
 
 

 

  

Abstract—This paper concerns the problem of state- 
derivative feedback with exponential convergence rate for a 
linear system with a constant time-delay. This is promising for 
better applicability in practical systems where the 
state-derivative signals are easier to obtain than the state ones. 
Based on a system state transformation and appropriate 
Lyapunov functions, a sufficient condition for the design of the 
state-derivative feedback controller is derived in terms of 
delay-dependent linear matrix inequalities (LMIs). Two 
practical application examples are included to illustrate the 
effectiveness of the proposed method.  

I. INTRODUCTION 
HE phenomena of time-delay are often encountered in 
many practical systems, such as aircraft systems, neural 
network, chemical processes, communication systems, 

nuclear reactor, electrical networks, etc. Whenever the 
time-delay is significant as compared with the system 
time-constants, some erratic behavior can occur leading to the 
generation of oscillation, performance degradation and 
instability. In view of this, considerable attention from many 
researchers has been devoted to the issue of time-delay 
systems. Especially, several results on stability analysis and 
control synthesis for such systems have been reported in 
[1]-[3]. However, all the approaches considered in these 
papers are the state feedback method. So if the state signals 
are more difficult to obtain than the state-derivative signals in 
some case, the results with taking account of the state 
feedback are not practical for the system. In practice, there 
exist some problems where the state-derivative signals are 
more available than the state ones [4]. Consequently, 
state-derivative feedback has been an attractive topic for both 
theoretical and practical reasons. As to theory analysis[5]-[8], 
the state-derivative feedback has been utilized to achieve 
eigenstructure assignment in singular systems, H-infinite 
control of linear state-delay descriptor systems, robust control 
of descriptor linear systems, and robust pole assignment in 
descriptor second-order dynamical systems. In [6], sufficient 
conditions for delay-dependent/delay-independent stability 
and L2-gain analysis of linear descriptor systems are obtained 
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in terms of linear matrix inequalities (LMIs). In [8], for 
descriptor second-order dynamical systems with proportional 
plus derivative state feedback, the eigenvalue assignment 
with minimum sensitivity is considered based on a complete 
parametric eigenstructure assignment approach. For the 
practical application[9]-[12], typical examples are the active 
and passive vibration control of landing gear components, 
robust vibration control for car wheel suspension systems, 
control of bridge cable vibration, and High-Performance 
Induction Motor Speed Control. In [12], a novel nonlinear 
speed/position control strategy for the induction motor is 
presented utilizing exact feedback linearization with state and 
state derivative feedback.  

The convergence rate of states of a control system is 
another important issue concerned with. Usually, asymptotic 
stability is insufficient for a control system to ensure a 
satisfactory dynamical performance. In such a case, 
exponential stability (α -stability) with a given decay rate is 
very useful. To the best of authors’ knowledge, there had 
been no result reported for exponential state-derivative 
feedback for linear delayed systems in the past.  

Different approaches, as for instance, the Riccati equation 
approach, Smith-like predictors, and the linear matrix 
inequality (LMI) formulation, have been used to deal with the 
problems of stability analysis and control design for linear 
systems with delayed states. It is known that, over the other 
ones, the LMI approach generally has significant advantages 
of simplifying the design procedure and handling modeling 
uncertainty, state constraints and multi-objective 
performance specifications without losing the convexity.  
Hence, the underlying problem can be numerically solved by 
LMI efficiently. Depending on whether the criterion itself 
contains the sizes of time delays, the criteria for time-delay 
systems can be classified into two categories, namely 
delay-independent criteria and delay-dependent criteria. As 
the name implies, delay-independent results guarantee 
stability for arbitrarily large delays. Delay-dependent results 
take into account the maximum delay that can be tolerated by 
the system and, thus, are more useful in applications.  

So, motivated by the facts above-mentioned, the problem 
of delay-dependent state-derivative feedback with 
exponential convergence rate for linear systems with delayed 
state is investigated by means of a system state transformation 
and appropriate Lyapunov functions. The case of a single 
constant time-delay is considered. The focal point of this 
paper is on developing a sufficient condition to stabilize 
linear delayed systems with exponential state-derivative 
feedback in terms of LMIs which depend on the size of the 
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time-delay. Finally, the feasibility and effectiveness of the 
proposed method are verified on the grounds of computer 
simulation results.  

