds for all k, 

[ ]tE PQ Q∗ ∗= . 

During the learning process of MFC in high-speed 

networks, every stage game 1( ( ), , ( ))n

t t
Q s Q s" , for all t and s, 

holds Nash equilibrium, and agents’ reward in this 

equilibrium are used to update their Q-functions. In the Nash 

equilibrium, each agent effectively holds a correct expectation 

about other agents’ behaviors, and acts rationally with respect 

to this expectation. Acting rationally means the agent’s 

strategy is a best response to the others’ strategies. Any 

deviation would make that agent worse off. That is, 

( ) ( ) ( ) ( ) ( ) ( )ˆ  ,
k k j k k j

s s Q s s s Q sπ π π π− −≥      (11) 

( ) ( ) ( ) ( ) ( ) ( )ˆ  ,
k k j k k j

s s Q s s s Q sπ π π π− −≤      (12) 

for all k, and all ˆ (A )
k kπ π∈ , ˆ (A )

k kπ π− −∈ . Where 

( ) ( ) ( ) ( ) ( )1 1 1
 .

k k k n
s s s s sπ π π π π− − += " "      (13) 

For all ˆ, QQ Q ∈  we have 

 
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

,

1 1

ˆ

ˆ   max

ˆ   max max

ˆˆ ˆ    = max max

t t

j j

t t
j j

j j

t t
j s j s

n k n k

j s

PQ PQ

PQ PQ

PQ s PQ s

s s Q s s s Q sβπ π βπ π

−

= −

= −

−" "

     

( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆ   max max
k k k k k k

j s
s s Q s s s Q sβ π π π π− −= −   (14) 

Based on the property of Nash equilibrium [16], if 

( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆk k j k k j
s s Q s s s Q sπ π π π− −≥ , we have 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

ˆˆ ˆ

ˆˆ    

k k k k k k

k k k k k k

s s Q s s s Q s

s s Q s s s Q s

π π π π

π π π π

− −

− −

−

≤ −
                        

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆˆ ˆ    

ˆ    

k k k k k k

k k

s s Q s s s Q s

Q s Q s

π π π π− −≤ −

≤ −
                        

where  

( ) ( ) ( ) ( )
1

1 1

, ,

ˆ ˆmax , , , , , ,  .
n

k k k n k n

a a

Q s Q s Q s a a Q s a a− = −
"

" " (15) 

If ( ) ( ) ( ) ( ) ( ) ( )ˆˆ ˆk k j k k j
s s Q s s s Q sπ π π π− −≤ , proof is similar. 

So we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ  .k k k k k k k k
s s Q s s s Q s Q s Q sπ π π π− −− ≤ − (16) 

Combining (14) and (16), we have 

( ) ( )

ˆ

ˆ    max max

ˆ    

t t

k k

j s

PQ PQ

Q s Q s

Q Q

β

β

−

≤ −

= −

 

Because ˆ QQ ∈ , so the Nash optimal Q-value Q∗  satisfies 

(8). 

Above all, we have the result that the proposed Nash 

Q-learning process converges to Nash Q-values. 

III. SIMULATION AND COMPARISON 

We assume that all packets are with a fixed length of 

1000bytes, and adopt a finite buffer length of 20packets in 

each node. On the other hand, the offered loading of the 

simulation varies between 0.6 and 1.2 corresponding to the 

systems’ dynamics; therefore, higher loading results in 

heavier traffic and vice versa. 

From the knowledge of evaluating system performance, the 

parameters of the membership functions for input linguistic 

variables in FRE are selected as follows. For ( )L qµ , ( )M qµ , 

and ( )H qµ , 0aL = , 6bL = , 
1

10bL = , 
1

2aM = , 8aM = , 

12bM = , 
1

20bM = , 
1

9aH = , 14aH = , 20bH = , and 
1

20bH = ; 

for ( )D qµ �  and ( )I qµ � , 4aD = , 
1

2b bD D= = , 
1

2a aI I= = , and 

4bI = ; for ( )N uµ �  and ( )P uµ � , 0.8aN = , 0.4bN = , 
1

0.2bN = , 

1
0.2aP = , 0.4aP = , and 0.8bP = . Also, the parameters of the 

membership functions for output reward linguistic variables 

are given by 0 0PM = , 0 0.25PS = , 0 0.5NR = , 0 0.75RS = , and 

0 1RM = . 

