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Abstract— This paper studies the problems of stability
analysis and dynamic output feedback controller design for
continuous-time linear systems under state saturation. In this
paper, both full state saturation and partial state saturation are
considered. In order to solve the key problem, a new system is
constructed. Firstly, a new LMI-based method is presented for
estimating the domain of attraction of the origin for a closed-
loop system under state saturation. Based on this method, an
LMI-based algorithm is developed for constructing dynamic
output-feedback controller which guarantees that the domain
of attraction of the origin for the closed-loop system is as large
as possible. An example is given to illustrate the efficiency of
the design method.

I. INTRODUCTION

Control systems with saturation are often encountered

in practice, and two cases are considered. One is actuator

saturation, the other one is state saturation. When actuator

saturation occurs, global stability of an otherwise stable

linear closed-loop system cannot in general be ensured. And

the problem of estimating the domain of attraction for a

system with a saturated linear feedback has been studied by

many researchers in the last few years and various methods

have appeared (see, e.g., [1]-[4], and the references therein).

However, in recent years, the number of conclusions about

state saturation is much smaller than the one of actuator

saturation.

Control systems with state saturation are often encountered

in a variety of applications, including signal processing,

recurrent neural networks and control systems, and have

been studied extensively (see, e.g., [5]-[11], and the refer-

ences therein). Most of such systems can be modeled by

statespace representations with polyhedral or ellipsoidal state

constraints, and global stability of an otherwise stable linear

closed-loop system can not in general be ensured. A few

approaches to the global asymptotic stability of such system

were presented in [11]-[14].

Necessary and sufficient conditions for global asymptotic

stability were established in [11] and [13], for second order
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systems with state saturation. For higher order systems, var-

ious sufficient conditions for the global asymptotic stability

were identified (see, [10], [14], and the references therein).

Under the sufficient condition of [15], any system trajectory

starting from inside the state saturation region will never

reach the boundary of it, i.e., the state never saturates. This

saturation avoidance sufficient condition leads to a degree of

conservatism.

Extensions of the results of [16] and [17] to the situation

involving partial state saturation have been carried out in

[18] and [19], respectively. This problem was reconsidered

in [20] and a less conservative result was obtained. Using

biconvex programming and static output feedback approach,

the H∞ control problem was also considered [21].

This paper not only considers the problem of stability

analysis but also considers the problem of dynamic output

feedback controller design for continuous time linear systems

under state saturation. Both full state saturation and partial

state saturation are considered. Firstly, in order to solve the

key problem, a new system is constructed. Then, a new

LMI-based method is presented for estimating the domain

of attraction of the origin for a closed-loop system under

state saturation. Based on this method, an LMI-based algo-

rithm is developed for constructing dynamic output-feedback

controller which guarantees that the domain of attraction of

the origin for the closed-loop system is as large as possible.

The paper is organized as follows. Problem statement is

given in Section II. A condition for set invariance is presented

for continuous-time LTI systems with state saturation in

Section III. The proposed estimation of domain of attraction

is presented in Section IV. A controller design method based

on LMIs is given in Section V. An illustrative example is

presented in Section VI to demonstrate the proposed design

methods. Finally, the paper will be concluded in Section VII.

II. PROBLEM STATEMENT AND PRELIMINARIES

The following definitions and lemma will be used in the

sequel.

Definition 1: For a vector x, define

℘(n,np) = {x ∈ Rn : |xi| ≤ xmax
i , i ∈ I[1,np], n ≥ np},

then ℘(n,np) is the state saturation region.