II. PROBLEM STATEMENT  AND MAIN RESULTS  
Consider linear time-delay systems described by 

d( ) ( ) ( ) ( )
( ) ( ), [ ,0]

x t Ax t A x t Bu t
x t t t

τ
φ τ

= + − +
= ∈ −

,                 (1) 

where ( ) nx t R∈ is the state vector, ( ) mu t R∈ is the control 
input, 0τ > is the constant time-delay of the system, the initial 
vector ( )tφ is a continuously differentiable function 

from [ ,0]τ− to nR , A , dA , and B are known real constant 
matrices of appropriate dimensions.  

Consider the system (1) with the state-derivative feedback 
controller 

( ) ( )u t Kx t= −                                  (2) 
where m nK R ×∈ is a constant gain matrix to be designed. The 
closed-loop system is then given by 

d( ) ( ) ( )x t Ax t A x t τ= + − ,                       (3) 

where 1( )A I BK A−= + , 1
d d( )A I BK A−= + .  

The design problem to be addressed in this paper is to find 
a state-derivative feedback gain matrix m nK R ×∈ , such that the 
following requirements satisfy: 

(i) ( )I BK+ has a full rank, 
(ii) the closed-loop system (3) is exponentially stable with 

a given decay rate 0α > , i.e.  
lim
t →∞

|| ( ) || 0te x tα =                              (4) 

holds for all trajectories ( )x t , 0t ≥ .  
 The following lemmas will be used to prove our result. 
Lemma 1 [13]. Let D , E , F be real matrices of appropriate 
dimensions with || || 1F ≤ . Then, for any scalar 0ε > , we have 

T T T 1 T TDFE E F D DD E Eε ε−+ ≤ +  
Lemma 2 [14]. For any matrix p pM R ×∈ , T 0M M+ < if and 
only if 0M < holds.  

The following theorem presents a delay-dependent 
exponential state-derivative feedback stabilizability criterion 
based on the LMI method.  
Theorem 1. The closed-loop system (3) is exponentially 
stable with decay rate 0α >  if for a given scalar 0 1ε< < , 
there exist a symmetric positive definite matrix Q and a 
matrixY , such that 

11 12 13 14

22

33

44

* 0 0
0

0

Ξ Ξ Ξ Ξ⎡ ⎤
⎢ ⎥Ξ⎢ ⎥Ξ = <
⎢ ⎥∗ ∗ Ξ
⎢ ⎥∗ ∗ ∗ Ξ⎢ ⎥⎣ ⎦

,                 (5) 

where * represents the symmetric form in the matrix and 
T T T T T

11

T T T T

( , , )

        + ( + )
d d

d d d d

AQ QA AY B BYA f A A

e A Q QA A Y B BYAατ

τ α ε τΞ = + + + +

+ +
, 

0.5 T T
12 ( )e QA BYA Iαττ αΞ = + +  , 22 IτεΞ = − , 

T T
13 ( )d de QA BYAαττΞ = + , 33 (1 )Iτ εΞ = − − , 14 Q BYΞ = + , 

44 /(2 )Q αΞ = − , 2( , , ) (1 )f e eατ ατα ε τ ε ε= + − . 

The state feedback gain is given by 1K YQ−= . 
Proof: Utilizing the following transformation 

( ) ( )tz t e x tα= ,                               (6) 
where 0α > is decay rate, system (3) is transformed into 

d( ) ( ) ( ) ( )z t A I z t e A z tατα τ= + + − .               (7) 
Let ( )z t be a trajectory of system (7). Hence, we have that 
for t τ≥  

0

0

d

( ) ( ) ( )

          ( ) [( ) ( ) ( )] . (8)

z t z t z t s ds

z t A I z t s e A z t s ds

τ

ατ
τ

τ

α τ
−

−

− = − +

= − + + + − +

∫
∫

 

Substituting (8) into (7), we know that ( )z t satisfies 

d d

0

d

( ) ( ) ( )

        [( ) ( ) ( )] .

z t A I e A z t e A

A I z t s e A z t s ds

ατ ατ

ατ
τ

α

α τ
−

= + + −

× + + + − +∫
 

In view of the above, consider the following time-delay 
system 

d d

0

d

( ) ( ) ( )

