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Abstract— This paper presents a novel Markovian jump
model for developing routing algorithms in mobile networks
that encounter variable number of nodes as well as changing
number of destinations. The changes in the number of active
destination nodes are represented by singular switching systems
where a unified H∞ decentralized routing control is proposed
and implemented. The resulting optimization problem and
the corresponding associated physical constraints are then
expressed as Linear Matrix Inequality (LMI) conditions.

I. INTRODUCTION

In recent years, autonomous mobile wireless networks

which has diverse applications from space missions to in-

telligence, surveillance, and reconnaissance (ISR) missions

have stimulated attractive research topics on self-organizing

networks such as ad hoc wireless networks. Routing problem

which is one of the main challenges in mobile networks,

in general deals with minimization of certain objective

functions such as shortest path, link congestion, end-to-end

delay, and packet loss [1], [2]. In [3], the dynamic routing

problem was defined as a team optimization problem and an

approximate solution based on neural networks was obtained.

In [4], the authors have introduced robust centralized as well

as decentralized routing control strategies for networks with

a fixed topology based on the minimization of the worst-case

queueing length, which is related to the queueing delays.

In mobile networks, the neighboring sets of nodes may

change due to the mobility and variations in the network

topology, left over energy resources, and fading or increasing

number of nodes. Therefore, the dynamics of the network

characterizing the traffic flow will become time varying. In

this paper, the approach introduced in [4] is generalized to

mobile networks. To achieve this goal, the mobile network

routing model is described as a Markovian jump linear sys-

tem (MJLS). A decentralized H∞ control is then introduced

to stabilize the network and provide a routing solution for

mobile networks.

Recently, considerable attention has been devoted to

MJLSs with time-delays [5], [6] (and references therein).

In [6], a sufficient condition for exponential estimates of

a class of MJLSs systems with time-varying state delays

was introduced. In [7], a stabilizing control for MJLSs

with input delays was presented. However, no switching
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gain was designed for state feedback namely, a fixed gain

K was found for all the switching modes of the system

resulting in conservative conditions that potentially reduce

the possibility of obtaining a feasible solution. To the best

of our knowledge, no decentralized H∞ control has been

introduced in the literature for MJLSs with time-varying

delays.

The queueing dynamics considered in [4] was derived

based on the fluid flow conservation principle. Each state

of the subsystem (node) represents a queue corresponding

to a given destination node. Another issue that is addressed

in this paper is routing problem with changing number of

destinations nodes. In other words, for some destination

nodes no external traffic has to be routed in certain periods.

However, due to system dynamics and time-delays some

messages may still be present in queues that should be

routed to these destinations as quickly as possible. Given

that in the considered dynamical model defined in [4] the

states are queueing length at each node that corresponds to a

destination node, the number of states depends on the active

destination nodes. On the other hands, simply eliminating

the inactive destination states leads to loss of integrity and

stability of the overall system. It also ignores the leftover

messages that are kept in the eliminated queues. To cope with

these problems, we propose to model such network behavior

as a singular MJLS.

A delay dependent stabilization for singularly perturbed

MJLSs with a fixed singular matrix was presented in [8]. The

H∞ control scheme for a singular system with time delays

was developed for MJLSs in [9]. In [10], some robust control

strategies are introduced for stochastic singular systems with

random abrupt changes. However, these systems are not

affected by delay.

The Markovian jump model with time-varying delays that

is introduced in this paper will enable one to develop an

appropriate queueing dynamics for the network routing traffic

problem to simultaneously address random mobility of the

nodes as well as varying the number of the destination nodes.

II. PROBLEM FORMULATION

According to the flow conservation law, a network traffic

dynamics for a given node can be expressed as [4]:

ẋi = Biui(t) + Bwiwi(t) +
∑

j∈℘(i)

Bdijuj(t − τji(t)) (1)

where each node is considered as representing a subsystem

that includes all the queues present in the node corresponding

to different destinations. Therefore, xi denotes the queue
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lengths in node i for different destinations, ui(t) denotes the

flows sent from node i, τji(t) is an unknown but bounded

time-varying total delay in transmitting, propagating, and

processing messages at node i from node j, wi(t) is the

external input flow entering node i, and Bi ∈ ℜn×l and

Bdij ∈ ℜn×l represent network connectivity matrices. In

fact, each element of Bi(Bdij) is equal to −1(1) if its

corresponding flow is outgoing (incoming) flow to node i and

is zero otherwise, Bwi = In×n, and ℘(i) is the neighboring

set of node i.

