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Abstract— In this paper an optimal Kalman filter 
design problem is studied for networked stochastic 
linear discrete-time systems with random 
measurement delays, packet dropouts and missing 
measurements. Any of these three uncertainties in the 
measurement can occur in the network in the same 
run.  Based on a Markov chain, we develop a 
unified/combined model to accommodate random 
delay, packet dropouts and missing measurements. 
Some simulation examples are presented to show the 
effectiveness of the proposed approach. 

I. INTRODUCTION 
S 
co

the result of the increasing development in 
mmunication networks,  control and state estimation 

over network has attracted great attention during the past 
few years (see e.g. [9]). The feedback control systems 
wherein the control loops are closed through a real-time 
network are called networked control systems (NCSs) (see 
e.g. [6]). In a NCS, data typically travel through the 
communication networks from sensors to the controller and 
from controller to the actuators.  

As a direct consequence of the finite bandwidth for data 
transmission over networks, time-delay is inevitable in 
networked systems where a common medium is used for 
data transfers. This delay, either constant, time varying, or 
random, can degrade the performance of a control system if 
the design is done without due consideration given to the 
delay.  In many instances it can even destabilize the system.  
In addition, some packets not only suffer transmission delay 
but, even worse, can be lost during transmission. This 
phenomena is known as ‘packet dropout’; see [2], [15] for 
some further discussions. In practical applications, there 
may also be a nonzero probability that an observation 
consists of noise only, i.e. the measurements contain missing 
observations. The missing observations can arise for a 
variety of reasons, see [1], [7], [4] and [16] for more detailed 
discussions. 
        Hence sensor delays, packet dropouts and missing 
measurements are some of the challenging problems faced 
by control practitioners in NCS, [2]. 

The filtering problem for systems with any of these 
uncertainties has received much attention during the past 

few years.  See [1], [3], [4], [5], [8], [10], [11], [12], [13], 
[14] for example. 
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In most of the literature, the aforementioned 
uncertainties in data transmission networks are usually 
assumed to happen separately.  Very few works have been 
reported regarding the filtering problem for NCSs with 
mixed uncertainties in the measurement transmission 
network. Recently in [15] the robust  estimation for 
uncertain systems with signal transmission delay and data 
packet dropout has been considered.  However, in their 
approach, the filter designed is essentially a continuous-time 
design involving an event-driven zero-order hold (ZOH). In 
[16], the

H∞

H∞ filter design problem is studied for a class of 
networked systems where two kinds of incomplete 
measurements, namely measurements with random delay 
and measurements with stochastic missing phenomenon are 
simultaneously considered. To the best of our knowledge, 
the filtering problems for NCSs with three simultaneous 
mixed uncertainties, i.e. random sensor delay, packet 
dropout and uncertain observation (missing measurement), 
have not been investigated in the literature.  This motivates 
our present work. 

In this paper, we consider the case where any of all 
three types of uncertain observations (sensor delay, packet 
dropout and missing measurement) may occur in a single 
run.  To achieve this aim, we use a finite-state Markov chain 
to model the uncertain system whose state is to be estimated.  
The design of the optimal estimator is then obtained via 
minimizing the approximate expected estimation error 
covariance matrix.  One advantage of this approach is that it 
allows us to handle precedence constraint. 

We also use Markov chain in simulation for the purpose 
of evaluating the performance of the filters designed.  This 
permits us to impose precedence constraints and hence more 
realistically models the real situation.  For example, if a 
measurement packet arrives at discrete time , then it could 
not be arriving again at time because a packet could not 
be arriving twice.  

k
1k +

The organization of the paper is as follows. In the next 
section, we model the complete uncertain system via 
Markov chain and we present the various state equations 
used to model the uncertain system with measurement delay, 
packet dropout and missing measurement. We also discuss 
how the approach proposed in this paper can be readily 
adapted to admit multiple-step sensor delays and packet 
dropouts. In section 3, we present our main result and we 
discuss how a linear time-invariant filter using the same 
approach may be found. In section 4, we give several 
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examples.  Finally in section 5 we give our conclusion.  