        [( ) ( ) ( )] .

t A I e A t e A

A I t s e A t s ds

ατ ατ

ατ
τ

ξ α ξ

α ξ ξ τ
−

= + + −

× + + + − +∫
, 

( ) ( ),       [ 2 ,0]s s sξ ψ τ= ∀ ∈ − ,                                  (9) 
where ( )ψ ⋅ is the initial condition. Observe that (9) requires 
initial data on[ 2 ,0]τ− .  
Define the Lyapunov functional candidate 

T( , ) ( ) ( ) ( , )V t t P t W tξ ξ ξ ξ= + ,                (10) 
where P is a symmetric positive definite matrix and 

01 2

01 2 2
d

( , ) || ( ) ( ) ||

            (1 ) || ( ) || ,        (11)

t

t s
t

t s

W t e A I d ds

e A d ds

ατ
τ

ατ
τ τ

ξ ε α ξ θ θ

ε ξ θ θ

−

− +

−

− + −

= +

+ −

∫ ∫
∫ ∫

 

where 0 1ε< < is a scalar to be chosen. Then, the time 
derivative of ( , )V tξ is given by 

T T
d d

0T T 2
d d

0 1 T T
d

1 2 T T
d d

1 T T

( , )

( )[ ( ) ( ) ] ( )

   2 ( ) ( ) ( ) 2 ( )

   ( ) ( )( )

   ( ) ( ) (1 ) ( ) ( )

   ( )( )

V t

t P A I e A A I e A P t

t Pe A A I t s ds t Pe A

A t s ds e t A I

A I t e t A A t

e t s A I

ατ ατ

ατ ατ
τ

ατ

τ

ατ

ατ

ξ

ξ α α ξ

ξ α ξ ξ

ξ τ ε τ ξ α

α ξ ε τ ξ ξ

ε ξ α

−

−

−

−

−

= + + + + +

− + + −

× − + + +

× + + −

− + +

∫

∫

0

01 2 T T
d d

( ) ( )

  (1 ) ( ) ( ) .      (12)

A I t s ds

e t s A A t s ds

τ

ατ

τ

α ξ

ε ξ τ ξ τ

−

−

−

+ +

− − − + − +

∫

∫

 

Note that by lemma 1, 
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0T
d

0 T
d

0 T T
d d

1 T T

T T
d d

01 T T

   2 ( ) ( ) ( )

[ 2 ( ) ( ) ( )]

[ ( ) ( )

  ( )( ) ( ) ( )]
( ) ( )

  ( )( ) ( ) ( )] ,     (1

t Pe A A I t s ds

e t PA A I t s ds

e t PA A P t

t s A I A I t s ds
e t PA A P t

e t s A I A I t s ds

ατ
τ

ατ

τ

ατ
τ

ατ

ατ

τ

ξ α ξ

ξ α ξ

εξ ξ

ε ξ α α ξ
ετ ξ ξ

ε ξ α α ξ

−

−

−

−

−

−

− + +

= − + +

≤

+ + + + +
=

+ + + + +

∫
∫
∫
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0T 2
d d

02 T
d d

02 T T
d d

1 T T
d d

2 T T
d d

02 1 T T
d d

  2 ( ) ( )

[ 2 ( ) ( )]

[(1 ) ( ) ( )

  (1 ) ( ) ( )]

(1 ) ( ) ( )

  (1 ) ( ) ( )

t e PA A t s ds

e t PA A t s ds

e t PA A P t

t s A A t s ds

e t PA A P t

e t s A A t s ds

ατ

τ

ατ
τ

ατ

τ

ατ

ατ
τ

ξ ξ τ

ξ ξ τ

ε ξ ξ

ε ξ τ ξ τ
τ ε ξ ξ

ε ξ τ ξ τ

−

−

−

−

−

−

− − +

= − − +

≤ −

+ − − + − +

= −

+ − − + − +

∫
∫
∫

∫ ,

 

for any scalar 0 1ε< < .  
Hence, using (13) and (14) in (12), we obtain 

T( , ) ( ) ( )V t t tξ ξ ξ≤ Σ ,                        (15) 
where 

T
d d d

T 1 T 1 2 T
d d d

( ) ( ) ( , , )

     ( ) ( ) (1 ) .