The H∞ robust optimal control design strategy is a

suitable framework for dealing with system uncertainties and

unknown time-delays. Therefore, at each node (subsystem),

the routing problem can be stated as that of finding an

H∞ state feedback control, ui = Kixi, such that it simul-

taneously guarantees the stability of the network traffic in

the presence of time-varying delays and minimizes a global

objective function which is considered as the worst-case

queueing length due to external inputs. In other words, by

selecting the regulated output as zi(t) = Cixi(t), where Ci

is a weight matrix that is full rank, the routing problem can

be cast into the following optimization problem:

min γ s.t. J(w) < 0 (2)

J(w) =

∫ ∞

0

(zT z − γ2wT w)dt, γ > 0

where z(t) = vec{zi(t)}, w(t) = vec{wi(t)}.

When the topology of a network changes due to either

node mobility, loss of node power, or addition of new nodes,

the neighboring sets ℘(i), and consequently the connectivity

matrices Bi and Bdij in (1) will change. On the other hand,

the nature of node mobility is generally not deterministic and

involves random transitions and switches. Furthermore, only

the existing neighboring sets ℘(i) and connectivity matrices

Bi and Bdij do affect the selection of new neighboring sets

in the next transition step. In other words, changes in a

neighboring set are independent from previous neighboring

sets. Therefore, a Markovian jump process is a viable frame-

work for describing and modeling the mobility behavior.

Consequently, the dynamics of system (1) is now modified

to the following MJLS representation for mobile networks

ẋi(t) = Bi(r(t))ui(t) + Bwi
(r(t))wi(t)

+
∑

j∈℘r(t)(i)

Bdij(r(t))uj(t − τji(t)) (3)

where r(t) is a function that represents the rule for changing

the neighboring sets. Let us consider r(t) as a continues-

time Markov process taking values in a finite space S =
{1, ...,M} which describes the switching between different

modes, and whose evolution is governed by the following

probability transitions:

P[r(t + h) = k|r(t) = l] =

{

πklh + o(h) k 6= l
1 + πkkh + o(h) k = l

}

where πkl > 0 is the transition rate from mode k to mode

l, πkk = −∑M

l=1,l 6=k πkl, and o(h) is a function satisfying

limh→0
o(h)

h
= 0. To simplify the notation, we denote Bir

to represent Bi(r(t)) when r(t) = r. This notation is also

applied to other matrices. Let us now define the concept of

H∞ control of stochastic systems.

Definition 1 [7]: Let γ > 0 be a positive constant. System
(3) is said to be stochastically stable with γ-disturbance at-
tenuation if there exits a constant M(φ, r0) with M(0, r0) =
0 such that

‖z‖E2 =≤ [γ2‖w(t)‖2 + M(φ, r0)]
1/2

(4)

A typical set of constraints expressing the physical proper-

ties of the network traffic are listed below

ui(t) ≥ 0 (5)

xi(t) ≥ 0 (6)

Gki
ui(t) ≤ cki(r(t)) ki = 1, ..., li, i = 1, ..., n(7)

Qdjixi(t) ≤ xmaxdji
(8)

where xmaxdi
= qd

maxi
and li is number of links in

subsystem i. The first two constraints (i.e., (5) and (6)) are

the so-called non-negativity constraints and are introduced

for obvious reasons. The capacity constraint (7) states that

the total flow in each link cannot exceed its capacity cki(r(t))
at each mode. The last condition, i.e., (8) indicates that to

avoid packet loss the length of the queue should always

remain smaller than a maximum value that is specified for the

buffer xmaxdji
. Therefore, Gki

should be defined such that by

multiplying Gki
with ui one yields the total flows that should

go through the link ki, and Qdji should be defined such that

Qdjixi leads to the queueing length of the buffer dji, for

d = 1, ..., d̄, i, j = 1, ..., n. We now state our assumption on

the characteristics of the delay function.