II. PROBLEM FORMULATION 
Consider the following discrete time linear time-invariant 
state-space model: 
  0( 1) ( ) ( ), ( 0) ,x k Ax k w k x k+ = + ≤ = x                    (1) 
                                   (2)  ( ) ( ) ( )z k Cx k v k= +
where ( )x k is the state vector, is the measured output, 
and  and are stationary, zero-mean Gaussian  

( )z k
( )w k ( )v k

discrete-time white noise processes with covariance 
matrices: 

[ ][ ( ) ( )] [ , ], ( ) ( ) ( )
TT T T

w vE k k diag k w k v kξ ξ ξ= Λ Λ �

0

,   

                                  (3) [ ( ) ( )] 0,TE k r k rξ ξ = ≠
and the initial condition satisfying the Gaussian probability 
distribution with 
                                (4) 0 0 0[ ] 0, [ ]TE x E x x P= =

We assume that the plant is stable and observable from 
the measured output . ( )z k
     Systems with mixed uncertainties in the measurement 
may be represented by model of the form: 
                           (5)    ( 1) ( ) ( ) ( ) ( ),r rX k A k X k B k W k+ = +

              [ ]( ) ( ) ( ) ( ) 0 ( );r ry k C k X k D k I W k I= + of 

compatible dimension  with [              
(6)                  

]( ) ( 1)
TT Tv k v k −

where we have defined 

             [ ]( 1) ( 1) ( ) ( )
TT T TX k x k x k y k+ = +             (7) 

and .  [( ) ( ) ( ) ( 1)
TT T TW k w k v k v k= − ]

I

⎤
⎥
⎥
⎥⎦

Let  denote the 
four models obtained for the systems with no uncertainty, 
sensor delay, uncertain observations and packet dropout, 
respectively, with the following system matrices: 

[ ( ), ( ), ( ), ( )], 1, 2, 3, 4,q q q qA k B k C k D k q =

                  (8) 1 1

0 0 0 0

( ) 0 0 , ( ) 0 0 0

0 0 0 0z

A I

A k I B k

C

= =

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

         [ ]1( ) 0 0zC k C=                                       (9) 

            of compatible dimensions with 
;                                                                                       

[ ]1 ( ) 0 ;D k I I=

v
                                                                                          (10) 
and  

             (11) 2 2

0 0 0 0

( ) 0 0 , ( ) 0 0 0

0 0 0 0z

A

A k I B k

C I

= =

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

I ⎤
⎥
⎥
⎥⎦

  [ ]2 ( ) 0 0zC k C= ,                                (12) 

    of compatible dimensions with ;                                                                                                           [ ]2 ( ) 0 ;D k I I= v

                                                                                          (13) 

  3 3

0 0 0 0

( ) 0 0 , ( ) 0 0 0

0 0 0 0 0

A I

A k I B k

I

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

               (14) 

              [ ]3 ( ) 0 0 0C k = ,                                       (15) 

      of compatible dimensions with ;                        [ ]3 ( ) 0 ;D k I I= v
                                                                                          (16) 
and 

4 4

0 0 0 0

( ) 0 0 , ( ) 0 0 0

0 0 0 0 0

A I

A k I B k

I

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥  ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎦ ⎣ ⎦

              (17) 

⎣
              [ ]4 ( ) 0 0 ,C k I=                                        (18) 

                                                       (19)  [4 ( ) 0 0D k = ]

Let the probability that the system at time k  is given by 
[ ( ), ( ), ( ), ( )]q q q qA k B k C k D k be qρ . 

Obviously, 
4

1

1q
q

ρ
=

=∑ .     

For ease of illustrating the concept of precedence 
constraint and for purpose of simulation, we define the 
following conditional probability: 
Prob (system is given by [ ( ), ( ), ( ), ( )]q q q qA k B k C k D k at 

time  given system was [  k ( 1), ( 1), ( 1),j j jA k B k C k− − −

( 1)jD k ]− at time 1k − ) = /q jρ .                                      
(20) 
It then follows that given /q jρ , qρ may be computed from 
the following equation: 

              
4

1
/q j j q

j
ρ ρ ρ

=
∑ �  

It should be clarified that in our filter design, we do not 
require the knowledge of /q jρ ’s, only the values of qρ ’s are 
required for the computation of the filter. This is desirable as 
one can often make some good estimations of qρ ’s by 
empirical observations,  experimentations,  and statistical  
analyses but not /q jρ ’s. 
     Remark 2.1:  We note that precedence constraint may 
force some of /q jρ ’s to be zero.  Specifically, consider the 

case where  is given by  (i.e. the packet arrives 
corresponds to current measurement). Then the packet 
arrived at time 