In this paper, we will consider two classes of continuous-

time linear systems under state constraints. The first class of

systems with full state saturation are defined as

ẋp(t) = h[Apxp(t)+Bpu(t)]

y(t) = Cpxp(t) (1)
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where xp(t)∈℘(n,n) is the plant state, u = [u1 u2 . . .um]∈Rm

is the control input, y∈Rp is the measured output. Ap = [ai j],
Bp = [biq], Cp are known constant matrices of appropriate

dimensions, and

h[Apxp(t)+Bpu(t)] =











h1[∑
n
j=1 a1 jx j +∑m

q=1 b1quq]

h2[∑
n
j=1 a2 jx j +∑m

q=1 b2quq]
...

hn[∑
n
j=1 an jx j +∑m

q=1 bnquq]











with for each i ∈ [1,n]

hi[∑
n

j=1
ai jx j +∑

m

q=1
biquq]

=

{

0, i f |xi| = 1 and (∑n
j=1 ai jx j +∑m

q=1 biquq)xi > 0

∑n
j=1 ai jx j +∑m

q=1 biquq, otherwise

System (1) is defined on a closed hypercube as all state

variables are constrained to the hypercube. For this reason,

system (1) is sometimes called as continuous-time linear

system under state saturation, that is, saturation occurs in

the state xi if |xi| > xmax
i .

The other class of systems are continuous-time linear

systems with partial state saturation and are formulated as

ẋp1(t) = h[Ap11xp1(t)+Ap12xp2(t)+Bp1u(t)]

ẋp2(t) = Ap21xp1(t)+Ap22xp2(t)+Bp2u(t)

y(t) = Cp1xp1(t)+Cp2xp2(t) (2)

h[Ap11xp1(t)+Ap12xp2(t)+Bp1u(t)] =











Y1

Y2

...

Ynp1











where

Yi =hi[∑
i

j=1
ap11i jx j +∑

np−np1

v=1
ap12ivxv

+∑
m

q=1
bp1iquq]

and xp1(t) ∈ Rnp1 is the plant state with sate saturation,

xp2(t) ∈ Rnp−np1 is the plant state without state saturation,

u ∈ Rm is the control input, y ∈ Rp is the measured output.

Ap11, Ap12, Ap21, Ap22, Bp1, Bp2, Cp1, Cp2 are known constant

matrices of appropriate dimensions. Notes that all the state

variables are under state saturation if np1 = np, in which case,

system (2) reduces to system (1).

Definition 2: For a matrix M ∈ Rnp1×(np+nc), denote the

ith row of M as Mi, define

ℑ(M) = {ξ ∈ Rnp+nc : |Miξ | ≤ xmax
i , i ∈ I[1,np1]},

For x(0) = x0 ∈ Rn, denote the state trajectory of system

(1) as ψ(t,x0). Then the domain of attraction of the origin

is

ℓ := {x0 ∈ Rn : limt→∞ψ(t,x0) = 0}.

Consider the following two systems






















ẋa1(t) = h[ f1(xa1(t), xa2(t))+g1(ua(t))],
ẋa2(t) = f2(xa1(t), xa2(t))+g2(ua(t)),
ya(t) = Cp1xa1(t)+Cp2xa2(t),
ẋca(t) = f3(xca(t))+g3(ya(t)),
ua(t) = f4(xca(t))+g4(ya(t)),

(3)























ẋb1(t) = f1(σ [xb1(t)], xb2(t))+g1(ub(t)),
ẋb2(t) = f2(σ [xb1(t)], xb2(t))+g2(ub(t)),
yb(t) = Cp1σ [xb1(t)]+Cp2xb2(t),
ẋcb(t) = f3(xcb(t))+g3(yb(t)),
ub(t) = f4(xcb(t))+g4(yb(t)),

(4)

The state nonlinearity with the consideration of a

piecewise-linear saturation is described as

σ(xi) =

{

xi, |xi| ≤ xmax
i ,

sign(xi)x
max
i , |xi| > xmax

i ,
(5)

for i ∈ I[1,np]. Here we have slightly abused the notation

by using σ to denote both the scalar valued and the vector

valued saturation functions.