Assumption 1: The delays τji(t) are unknown differen-

tiable functions that for all t ≥ 0 satisfy

0 ≤ max{τji(t)} ≤ hji, max{|τ̇ji(t)|} ≤ dji < 1

Even though, the above delays are not known a priori and

are time-varying, the utilization of efficient processes and

processors make them not to vary quickly when compared

to the main source of the delay which is the queueing delay.

Therefore, assuming that |τ̇ji(t)| is less than 1 s is quite

realistic for real application. For simplicity, it is also assumed

that the delay between any two nodes in both directions are

the same, i.e. τji = τij . For more details refer to [11].

The following lemma is used in our subsequent results

whose proof can be found in [8].

Lemma 1: [8] For any matrices U, V ∈ Rn×n with

V > 0, one has UV −1UT ≥ U + UT − V .

It is worth noting that the neighbor set of each node may

vary. Therefore, the interconnections of each subsystem in

the MJLS model (3) is mode-dependent. This implies that

the interconnected terms vary at each switching mode. In the

next section a decentralized H∞ control for the MJLS with

mode-dependent interconnected terms is proposed to provide

a routing solution that guarantees internal stability of the

traffic network and that minimizes the worst case network

queueing length. Appropriate LMIs are also provided to
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satisfy the associated physical constraints.

III. A MARKOVIAN JUMP H∞ CONTROL STRATEGY FOR

ROUTING PROBLEMS IN MOBILE NETWORKS

Theorem 1: Consider a mobile traffic network whose
dynamics is governed by (3) for which wi ∈ L2[0,∞). The
state feedback routing controllers ui = Kirxi with the gain
of Kir = MirY

−1
ir guarantee that the closed-loop system

is stochastically stable and J(w) < 0, provided that there
exist matrices Mir, and symmetric positive definite matrices
Yir, R̄ir, Q̄i for i = 1, ..., n, r = 1, ...,M such that the
following LMI conditions are satisfied

Wir1 =



















θir1 θir2 Bwik Y T
ik CT

ik θir3 θir4 θir5

∗ θir6 0 0 0 0 0
∗ ∗ −γI 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ θir7 0 0
∗ ∗ ∗ ∗ ∗ θir8 0
∗ ∗ ∗ ∗ ∗ ∗ θir9



















< 0

Wir2 =

[

θir10 π̃k

∗ R̃ir

]

≥ 0 (9)

where θir1 = MT
ikBT

ik + BikMik + πkkYik,θir2 = B̃dikR̃ik,

θir3 = (π̄kYik)T , θir4 = mikMT
ik, θir5 = hjiM

T
ik

θir6 = −(1 − dji)R̃ik, θir8 = −mikR̄ik θir7 =

−diag{Yi1, ..., Yi(k−1), Yi(k+1), ..., YiM}, θir9 = −hjiQ̄i,

θir10 = 2(1 − mikπkk)I − Q̄i + mikπkkR̄ik π̄k =

[
√

πk1 ...
√

πk(k−1)
√

πk(k+1) ...
√

πkM ]T π̃k =

[
√

mi1πk1 ...
√

mi(k−1)πk(k−1)
√

mi(k+1)πi(k+1) ...
√

miMπkM ]T ,

mik = number of subsystems where the subsystem i
belongs to their ℘k(.) in mode k, R̃ik = diagj∈℘k(i){R̄jk},

M̃jk = diagj ∈ ℘k(i){Mjk}, and B̃dik = vec{Bdijk}, for

j ∈ ℘k(i).

Proof: The proof is provided in Appendix I.

A. LMI Conditions for the Physical Constraints

In this section, the physical constraints (5)-(8) are repre-

sented as LMI feasibility conditions.