( )y l ( )z l

1l +  cannot be  again since a packet 
cannot arrive in two consecutive times and  has already 

arrived at

( )z l
( )z l

k l= .  Hence we may conclude 2/1 0ρ = . 
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   Let [ ( ), ( ), ( ), ( )]r r r rA k B k C k D k  denote the “real” model 
of system at time .  We may then represent k
[ ( ), ( ), ( ), ( )]r r r rA k B k C k D k as: 

[ ]
4 4

1 1

[ , , , ]; 1,r r r r q q q q q q
q q

A B C D A B C Dα α
= =

=∑ ∑�

0 or 1qα =                                                                        (21) 

Obviously Prob{ ( ) 1} ( )q k q kα ρ= =  and the covariance of  
( )X k  may be written as:  

4

,
1

{ ( ) ( )} { ( ) ( )} ( )T
j X j X

j
E X k X k E k k kβ

=
= Λ Λ∑ �                           

                                          (22) 

                                                   

4

1
( ) 1, ( ) 0 or 1j j

j
k kβ β

=
= =∑

Prob{ ( ) 1} ( 1)q qk kβ ρ= = −                                               (23) 

, ( )X j kΛ  gives the value of  if the true 

system model at time  is [ (  

. 

{ ( ) ( )}TE X k X k

1k − 1), ( 1),j jA k B k− −

( 1), ( 1)]j jC k D k− −

We wish to construct a linear estimator of the form 
        ( 1) ( ) ( ) ( ) ( );s s s sx k A k x k G k y k+ = +

       to be determined                                     (24) (0)sx

to generate  which minimizes 

where . 

( ), 1, 2, ...,sx k k =

[ ( ) ( )]TE e k e k ( ) ( ) ( )se k x k x k= −

III. MAIN RESULT 

A. State Prediction 
Define 

                                            (25) [( ) ( ) ( )
TT T T

sk X k x kζ = ]

WΛ

)k

Note that  

                    (26) 

0 0

[ ( ) ( )] 0 0

0 0

w
T

v

v

E W k W k

Λ

= Λ

Λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

The augmented plant-filter system may then be represented 
as: 
                    (27) ( 1) ( ) ( ) ( ) (F Fk A k k B k Wζ ζ+ = +

    [ ]( ) ( ), 0 0F Fe k k I Iζ= Γ Γ −�              (28) 
where 

    (29)                                                                                                                     
[ ]

0
( ) , ( )

0
r

F F
s r s s r

A
A k B k

G C A G D I
= =

⎡ ⎤ ⎡
⎢ ⎥ ⎢⎣ ⎦ ⎣

rB ⎤
⎥⎦

Given ( )sA k  and , the propagation of the covariance 
matrices for 

( )sG k
( )kζ may be described by the equation 

                       (30) ( 1) ( ) T
F F F Wk A k A Bζ ζΛ + = Λ + Λ

where denotes the covariance matrix of ( )kζΛ ( )kζ . X  is 

independent of sx .  Hence its covariance matrix may be 

given by 0 ,0 0( 1) TkζΓ Λ + Γ  , where 

         0 0 0 ,0, , ,( 1) ( ) T T
F F F Wk A k A B Bζ ζΛ + = Λ + Λ 0,F

and 0,FA  and  are given by (29) with  0,FB 0sA = , 0sG =  

and  has the same number of rows as [0 0IΓ = ] X .  

,F qA ,F q and B  given by (29), with ( ), ( )r rA k B k , 

 replaced with 

Let 

( ) and ( )r rD kC k ( ), ( ), ( )q q qA k B k C k   

respectively.  Then we may derive: and ( )qD k

                , / , , , , ,( 1) ( ) T T
q j F q j F q F q W F qk A k A B Bζ ζΛ + = Λ Λ+

 if ( 2q ≠ and 1j ≠ )                                                       (31) 
Hence 

            
4

, ,
1

( 1) { [ ] ( ) T
q j F q j

j
k E A k Aζ ζβ

=
Λ + = Λ∑ , , }F q

]j

                     , if , or                        (32) , ,
T

F q W F qB B+ Λ 2q ≠

       
4 4

, , , ,
2 2

( 1) { [ ] ( ) } / [T
q j F q j F q

j j
k E A k A Eζ ζβ β

= =
Λ + = Λ∑ ∑                 

                     , if                      (32a)   , ,
T

F q W F qB B+ Λ 2q =

 Then the covariance matrix of ( 1k )ζ +  is 
4

,
1

( 1) ( ) ( 1q q
q

k kζ α
=

)kζΛ + = Λ +∑ .         