P A I e A A I e A P f PA

A P e A I A I e A A

ατ ατ

ατ ατ

α α τ α ε τ
ε τ α α ε τ− −

Σ = + + + + + +

× + + + + −
 

By 1P Q− = ,Y KQ= and Schur complement, Ξ in (5) is 
equivalent to 

11 12 13

* 0 0
* * (1 )

I
I

τε
τ ε

Π Π Π⎡ ⎤
⎢ ⎥Π = − <⎢ ⎥
⎢ ⎥− −⎣ ⎦

,            (16) 

where 
1 T 1 T

11
1 T 1 T

1 T T

( ) 2 ( ) ( )

        ( ) ( )

        ( ) ( , , )
d

d d d

AP I BK I BK P I BK

e A P I BK I BK P A

e I BK P A f A A

ατ

ατ

α

τ α ε τ

− −

− −

−

Π = + + + +

+ + + +

+ + +

 

0.5 1 T 0.5
12 ( )e I BK P A eατ αττ ατ−Π = + + ,

1 T
13 ( ) de I BK P Aαττ −Π = + .  

By left and right multiplying both sides of (16) by the 
diagonal matrix 1 T Tdiag{ ( ) , ( ) ,( ) }P I BK I BK I BK−+ + + and the 
diagonal matrix T T Tdiag{( ) , ( ) ,( ) }I BK P I BK I BK− − −+ + + , 

respectively, taking account of 1( )A I BK A−= + and 
1

d d( )A I BK A−= + , and Schur complement, we obtain 
0.Σ <                                      (17) 

From (15) and (17), we get ( , ) 0V tξ < . Then, according to 
the Lyapunov theory, system (3) is exponentially stable.  
It’s obvious that the last three parts of Σ are positive definite. 
So, from (17), we have 

T
d d( ) ( ) 0P A I e A A I e A Pατ ατα α+ + + + + < .        (18) 

From lemma 2 and (18), it follows that 

d( ) 0P A I e Aατα+ + < ,                       (19) 
which also indicates that 

1
d d( ) ( ) ( ) 0P A e A P I BK A e Aατ ατ−+ = + + < .        (20) 

Hence, 1
d( ) ( )P I BK A e Aατ−+ +  has a full rank and so, 

( )I BK+ has a full rank, as required in (i). This proof is 
completed.  

Remark 1. Note that from (20), it follows that the 
matrix d( )A e Aατ+ must have a full rank and thus, all its 
eigenvalues are not equal to zero. 

III. SIMULATION RESULTS  
In this section, computer simulations are carried out to 

show the effectiveness of the proposed method.   
Example1. Consider a practical example of VTOL control for 
a helicopter [15] which is given in the form of (1) with 

0.0366 0.0271 0.0188 0.4555
0.0482 1.0100 0.0024 4.0208
0.1002 0.3681 0.7070 1.4200

0 0 1.0000 0

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

,  

0.4422 0.1761
3.5446 7.5922
5.5200 4.4900

0 0

B

⎡ ⎤
⎢ ⎥

−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

, 0.3dA A= . 

The state vector [ ]T
1 2 3 4( ) ( ) ( ) ( ) ( )x t x t x t x t x t= contains the 

horizontal velocity, the vertical velocity, the pitch rate and the 
pitch angle, respectively. For the state-derivative 
feedback, 1( )x t , 2 ( )x t are measured by accelerator sensors, 

3 ( )x t is available by angle accelerator sensors, and 4 ( )x t is 
obtained by angle rate sensors. Therefore, the proposed 
method can be used to solve the problem.  

Setting 0.1ε = , 0.1α = , and solving LMI (5) from 
Theorem 1, the upper boundτ ofτ is found to be 0.3692 and 
a feasible solution is given in the Appendix. Note that, as 
discussed before, the obtained feasible solution ensures that 
( )I BK+ has a full rank. The closed-loop dynamic response 
by virtue of the methods proposed in this paper is depicted in 
Fig. 1 with 0.1785τ = and [ ]T(0) 1 1 0.5 0.5x = .  
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Fig. 1. The state trajectories of VTOL helcopter. 
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From Fig. 1, it is obvious that flight states of VTOL 
helicopter converge to equilibrium by the designed controller. 
So it is easy to get the conclusion that the controller, which 
takes advantage of state-derivative signals, can overcome the 
adverse effect caused by flight delay. 