1) Capacity Constraint: The capacity constraint for each

subsystem is defined in (7). Consider the following ellipsoid

for a selected ̺i > 0, i.e., Σi = {xi(t)|xT
i (t)Y −1

ir xi(t) ≤
̺ir, Yir = Y T

ir > 0}. By applying invariant set method, and

performing some manipulations the capacity constraints for

a mobile network can be expressed by the following LMI

conditions for i = 1, ..., n, r = 1, ...,M, ki = 1, ..., li

Wc1ir , γ ≤ max
i,r

{(̺ir − L2)/L1} (10)

Wc2irki
,

[

Yir MT
irG

T
kir

GkirMir c2
kir/̺ir

]

≥ 0 (11)

where L1 =
∫ ∞

0
wT

i (t)wi(t)dt is an upper bound on the

energy of the external input wi(t), and L2 = V (x0, r0) . For

further details refer to [12].

2) Upper Bound on the Buffer Size: Following along

the similar lines as those used for the capacity constraint

and considering the ellipsoid considered for the capacity

constraint, equation (8) can be satisfied by the following LMI

conditions

Wc3ir ,

[

Yir Y T
ir QT

di

QdiYir x2
maxdi

/̺ir

]

≥ 0 (12)

3) Non-negative Orthant Stability: The non-negativity

constraint (6) can be expressed in terms of the non-negative

orthant stability condition that is mentioned in [13]. Noting

the state feedback controller is ui = Kirxi, by selecting the

positive definite matrix Yir to be a diagonal matrix and by

setting Kir = MirY
−1
ir for subsystem i the (essential) non-

negativity of (BdijrKir) BirKir, which ensures the non-

negativity constraint (6), can be expressed as follows

Wc4ir , (BirMir)sm ≥ 0, s 6= m, i = 1, ..., n, (13)

Wc5ir , (BdijrMjr)sm ≥ 0, m, s = 1, ..., d̄, j ∈ ℘r(i)(14)

Once the non-negativity condition xi ≥ 0 is satisfied, the

second non-negativity condition ui ≥ 0, as given by (5) can

be easily satisfied if we specify Kijr > 0. Therefore, by

noting that Yir is a diagonal positive definite matrix, (5) is

satisfied if the following LMI condition holds

Wc6ir , Mir(sm) ≥ 0, s, m = 1, ..., d̄ (15)

Remark 1: It should be noted that since the elements of

Bir are either −1 or 0, satisfying condition (15) results in

a square matrix BirMir with negative or zero elements.

On the other hand, satisfying Wc4ir leads to a diagonal

negative definite matrix BirMir. This is also validated by

the fact that the queues at each node are decoupled from

each other. Therefore, BirKir should always be diagonal.

Moreover, since the elements of Bdijr are either 1 or 0,

satisfying condition (15) results in a square matrix BdijrMir

with positive or zero elements. Therefore, Wc5ir is trivially

satisfied.

Consequently, the above results can be summarized by the

following theorem.

Theorem 2: An H∞ routing control scheme for a traffic

network that is governed by the queueing model (3) is

obtained by solving the following optimization problem:

min
Mir,Yir, R̄ir, Q̄i

γ (16)

subject to the selection of positive definite matrices

Yir, R̄ir, Q̄i, and the LMI conditions for

Wir1,Wir2, Wc1ir, Wc2irki
, Wc3ir,Wc4ir, and Wc6ir

for i = 1, ..., n, r = 1, ...,M , as described by equations

(9)-(13), and (15), respectively.

Proof: The proof follows along the lines given in this section.

�

IV. H∞ CONTROL STRATEGY FOR MOBILE NETWORKS

ROUTING WITH VARIABLE DESTINATION NODES

In mobile networks, occasionally for some destination

nodes no external traffic has to be routed in certain periods.