The probability of ( 1kζ )Λ +  given by is , ( 1q kζΛ + ) qρ .   

The problem of minimizing  may be 
posed as 

[ ( 1) ( 1)]TE e k e k+ +

( ), ( )
min

G k A ks s
,{ ( 1) }T

F q FTr kζΓ Λ + Γ subject to (32) and (32a) 

and 
      0 , 0 0 , ,0 0( 1) ( 1)T T

q qk kζ ζ 0Γ Λ + Γ − Γ Λ + Γ =             (33) 
Note that (33) takes care of those entries of 

, ( 1q kζ )Λ + which  

is not affected by the choice of sA and sG .  
Remark 3.1:  For computational purposes, we replace (33) 
by (33a) below: 
      0 0 0 0 0, , ,( 1) ( 1)T T

q qk kζ ζ ε 0IΓ Λ + Γ − Γ Λ + Γ − ≤      (33a) 
where ε  is an arbitrarily small positive number to account 
for round-off errors in numerical implementation. 
Apply Schur complement transformation; the above 
minimization problem is equivalent to 
  

( ), ( )
min

G k A ks s
,{ ( 1) }T

F q FTr kζΓ Λ + Γ  subject to  
T
FB
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, , , ,

, , ,
1

,

( 1) ( )

( ) ( ) ( ) 0 0

0

q F q q F q
T

q q F q q
T
F q W

k A k B

M k k A k

B

ζ ζ

ζ ζ
−

−Λ + Φ

Φ −Φ ≤

−Λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�                                                                 
, , , ,

, , ,
1

,

( / ) ( / ) ( ) ( / )

( ) ( / ) ( ) 0 0  

( / ) 0

q F q q F q
T

q F q q
T
F q W

k k A k k k B k k

k A k k k

B k k

ζ ζ

ζ ζ
−

−Λ Φ

Φ −Φ ≤

−Λ

⎡ ⎤
⎢ ⎥

⎢ ⎥⎣ ⎦
                                                                                          (34) 
where  

      ,

4

,
1

( ) [ ] ( )q j j
j

k E kζ ζβ
=

Φ = Λ∑  if  2q ≠

      
4 4

, ,
2 2

( ) ( { [ ] ( )) / [ ]j jq j
j j

k E kζ ζβ β
= =

Φ = Λ∑ ∑  if 2q =  

and 
        (34a)
  

0 0 0 0 0, , ,( 1) ( 1)T T
q qk kζ ζ εΓ Λ + Γ − Γ Λ + Γ − ≤ 0I

) )

)

≤⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

0I

)

0

=⎥

  is the minimum-trace  that 
satisfies the LMI below: 

, ,0 ( 1q kζΛ + , , ( 1q X kζΛ +

,0 ,

, , , ,0 , , ,0

, ,0 ,
1

, ,0

( 1) ( )

( ) ( ) ( ) 0 0

0 (
q q

q X F q q F q
T

F q q
T

F q W

k A k B

M k k A k

B k
ζ

ζ ζ

ζ
−

−Λ + Φ

Φ −Φ

−Λ

⎡ ⎤

If we impose the bound 
                                                       0 0 0 0 0, , ,( 1) ( 1)T T

q qk kζ ζ εΓ Λ + Γ − Γ Λ + Γ − ≤

Then  that satisfies (34) and (34a) 
simultaneously must satisfy (subject to numerical round-off 
error): 

, ( 1q kζΛ +

        0 0 0 0, , ,( 1) ( 1)T T
q qk kζ ζΓ Λ + Γ = Γ Λ + Γ

Solve (34) to find with the initial condition: ( )sG k

 1,2,3,4                 (35)   

0 0

0 0(0) ;

0 0
0 0

0 0 0
0 0 0

q
v

P P

P P
q

Iε

Λ =

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥Λ
⎢ ⎥
⎣ ⎦

where we have assumed ( 1) (0)x x− =  and  in 
deriving the above initial condition. 