Denote the state trajectory of system (3) as ψa(t,xa(0)) =




ψa1(t,xa(0))
ψa2(t,xa(0))
ψca(t,xa(0))



, and denote the state trajectory of system

(4) as ψb(t,xb(0)) =





ψb1(t,xa(0))
ψb2(t,xa(0))
ψcb(t,xa(0))



. Let xa(t) =





xa1(t)
xa2(t)
xca(t)



,

xb(t) =





xb1(t)
xb2(t)
xcb(t)



, then the following lemma is given.

Lemma 1: For any initial state xa(0) = xb(0) ∈℘(n,np1),
the following two statements are equivalent.

(I) limt→∞ ψa(t,xa(0)) = 0

(II) limt→∞ ψb(t,xb(0)) = 0

Proof:

xa(0) = xb(0) ∈℘(n,np1)

⇒







xa1(0) = σ [xb1(0)]
xa2(0) = xb2(0)
xca(0) = xcb(0)

⇒















f1(xa1(0),xa2(0)) = f1(σ [xb1(0)], xb2(0))
f2(xa1(0), xa2(0)) = f2(σ [xb1(0)], xb2(0))

ya(0) = yb(0)
ua(0) = ub(0)

⇒























f1(xa1(0),xa2(0))+g1(ua(0))
= f1(σ [xb1(0)], xb2(0))+g1(ub(0))

f2(xa1(0), xa2(0))+g2(ua(0))
= f2(σ [xb1(0)], xb2(0))+g2(ub(0))

ψca(t,xa(0)) = ψcb(t,xb(0))

Then, by the definition of function h[x], we have






ψa1(t,xa(0)) = σ [ψb1(t,xb(0))]
ψa2(t,xa(0)) = ψb2(t,xb(0))
ψca(t,xa(0)) = ψcb(t,xb(0))

Then, Lemma 1 is proved.
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Problem 1: The problem under consideration is described

as followsFind a controller such that, the domain of asymp-

totic stability is enlarged as possible for the closed-loop

system with state saturation.

III. A CONDITION FOR SET INVARIANT

In this section, we will establish new sufficient conditions

for global asymptotic stability for both systems (1) and (2).

All the state variables are under state saturation if np1 = np,

in which case, system (2) reduces to system (1), so in the

following, we need only to consider system (2). To this end,

we first establish a new system as follows.

ẋp1(t) = Ap11σ [xp1(t)]+Ap12xp2(t)+Bp1u(t)

ẋp2(t) = Ap21σ [xp1(t)]+Ap22xp2(t)+Bp2u(t)

y(t) = Cp1σ [xp1(t)]+Cp2xp2(t) (6)

which can be rewritten as

ẋp(t) = Ap

[

σ(xp1(t))
xp2(t)

]

+Bpu(t)

y(t) = Cp

[

σ(xp1(t))
xp2(t)

]

where

Ap =

[

Ap11 Ap12

Ap21 Ap22

]

, Bp =

[

Bp1

Bp2

]

,

Cp =
[

Cp1 Cp2

]

,

and xp(t) ∈ Rnp is the plant state, xp1(t) ∈ Rnp1 is the plant

state with sate saturation, xp2(t) ∈ Rnp−np1 is the plant state

without state saturation, u ∈ Rm is the control input, y ∈ Rp is

the measured output. Ap, Bp, Cp are known constant matrices

of appropriate dimensions.

To formulate suitably the corresponding LMIs, we need

to introduce additional notation which corresponds to repre-

senting the closed-loop system in a compact way. Then, the

following equation is given

q(t) = xp1(t)−σ(xp1(t)) (7)

Then, we have

ẋp(t) = Apxp(t)−Ap1q(t)+Bpu(t)

y(t) = Cpxp(t)−Cp1q(t)

where Ap1 =

[

Ap11

Ap21

]

.