However, given the closed-loop system dynamics still some

messages may be present in queues that should be routed

to their destinations as quickly as possible. Moreover, in the

dynamical model (3) the states are defined as queueing length
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at each node corresponding to a destination node. Therefore,

the number of states depends on the active destination

nodes. On the other hand, simply neglecting and deleting the

corresponding states associated with the inactive destinations

can lead to loss of integrity and stability of the overall

system. This will also lead to ignoring the leftover messages

that are kept in the eliminated queues. To cope with these

issues we propose to model and represent the behavior of

the network as a singular MJLS which is given below

E(r(t))ẋi(t) = Bi(r(t))ui(t) + Bwi
(r(t))wi(t) (17)

+
∑

j∈℘r(t)(i)

Bdij(r(t))uj(t − τji(t))

where E(r(t)) is a diagonal matrix that is specified according

to the following two scenarios:

(a) Regular mobile networks: In this case we have

E(r(t)) := I;

(b) Varying number of destination nodes: In this case some

destination nodes become inactive. Therefore,

E(r(t)) := diag{ej(r(t))} , where

ej(r(t)) =







1 if the queue is associated
with an active destination node

0 otherwise

Hence, when a destination node becomes inactive (active),

the dynamics switch from regular to singular (singular to

regular). On the other hand, to ensure the existence of a

unique solution for singular MJLSs, piecewise regularity

and piecewise impulse-free conditions should be investigated

at each switching mode. The following lemma provides a

necessary and sufficient condition for satisfying the regularity

and piecewise impulsive-free conditions.

Lemma 2: [10] System (17) with the state feedback con-

trol law ui = Kirxi satisfies the piecewise regularity and

piecewise impulse-free conditions if and only if Acli =
BirKir and Acli + Adcli are nonsingular, where Adcli =
∑

j∈℘(i) Bdij(r(t))Kjr.

In the following subsequent section a decentralized routing

controller for system (17) is proposed.

A. A Decentralized H∞ Control of Singular Time-Varying

Delay Systems with Markovian Jump Dynamics

Theorem 3: The fluid flow model of a traffic network

governed by (17) with w ∈ L2[0,∞) is stochastically

stabilizable, piecewise regular, and piecewise impulse-free if

the decentralized state feedback routing control is designed

as ui = Kirxi with an L2-gain that is less than γ, and

provided that there exist matrices Mir, nonsingular matrices

Yir and symmetric positive definite matrices R̄ir, Q̄i for

i = 1, ..., n, r = 1, ...,M such that the following LMI

conditions hold ErY
T
ir = YirE

T
r > 0

Wir1 = (18)


















θir1 θir2 Bwir
Y T

ir CT
ir θir3 θir4 θir5

∗ θir6 0 0 0 0 0
∗ ∗ −γI 0 0 0 0
∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ θir7 0 0
∗ ∗ ∗ ∗ ∗ θir8 0
∗ ∗ ∗ ∗ ∗ ∗ θir9



















< 0

Wir2 =





MT
irBT

ir + BirMir B̃dirM̃jr Yir

∗ −2Yjr + I 0
∗ ∗ −I



 < 0 (19)

Wir3 =

[

θir10 π̃r

∗ R̃ir

]

≥ 0 (20)

where θir1 = MT
irB

T
ir + BirMir + πrrErYir, θir2 =

B̃dirR̃ir, θir3 = (π̄rYir)
T , θir4 = mikMT

ir , θir5 =
hjiM

T
ir , θir6 = −(1 − dji)R̃ir, θir8 = −mikR̄ik, θir7 =

−diag{Yi1, ..., Yi(r−1), Yi(r+1), ..., YiM}, θir9 = −hjiQ̄i,

θir10 = 2(1 − mirπrr)I − Q̄i + mirπrrR̄ir, π̄r =
[
√

πr1E1...
√

πr(r−1)E(r−1)
√

πr(r+1)E(r+1)...
√

πrMEM ]T ,

π̃r = [
√

mi1πr1 ...
√

mi(r−1)πr(r−1)
√

mi(r+1)πi(r+1)

...
√

miMπrM ]T , mir = number of subsystems that sub-

system i belongs to their ℘r(.) in mode r, R̃ir =
diagj∈℘r(i){R̄jr}, M̃jr = diagj ∈ ℘(i){Mjr}, and B̃dir =
vec{Bdijr}, for j ∈ ℘r(i).

Moreover, the robust decentralized state feedback con-

troller gain is given by Kir = MirY
−1
ir .

Proof: The proof is provided in Appendix II.