( 1) ( 1)y v− = −

B. Measurement Update 
 
     To incorporate measurement updates, we set 

                               

(36) 
[ ]

0
( / ) ,

( ) ( )

0
( / )

( ) ( ) 0

F
r

F
r

I
A k k

L k C k I

B k k
L k D k I

⎡ ⎤
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

�

�

The corresponding condition to (34)-(34a) is then 
( / )qM k k �  

⎢ ⎥       

; q = 1,2,3,4                                                                       (37)            

    0 0 0 0 0, , ,( / ) ( / ) 0T T
q qk k k k Iζ ζ εΓ Λ Γ − Γ Λ Γ − ≤         

(37a)                                                                                              
where we have similarly defined  as the 

minimum-trace  that satisfies 
0, ( / )q k kΛ

( / )q k kΛ

  0

, , ,

, , ,
1

( / ) ( ) 0

( / ) ( ) ( ) 0 0

0 0

q X q

q q q

W

k k k

M k k k k
ζ ζ

ζ ζ
−

−Λ Φ

Φ −Φ ≤

−Λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�                       

                                                                           ; ,j q = 1,2,3,4 
Thus, we may use the following recursive equations to find 
a sub-optimal ( )sA k , and : ( )sG k ( )L k

C. Conceptual Algorithm 
Initialization: 
       Use initial condition equal to (35)                     
      0(0) [ ] 0sx E x= =                                      (38) 

     given by:  (0), (0 / 0)qL Λ

 min s.t.  (37) and  (37a). 
4

1
,{ (0 / 0) T

q F q F
q

Tr ζρ
=

Γ Λ Γ∑ } 

                                          (39) 
4

1
,(0 / 0) (0 / 0)q q

q
ζ ζα

=
Λ = Λ∑

      (0 / 0) (0) (0) (0)s sx x L y= +                                       (40) 
 
State Prediction: 
       ,( ), ( ), ( 1) s s qA k G k kζΛ + given by:  

min  s.t.  (34) and (34a).                            
4

1
,{ ( 1) T

q F q F
q

Tr kζρ
=

Γ Λ + Γ∑ } 

)        ( 1) ( ) ( ) ( ) (s s s sx k A k x k G k y+ = + k

ζ

              (41) 
Prediction Error Covariance Bound Update: 

                                  (42) 
4

1
,( ) ( )q q

q
k kζ α

=
Λ = Λ∑

Filter Gain Computation and Error Covariance Bound with  
Measurement Update: 
      Update to k 1k +  
      given by:  ( ), ( / )qL k k kΛ

min s.t.  (37) and  (37a). 
4

1
,{ ( / ) T

q F q F
q

Tr k kζρ
=

Γ Λ Γ∑ } 

ζ     
4

,
1

( / ) ( ) ( / )q q
q

k k k k kζ ρ
=

Λ = Λ∑                                       (43) 

State Update with Measurement: 

3408



 
 

 

       ( / ) ( ) ( ) ( )s sx k k x k L k y k= +                        (44) 
Remark 3.2:  While ε  is included in (35) to make (0)qΛ  
positive definite, in practice it may also be used t account for 
computational round-off errors. 

Remark 3.3: The above approach can be readily adapted 
to admit multiple-step sensor delays and packet dropouts by 
defining:           

( 1) [ ( 1) ( ) ( ) ( )T T T TX k x k x k x k m y k+ = + −…         

 (45)      ( 1) ( )]T T Ty k y k m− … −   

[ ]( ) ( ) ( 1) ... ( 1)( ) T T T Tw k v k v k v k mW k − −= −

=

  

                                                                                    (46)                        
  where is the maximum number of delay-steps that may 
occur.  Note that we need to incorporate ,

m
( )y k   

( 1),..., ( )y k y k m− − as part of because we need to 
account for the combined effect of both delays and packet 
dropouts, as well as precedence constraints.  The number of 
LMI constraints we have to work with increases with the 
number of delayed steps allowed and this certainly would 
diminish the attractiveness of the approach if is large.  
The alternative is to use an approximately optimal filter 
which we will be presented in a separate paper. 