The controller structure is chosen as

ẋc(t) = Akxc(t)+Bky(t)

u(t) = Ckxc(t)+Dky(t) (8)

Next, define the overall state variable x ∈ Rn, where n =
np +nc, as

x = [xT
p xT

c ]T

which allows the linear dynamics of the plant and controller

to be combined and written as

ẋ(t) = Aex(t)+Beq(t) (9)

where

Ae =

[

Ap +BpDkCp BpCk

BkCp Ak

]

Be =

[

−Ap1 −BpDkCp1

−BkCp1

]

Remark 1: When full state saturation is considered,

system (9) can be replaced by the following system

ẋ(t) = Aex(t)+Beq(t) (10)

where

Ae =

[

Ap +BpDkCp BpCk

BkCp Ak

]

Be =

[

−Ap −BpDkCp

−BkCp

]

Definition 4: Let P ∈ Rn×n be a positive-define matrix.

Denote

ε(P,δ ) = {x ∈ Rn : xT Px ≤ δ}.

Assume that the standard dynamic output feedback con-

troller has been designed. Then, for system (6) controlled by

the designed controller (8), the following lemma is presented

to estimate the domain of attraction of the origin.

Lemma 2: For system (6) given an ellipsoid ε(P,1), P ∈
Rn×n, if there exist matrices Q > 0, U > 0, G such that





AeQ+QAT
e BeU +Q

[

I

0

]

−GT

∗ −2U



 < 0 (11)

for ε(P,1) ⊂ ℑ(M), i.e., |Mix| ≤ xmax
i for all x ∈ ε(P,1), i ∈

I[1,np1], then ε(P,1) is a contractively invariant set.

Proof: Choose the following Lyapunov function

V (k) = x(k)T Px(k)

Let M = GQ−1, W =U−1, P = Q−1. We have that inequal-
ity (11) is equivalent to





PA+AT P PBW−1 +

[

I
0

]

−MT

∗ −2W−1



 < 0

⇔





PA+AT P PB+

[

I
0

]

W −MTW

∗ −2W



 < 0

⇒

[

x
q

]T




PA+AT P PB+

[

I
0

]

W −MTW

∗ −2W





[

x
q

]

< 0

⇔ xT (PA+AT P)x+ xT PBq+qT BT Px

+qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq < 0

By equation (7) we have that, if |Mix| ≤ xmax
i i∈ I[1, np],

qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq ≥ 0
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By employing the S-procedure, it is shown that given any

symmetric positive definite matrix W , if

xT (PA+AT P)x+ xT PBq+qT BT Px

+qTW ([I 0]x−Mx−q)+([I 0]x−Mx−q)TWq < 0

|Mix| ≤ xmax
i i ∈ I[1, np]

then

xT (PA+AT P)x+ xT PBq+qT BT Px < 0

Theorem 1: For system (3), given an ellipsoid ε(P,1),
P ∈ Rn×n, if there exist matrices Q > 0, U > 0, G such that

inequality (11) holds for ε(P,1) ⊂ ℑ(M), i.e., |Mix| ≤ xmax
i

for all x ∈ ε(P,1), i ∈ I[1,np1], then ℘(n,np1)
⋂

ε(P,1) is a

contractively invariant set.

Proof: By Lemma 2, we have that for any initial state

x(0)∈ (℘(n,np1)
⋂

ε(P,1)) the state of system (6) can be at-

tracted to zero. Obviously, (℘(n,np1)
⋂

ε(P,1)) ⊂℘(n,np1).
Then, by Lemma 1 we have that for any initial state x(0) ∈
(℘(n,np1)

⋂

ε(P,1)) the state of system (3) can be attracted

to zero.

IV. ESTIMATION OF THE DOMAIN OF ATTRACTION

From Theorem 1, we can obtain various sets satisfying the

set invariance condition. So, how to choose the largest one of

them becomes an interesting problem. Because set ℘(n,np1)
is given, we need only to enlarge the domain ε(P,1) as

possible for estimating the largest domain of attraction. In

this section, we will give a method to find the largest set.

The following definition will be used in the sequel.

Definition 5: Define XR as a prescribed bounded convex

set. XR = ε(R,1) = {x ∈ Rn×n : xT Rx ≤ 1}, R > 0 or

XR = co{x1,x2, ...,xl}. For a set S ∈ Rn, αR(S) = sup{α >
0 : αXR ⊂ S}.