B. LMI Conditions for the Physical Constraints

1) Capacity Constraint: To guarantee the capacity con-

straint for each subsystem, i.e., (7), let us consider the

following ellipsoid for a selected ̺i > 0, namely Σi =
{xi(t)|

∫ t

t−τij
xT

i (s)KT
irR̄

−1
ir Kirxi(s)ds ≤ ̺ir, R̄ir = R̄T

ir >

0}. By performing some manipulations that are mentioned

in details in [12], the capacity constraints for the subsystem

i can be expressed as the following LMI conditions

Wc1ir , γ ≤ max
i,r

{(̺ir − L2)/L1}, r = 1, ..., M (21)

Wc2irki
,

[

2I − R̄ir GT
kir

Gkir hic
2
kir/̺ir

]

≥ 0, ki = 1, ..., li (22)

where L1 =
∫ ∞

0
wT

i (t)wi(t)dt is an upper bound on the

energy of the external input wi(t), and L2 = V (x0, r0).

2) Upper Bound on the Buffer Size: Following along the

lines indicated in [12], for each subsystem the following LMI

conditions are obtained to guarantee that the queues do not

exceed the upper bound of the buffer size, namely

Wc3ir ,

[

α1 (M̄irMir)
−1M̄ir

M̄T
ir(M̄irMir)

−T 2I − R̄ir

]

≥ 0 (23)

α1 = 4I − 2Yir − (QT
diQdi)̺ir/(hix

2
maxdi

), d = 1, ..., d̄,

where M̄ir is a selected matrix satisfying

(M̄irMirY
−1
ir )−1M̄irui = xi.

3) Non-Negative Orthant Stability: In switching modes

when the matrix Er is full rank, i.e., corresponding to the

regular dynamics, the associated LMI conditions for guaran-

teeing non-negativeness of the states are defined similar to

the conditions (13) and (14). However, if Er is a singular

matrix, the state xi is partitioned into two components as

follows: xi = [xT
i1 xT

i2]
T , where xi1 is the queue associated

with the active destination nodes and xi2 is the queue asso-

ciated with the inactive destination nodes. We furthermore

partition the state vector gain into Kir = [Kir1 Kir2] with
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appropriate dimensions for Kir1 and Kir2 according to xi1

and xi2, respectively. It should be noted that the queueing

dynamics corresponding to the inactive destinations do not

receive any external stimuli, i.e., wi2 = 0. Consequently, the

closed-loop dynamics of (17) can be expressed according to

ẋi1 = Bir1Kir1xi1(t) +
n

∑

i=1

Bdijr1Kjr1xj1(t − τ(t)) + Biw1wi1(t)

0 = Bir2Kir2xi2(t) +

n
∑

i=1

Bdijr2Kjr2xj2(t − τ(t))

By invoking the non-negative orthant theorem indicated in

[13], non-negativity of the queueing length can be guaranteed

by the following LMI conditions:

Wc4ir , (Bir1Mir1)sm ≥ 0, s 6= m, i = 1, ..., n (24)

Wc5ir , (Bdijr1Mjr1)sm ≥ 0, m, s = 1, ..., d̄, j ∈ ℘r(i) (25)

Wc6ir ,

{

(Bir2Mir2)sm ≤ 0 s, m = 1, ..., d̄, r ∈ S̄

(Bir2Mir2)sm ≥ 0 s, m = 1, ..., d̄, r ∈ S − S̄,
(26)

Wc7ir , (Bdijr2Mjr2)sm ≥ 0, i, s, m = 1, ..., d̄, j ∈ ℘r(i) (27)

where S̄ is the set of modes in which Er is singular.

Provided that the non-negativity condition xi ≥ 0 is

satisfied, ui ≥ 0 is guaranteed by the following LMI

conditions

Wc8ir , Mir(sm) ≥ 0, s, m = 1, ..., d̄, (28)

To summarize, the following theorem presents our robust

routing control strategy that corresponds to the mobile net-

work dynamics (17) and satisfies the constraints (5)-(8).