In the simulation, three schemes of flow control agent, 

AIMD, MFC with general Q-learning algorithm and Nash 

Q-learning algorithm proposed are implemented individually 

in high-speed networks. The first scheme AIMD increases its 

sending rate by a fixed increment (0.11) if the queue length is 

less than the predefined threshold; otherwise the sending rates 

are decreased by a multiple of 0.8 of the previous sending rate 

to avoid congestion. Finally, for the second and third schemes, 

the sending rates are controlled by the feedback control signal 

periodically. For assuring MFCs proposed applied to 

high-speed networks to be achievable and feasible, 

comparisons among those schemes are analyzed. Four 

measures, throughput, PLR, buffer utilization and packets’ 

mean delay, are used as the performance indices. The status of 

the input multiplexer’s buffer in each node reflects the degree 

of congestion resulting in possible packet losses. For 
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simplicity, packets’ mean delay only takes into consideration 

the processing time at each node plus time needed to transmit 

packets. The details are delineated in the following. 

Sw1

MFC1

Sw2

MFC2

Sw3

MFC3

Sw4

S1

S2

S3

S4

D6

D2

D5

D3

D4S6

D1S5

L1 L2 L3

L1:80Mbps
L2:80Mbps
L3:160Mbps

 
Fig.3.  The configuration of high-speed networks with four switches 

The configuration of high-speed networks with multi-node, 

as shown in Fig.3, is composed of four switches Sw1, Sw2, 

Sw3, and Sw4 in cascade. Three nodes Sw1, Sw2, and Sw3 

are implemented with its own control agent, respectively; 

hence, the sending rates of sources S1 and S2, S3 and S4, and 

S5 and S6 are regulated by MFC1, MFC2 and MFC3, 

respectively. Consequently, three agents jointly interact to 

reach a common goal with high system performance. For case 

of three schemes, each node has the same training loading 

pattern, which is generated by a shuffle of loading pattern (0.6, 

0.7, 0.8, 0.9, 1.0, 1.1, 1.2), each of which lasts for 0.6s; i.e., a 

training epoch will last for a period of 4.2s. 

We take Sw2 as an example to consider the performance of 

the flow control schemes adopted in simulation. Fig.5 shows 

the throughputs of Sw2 controlled by three different kinds of 

control agents individually. Analogously, because of the 

reactive control, the throughput of nodes for the AIMD 

method decrease seriously at loading of about 0.9. Conversely, 

the MFC methods remain a higher throughput even though the 

offered loading is over 1.0. Fig.4-7 shows the PLR, buffer 

utilization and mean delay of Sw2 controlled by four different 

kinds of control agents individually. It is obvious that the PLR 

of no control is high, even though we adopt the AIMD method. 

However, using the MFC with Nash Q-learning method can 

decrease the PLR enormously with high throughput and low 

mean delay. The MFC with Nash Q-learning algorithm has a 

better performance over MFC with general Q-learning in PLR, 

buffer utilization and mean delay. It demonstrates once again 

that MFC with Nash Q-learning possesses the ability to 

predict the network behavior in advance. 

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3
x 10

5

offered loading

th
ro

u
g

h
p

u
t

Sw2

AIMD

MFC with General Q-learning

MFC with Nash Q-learning

 
Fig.4.  Throughput versus various offered loading at Sw2 
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Fig.5.  PLR versus various offered loading at Sw2 
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Fig.6.  Mean buffer versus various offered loading at Sw2 
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Fig.7.  Mean delay versus various offered loading at Sw2 

IV. CONCLUSION 

In high-speed networks, most packet losses result from the 

dropping of packets owing to congested nodes. The reactive 

scheme AIMD could not accurately respond to a time-varying 

environment due to the lack of prediction capability. In 

contrast, the Nash Q-learning algorithm of reinforcement 

learning can cope with the prediction problems. The proposed 

MFC, which is applicable to a network of multi-bottleneck, 

can respond to the networks’ dynamics. Through a proper 

training process, MFC can learn empirically without prior 

information on the environmental dynamics. The sending rate 

of traffic sources can be determined by the well-trained Nash 

Q-values and the convergence is demonstrated. Simulation 

results have shown that the proposed method can increase the 

utilization of the buffer and decrease PLR and delay 
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simultaneously. Therefore, MFC with Nash Q-learning 

algorithm not only guarantees low PLR for the existing links, 

but also achieves high system utilization. 
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