With the above shape reference sets, we can choose from

all the ε(P,1)′s that satisfy the condition of Theorem 1 such

that the quantity αR(ε(P,1)) is maximized. The problem can

be formulated as follows

sup α

s.t. (a) (11),

(b) ε(P,1) ⊂ ℑ(M),

(c) αXR ⊂ ε(P,1) (12)

Condition (b) is equivalent to

1

xmax
i

MiP
−1(

1

xmax
i

Mi)
T ≤ 1 ⇔

[

1 1
xmax

i
MiP

−1

∗ P−1

]

≥ 0 (13)

for all i ∈ I[1,np1], where Mi is the jth row of M.

If the given shape reference set XR is a polyhedron as

defined in Definition 5, then Constraint (c) is equivalent to
[

1
α2 xT

j

∗ P−1

]

≥ 0, j ∈ I[1, l] (14)

If XR is an ellipsoid ε(R,1), then (c) is equivalent to

R

α2
≥ P ⇔

[

(1/α2)R I

I P−1

]

≥ 0. (15)

If XR is a polyhedron, then from (13) and (14), the

optimization problem (12) can be described as the following

algorithm

Algorithm 1:

inf
Q>0,G

γ

s.t. (a1) (11)

(b1)

[

1 1
xmax

i
gi

∗ Q

]

≥ 0, i ∈ I[1,np1]

(c1)

[

γ xT
j

x j Q

]

≥ 0, j ∈ I[1, l]

where γ = 1/α2, Q = (P
ρ )−1 and G = MQ. Let gi be the ith

row of G. It is easy to see that all constraints are given in

LMIs. If XR is an ellipsoid, we need only to replace (c1)

with

(c2)

[

γR I

I Q

]

≥ 0.

V. CONTROLLER DESIGN

In this section we will design a dynamic output feedback

controller (8) such that the estimated domain of attraction is

maximized with respect to XR.

Lemma 3: For matrix variables Q > 0, U > 0, G, K,

constraint (11) is equivalent to constraint (16) as follows





T1 T2 B̄K +QC̄T

∗ T3 UD̄T

∗ ∗ −I



 < 0 (16)

where

T1 = AQ+QAT − B̄KKT
0 B̄T − B̄K0KT B̄T

+ B̄K0KT
0 B̄T −QC̄TC̄Q0 −Q0C̄TC̄Q+Q0C̄TC̄Q0

T2 = BU +Q[I 0]T −QMT −QC̄T D̄U0

−Q0C̄T D̄U +Q0C̄T D̄U0

T3 = −2U −UD̄T D̄U0 −U0D̄T D̄U +U0D̄T D̄U0

A =

[

Ap 0

0 0

]

,B =

[

−Ap1

0

]

,K =

[

Ak Bk

Ck Dk

]

,

B̄ =

[

0 Bp

I 0

]

,C̄ =

[

0 I

Cp 0

]

, D̄ =

[

0

−Cp1

]
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Proof: Obviously, constraint (11) is equivalent to
[

AQ+QAT BU +Q[I 0]T −QMT

∗ −2U

]

+

[

B̄K

0

]

[

C̄Q D̄U
]

+
[

C̄Q D̄U
]T

[

B̄K

0

]T

< 0

⇔

[

AQ+QAT BU +Q[I 0]T −QMT

∗ −2U

]

+(

[

B̄K

0

]

+

[

QC̄T

UD̄T

]

)(

[

B̄K

0

]

+

[

QC̄T

UD̄T

]

)T

−

[

B̄K

0

]

[

KT B̄T 0
]

−

[

QC̄T

UD̄T

]

[

C̄Q D̄U
]

< 0 (17)

In addition, as is known to all that for any matrix V , there

always exists a matrix V0 such that the following inequality

holds

(V −V0)(V −V0)
T ≥ 0 (18)

Thus, there exist matrix variables Q0, K0 and U0 such that

(16) is equivalent to (17). On one hand, according to (18), if

(17) holds, then (16) holds. On the other hand, when Q0 = Q,

K0 = K and U0 =U , (17) holds if (16) holds. Thus, the proof

for Lemma 3 is complete.