Theorem 4: An H∞ routing control design for a traffic

network that is governed by the queueing model (17) is

obtained by solving the following optimization problem:

min
Mir,Yir, R̄ir, Q̄i

γ (29)

subject to the selection of positive definite matri-

ces R̄ir, Q̄i, and the LMI conditions for Wir1 −
Wir3, Wc1ir, Wc2irk, Wc3ir,Wc4ir, Wc6ir and Wc8ir for

i = 1, ..., n, r = 1, ...,M , as described by equations (18)-

(24), (26), and (28), respectively.

Proof: The proof follows along the constructive lines that

were derived in this section. �

V. SIMULATION RESULTS

Example 1: Consider a scenario of an unmanned network

having 50 nodes that are partitioned into three teams covering

an area of 8000m× 12000m. The first team which includes

the nodes 1−10 is fixed, the second team includes the nodes

11− 30 moves towards north-east, and the third team which

contains the nodes 31−50 moves towards north. It is assumed

that the network remains connected at all times. The nominal

communication range for each node is 484 m, the capacity

is 1 Mbps, and the maximum buffer size is 450 kbit. The

transition mode is selected as πrj = 0.002 for r = j ± 1.

The total simulation duration is 700 s for each run. The

destination nodes are 7 and 10. For each input flow, the delay

function is specified by τ(t) = 3 + 0.8|sin(t)| s.

I: Percentage of messages that are lost for 139680 kbit traffic

load corresponding to different node speeds
Second team max speed (m/s) 20 40 60

% for our proposed method 13.49 22.75 25.32

% for OLSR 15.92 23.17 28.98

% for AODV 18.12 23.67 26.7

The traffic load for each node is based on Poisson distribu-

tion with the rate of λ = 300 bytes/s for 600 s. We assume

that the maximum speeds are 0, 10 m/s and 20 m/s for

the mobile nodes in teams one, two and three, respectively.

The simulations are repeated when the maximum speeds are

increased by factors of two and three times of the above

values. The maximum speed of the second team is used as an

index for comparison. Percentage of total messages that are

lost for 139680 kbit traffic load using our proposed routing

algorithm, Ad hoc On Demand Distance Vector (AODV)

[14], and Optimized Link State Routing protocol (OLSR)

[15] corresponding to different node speeds are illustrated in

Table I. The results confirm that by increasing the speed of

nodes the proportion of dropped messages is also increased.

It also follows that our proposed scheme can route messages

with fewer losses when compared with the AODV and the

OLSR methods.

APPENDIX I

PROOF OF THEOREM 1

Denote C[−hji, 0] as the space of continuous functions on

the interval [−hji, 0]. Let us define a process in C[−hji, 0]
by xis(t) = xi(s + t), t − τij ≤ s ≤ t to cast the dynamics

(3) with time-delays into the framework of Markov process

[7]. Consider the following Lyapunov-Krasovskii functional

candidate

V (xt, rt) = V1 + V2 + V3 (30)

V1 =

n
∑

i=1

xT
i (t)Pirt

xi(t)

V2 =
n

∑

i=1

∑

j∈℘rt
(i)

∫ t

t−τji

uT
j (s)Rjrt

uj(s)ds

V3 =
n

∑

i=1

∫ hij

0

(hij − σ)uT
i (t − σ)Qiui(t − σ)dσ

where r(t) = (rs, t − 2τ ≤ s ≤ t). To achieve the H∞

objective function (4), one should show

J1 = AV (xt, rt) + zT (t)z(t) − γwT (t)w(t) < 0 (31)

where A is the infinitesimal generator of {(xit, rt), t ≥ 0}
[10]. Now assuming

n
∑

i=1

∫ t

t−τij(t)

uT
i (s)Qiui(s)ds ≥ (32)

n
∑

i=1

M
∑

k=1

πrtk

∑

j∈℘k(i)

∫ T

t−τji(t)

uT
j (s)RikuT

j (s)ds
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and by following some manipulations, one gets

J1 ≤
n

∑

i=1

XT
i (t)L̄irt

Xi(t)

where

Xi = [xT
i (t) UT

j (t − τi(t)) wT
i (t)]T ,

UT
j (t − τi(t)) := vec{uT

j (t − τji(t))} for j ∈ ℘rt(i)