( 1)X k +

m

IV. EXAMPLE 
To illustrate the effectiveness of the proposed method, we 

present two examples for different systems and different 
uncertainty probabilities.  

 
Example 1:  In this example we consider the example of 

Sahebsara et al, [2]. We consider a discrete-time LTI 
system: 

[ ]

1.7240 0.7788 1
( 1) ( ) ( )

1 0 0

( ) 0.0286 0.0264 ( ) 0.2 ( ) ; (0) [0 0]T

x k x k w k

z k x k w k x

−
+ = +

= +

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  

   Note that in their formulation, they have assumed the 
process noise and the measurement noise to be identical and 
hence we have also modified our formulation accordingly 
(the details are left to the Reader) to facilitate comparisons. 
In the simulation, we take the noise covariance equal to 1. 
   We construct a filter based on a four-model uncertainty 
model with  (with probability1q = 1 0.8ρ = ), 2q =  
(with 2 0.02ρ = ),  (with3q = 3 0.09ρ = ) and 4q =  
(with 4 0.09ρ = ). (For notational simplicity, we shall denote 
a model using , ,  and as 1q = 2q = 3q = 4q = 1234q = .) 
and then we evaluate its  performance with 1234q =  
simulation. The following conditional probabilities are 
assumed for the system: 1/1 0.8ρ = , 2/1 0ρ = ,  3/1 0.1ρ = , 

4/1 0.1ρ = ; 1/ 2 0.8ρ = , 2/2 0.1ρ = , 3/2 0.05ρ = , 4/2 0.05ρ = ; 

1/3 0.8ρ = , 2/3 0.1ρ = ,  3/3 0.05ρ = , 4/3 0.05ρ =   , 1/ 4 0.8ρ = , 

2/4 0.1ρ = ,  3/4 0.05ρ = and 4/ 4 0.05ρ = . 

    The result with is depicted in figure 1-1 
(with solid line depicting the real state, broken line depicting 
the state estimates).  

(0) [2 2]T
sx = −

Example 2:  In this example, we construct another filter for 
the following discrete-time LTI system [17]:  

           

[ ]

0.8 0 0.6
( 1) ( ) ( )

0.9 0.2 0.5

( ) 1 1 ( ) ( ) ; (0) [0 0]T

x k x k

z k x k v k x

+ = +

= + =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

w k
 

with the noise covariances and 1wΛ = 0.25vΛ =  and  
measurement uncertainty probabilities 1 0.7ρ = , 

2 0.045ρ = , 3 0.085ρ = and 4 0.17ρ = and  we investigate 
its  performance with the following conditional probabilities 
which are assumed for the system: 1/1 0.7ρ = , 2/1 0ρ = ,  

3/1 0.1ρ = , 4/1 0.2ρ = ; 1/ 2 0.7ρ = , 2/ 2 0.15ρ = , 3/2 0.05ρ = , 

4/2 0.1ρ = ; 1/3 0.7ρ = , 2/3 0.15ρ = ,  3/3 0.05ρ = , 4/3 0.1ρ =   
, 1/ 4 0.7ρ = , 2/4 0.15ρ = ,  3/4 0.05ρ = and 4/4 0.1ρ = .  The 

result with  is depicted in figure 2-1. (0) [2 2]T
sx = −

As can be seen from the figures, the filter gives quite 
satisfactory performance for both systems with even high 
probability of measurement uncertainty. 
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Figure 1-1 Actual and estimated states for: (a) The first state; (b) The 
second state 
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Figure 2-1 Actual and estimated states for: (a) The first state; (b) The 
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V. CONCLUSION 
In this paper we have considered the optimal Kalman 

filtering problem where the measurements may be subject to 
random sensor delay, missing data and packet dropout in 
each run.  Simulations are conducted to evaluate and 
demonstrate the performance of the proposed approach. 
   The optimal filter is linear (whose gain does not depend 
on measurements) and may be pre-computed offline (and 
stored) before the filtering process begins.  Given the 
present state of computing technology where memory costs 
are cheap (and getting cheaper and memory speed getting 
faster by leaps and bounds), the filtering scheme is, 
therefore, applicable in practice when the filtering time-
horizon is not excessively long.  For filtering time-horizon 
which is very long, the suitable choice is then the steady-
state LTI filter. 
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