Remark 2: When full state saturation is considered, only

two matrices defined in Lemma 3 should be replaced with

B =

[

−Ap

0

]

, D̄ =

[

0

−Cp

]

.

By solving inequalities (11), (b1), (c1), we can solve

Problem 1. But the constraints (11) is not an LMI, we can

not solve them directly. To overcome this difficulty, we will

give the following algorithm by Lemma 3.

Algorithm 2:

Step 1 For system (1) design a standard dynamic output

feedback controller such that the system (1) is asymptotic

stable without state saturation.

Step 2 Based on the controller gain K∗ obtained in Step

1, find a feasible set (Q∗,U∗,G∗,γ∗) by solving Algorithm

1. Let η = 0.

Step 3 If γ∗ < 1 or η > N, where N is the maximum

number of iterations allowed, exit.

Step 4 Let Q0 = Q∗, U0 = U∗, K0 = K∗. Solve the

following LMI problem

min γ

s.t. (16), (b1),

(c2)

[

−γ
[

−xT
j 0

]

∗ −Q

]

< 0, j ∈ I[1,2np ]

where γ = 1
α2

Step 5 Let Q∗ = Q, U∗ = U , K∗ = K, η = η +1. Return

to Step 3

VI. EXAMPLES

Example 1. Consider the system of form (1) with

A =

[

−9.9 0.8
1 0.5

]

, B =

[

1

−9

]

, C =
[

1 2
]

and xmax
1 = xmax

2 = 1. Suppose that a controller is given as

follows without considering state saturation.

Ak =

[

−1 2.5
30 −9

]

, Bk =

[

−0.9
−0.5

]

,

Ck =
[

0.1 −2
]

, Dk = 1 (19)

Let XR = co{









1

1

0

0









,









1

−1

0

0









,









−1

1

0

0









,









−1

−1

0

0









}. By using Algo-

rithm 1 we draw the following conclusion

γ∗ = 1.4248

Q∗ =









64.8424 −32.2461 0.2668 −0.8962

−32.2461 19.7468 0.4159 0.4528

0.2668 0.4159 0.1461 0.0276

−0.8962 0.4528 0.0276 1.4202









U∗ =

[

4.6289 −2.3545

∗ 1.2171

]

−8 −6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

domain of attraction

Fig. 1. Cross-section of ε(P∗, 1) at xc = 0, under controller (19)

By using Algorithm 2 we have

γ∗ = 0.2067

Q∗ =









426.5840 −219.2509 0.1454 2.2724

−219.2509 155.4780 7.3361 −23.4550

0.1454 7.3361 1.7842 −4.3642

2.2724 −23.4550 −4.3642 32.6553









U∗ =

[

30.4043 −15.0892

∗ 8.0269

]

A∗
k =

[

−1.8431 6.5377

29.6656 −40.0248

]

, B∗
k =

[

−7.2394

19.6846

]

,

C∗
k =

[

0.4412 −4.4417
]

, D∗
k = 5.3281 (20)
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Fig. 2. Cross-section of ε(P∗, 1) at xc = 0, under controller (20)
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Fig. 3. trajectories of closed-loop systems

VII. CONCLUSIONS

In this paper, for continuous time systems both full state

saturation and partial state saturation were considered. In

order to solve the problem of this paper a new system was

constructed. Then, LMI-based algorithm was proposed for

determining if a given ellipsoid is contractively invariant,

and an LMI-based algorithm was developed for constructing

dynamic output-feedback controllers which guarantee that

the domain of attraction of the origin for the closed-loop

system is enlarged as possible. An example was given to

illustrate the efficiency of the design method.
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