L̄ik =











Ωi1 Ωi2 PikBwik
CT

ik Ωi3

∗ Ωi4 0 0 0
∗ ∗ −γI 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ Ωi5











< 0 (33)

Ωi1 = (BikKik)T Pik + Pik(BikKik) + KT
ik[hjiQi +

mikRik]Kik +πkkPik, Ωi2 = PikB̃dik, Ωi3 = [
√

πk1Pi1

...
√

πk(k−1)Pi(k−1)
√

πk(k+1)Pi(k+1) ...
√

πkMPiM ]T ,

Ωi4 = −diagj∈℘k(i){(1 − dji)Rjk}, Ωi5 =
−diag{Pi1, ..., Pi(k−1), Pi(k+1), ..., PiM}.

Now, let Kik = MikY −1
ik , Pik = Y −1

ik , Rik = R̄−1
ik , Qi =

Q̄−1
i , ¯̄Rik = vec{R̄jk} for j ∈ ℘k(i), Ȳi = vec{Yil}

for l = 1, ..., (p − 1), (p + 1), ...,M . Then, pre and post

multiplying (33) by ∆ik = diag{Yik, ¯̄Rik, I, I, Ȳi} and
∆T

ik respectively, and applying the Schur complements lead
to Lik in (9). Therefore, (9) guarantees negative definiteness
of J1 in (31). Now using Dynkin’s formula results in [10]

JT = E[

∫ T

0

[J1 −AV (xt, rt)dt]

≤ E

∫ T

0

n
∑

i=1

XT
i (t)LirtXi(t)dt − E[V (xT , rT ) + V (x0, r0)]

Using the fact that Lirt
< 0 and E[V (xT , rT )] > 0 yields

JT ≤ V (x0, r0), and therefore the H∞ objective function (4)

is satisfied according to ‖z‖E2
− γ2‖w(t)‖2 ≤ V (x0, r0).

The stability and convergence properties of the network

states in the absence of the external input wi, is guaranteed

by eliminating the (n + 2)th and the (n + 3)th rows and

columns of (9). In other words, negative definiteness of

the resulting LMI guarantees the stochastic stability of the

unforced system (3). In view of the above, the condition

(32) should now be expressed according to the new LMI

parameters Q̄i and R̄il. Substituting Qi and Ril by Q̄i and

R̄il in (32) and using the fact that πkk = −
∑N

l=1,l 6=k πkl,

where πkl > 0, and performing some manipulations, one

can get that to guarantee (32), it suffices to satisfy the

second LMI condition of (9). This completes the proof of

the theorem. �

The proof of this theorem is provided in details in [12].

APPENDIX II

PROOF OF THEOREM 3

To achieve the H∞ objective function (4), it suffices to

establish the inequality (31) where V (xt, rt) is similar to

(30). Whereas, V1 should be modified properly for singular

dynamics to V1 =
∑n

i=1 xT
i (t)Ert

Pirt
xi(t). By following

along the similar lines as those given in proof of Theorem

1, one can show that the LMI condition (18) can guarantee

negative definiteness of J and also stochastic stability of the

unforced system in absence of wi.
Moreover, consider that the following condition is satisfied

[

(BikKik)T Pik + Pik(BikKik) + I PikB̃dikK̃jk

∗ −I

]

< 0 (34)

where K̃jk = diagj ∈ ℘k(i){Kjk}. The condition (34)

implies that (BikKik)T Pik + Pik(BikKik) < 0. Therefore,

Acli is nonsingular. Furthermore, by applying the Schur

compliment it results in Acli + Adcli being nonsingular.

Therefore, the closed-loop system satisfies the piecewise

regularity and the piecewise impulsive mode free conditions.

Now, by substituting Pik = Y −1
ik and pre and post multiply

(34) by diag{Yik, ¯̄Yik} and its transpose, respectively, where
¯̄Yik = vec{Ȳjk} for j ∈ ℘k(i), one can obtain (19). This

completes the proof of the theorem. �

The proof of this theorem is provided in details in [12].
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