To provide relatively complete information, we calculate 
the upper boundτ for different decay rateα , listed in Table I. 
As seen, for different ε  values, the upper bound τ becomes 
small as theα increases. 

TABLE I 
UPPER BOUNDS τ WITH GIVEN ε  FOR DIFFERENT α  

α  0.1 0.2 0.3 0.4 
τ ( 0.1ε = ) 0. 3692 0.1872 0.0644 0.0296 
τ ( 0.2ε = ) 0.4792 0.3587 0.1265 0.0584 
τ ( 0.3ε = ) 0.5606 0.5122 0.1857 0.0863 
τ ( 0.9ε = ) 0.6776 0.6603 0.3612 0.1785 

 
Example2. A satellite system consisting of two rigid bodies 
(main module and sensor module) connected by an elastic 
link that is modeled as a spring with viscous 
damping [0.0038, 0.04]f ∈  and torque constant [0.09, 0.4]k ∈  
is considered [16]. The system matrices of the satellite system 
are given as follows  

0 0 1 0
0 0 0 1

A
k k f f

k k f f

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥⎣ ⎦

,

0
0
1
0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0 0 0 0
0 0 0 0

0.01 0 0 0
0 0.001 0 0.001

dA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥− −⎢ ⎥⎣ ⎦

.  

For the case when 0.4k = and 0.04f = , according to 
Theorem 1with 0.1ε = and 0.1α = , it is found that the system 
is exponentially stable for the upper bound 0.0239τ = . A 
feasible solution is given in the Appendix, which ensures 
det( ) 0I BK+ ≠ for requirement (i). Time responses 
with 0.02τ =  are depicted in Fig. 2 which illustrate that the 
state-derivative feedback controller (2) stabilizes the satellite 
system well.  
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Fig. 2. The state trajectories of satellite system. 

For different decay rateα , the upper boundτ ofτ is shown 

in Table II.  
TABLE II 

UPPER BOUNDS τ  WITH GIVEN ε  FOR DIFFERENT α  
α  0.1 0.2 0.3 0.4 

τ ( 0.5ε = ) 0.1200 0.0242 0.0085 0.0037 
τ ( 0.6ε = ) 0.1439 0.0290 0.0102 0.0044 
τ ( 0.7ε = ) 0.1676 0.0339 0.0119 0.0052 
τ ( 0.9ε = ) 0.2135 0.0435 0.0153 0.0067 

 

IV. CONCLUSION 
The problem of state-derivative feedback with exponential 

convergence rate for linear systems with delayed state has 
been addressed, which is more suitable for practical systems 
where the state-derivative signals are easier to obtain than the 
state ones. By introducing a transformation of the system 
states and appropriate Lyapunov functions, a 
delay-dependent stabilizability criterion is derived in the 
framework of LMIs, which determines the upper bound 
guaranteeing the exponential stabilizability for the considered 
systems. Simulation results demonstrate that the proposed 
method can stabilize practical systems and secures the 
allowed delay bounds for different exponential decay rate.  

APPENDIX 
A feasible solution for example 1 is given as follows 

0.2752 -0.8583 -1.1591 0.0000
-0.8583 7.5205 0.0168 -0.0000

1.0e+005
-1.1591 0.0168 7.5552 -0.0000
0.0000 -0.0000 -0.0000 0.0000

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∗
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

-0.4868 1.3040 2.2096 -0.0000
1.0e+005

-0.3403 1.5993 1.0338 -0.0000
Y ⎡ ⎤

= ∗ ⎢ ⎥
⎣ ⎦

, 

0.2736 0.2039 0.3340 0.0156
0.1843 0.2333 0.1646 -0.0130

K ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

. 

A feasible solution for example 2 is obtained in the following 

0.0013 0.0009 -0.0004 -0.0002
0.0009 0.0011 0.0000 -0.0001

1.0e+004
-0.0004 0.0000 7.0332 -0.0000
-0.0002 -0.0001 -0.0000 0.0001

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∗
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

[ ]1.0e+004 0.0007 0.0002 -7.0331 -0.0001Y = ∗ , 

[ ]0.0298 0.0400 -1.0000 -0.9311K = . 
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