
 
 

 

  

Abstract—In this paper, the synchronization problem for 
dynamical complex networks composed of general Lur’e 
systems is dealt with. Based on the Jordan canonical 
transformation method and a Lur’e-Postnikov function, the 
global synchronization criteria for dynamical complex networks 
with non-symmetric coupling are established and formulated as 
LMI. A decentralized control strategy based on projection 
lemma and Lur’e-Postnikov function is proposed in order to 
reduce the conservativeness. A dynamical complex network 
composed of identical Chua’s oscillators is adopted as a 
numerical example to demonstrate the effectiveness of the 
proposed results. 

I. INTRODUCTION 
YNAMICAL complex networks have attracted 
increasing attention from physicists, biologists, social 

scientists and control scientists in recent years [1]-[4]. From a 
system-theoretic point of view, a dynamical complex network 
can be considered as a large-scale system with special 
interconnections among its dynamical nodes. The large-scale 
system theory has been extensively studied in the last three 
decades, and many interesting results have been established, 
on such basic issues as decentrally fixed modes, decentralized 
controllers design etc. 

During the past decades, synchronization of general 
dynamical complex networks with diffusely couplings has 
been extensively studied due to its theoretical importance and 
practical applications [5]-[8]. One unified approach to 
synchronization analysis is to linearize the network at certain 
homogeneous state to get the master stability equations and 
then judge the stability of these resulting equations [9]-[11]. 
Because of the linearization technique, the synchronization 
criteria obtained by this way are local. Moreover, additional 
requirements are often added to couplings of the network in 
order to get easily verifiable conditions. For instance, the 
topology matrix is assumed to be symmetric and the 
inner-linking matrix is assumed to be positive definite. 

Many nonlinear physical systems can be represented as a 
feedback connection of a linear dynamical system and a 
nonlinear element which is satisfied a sector condition. Since 
Lur’e and Postnikov first proposed the concept of absolute 
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stability as early as the 1940s, systems of this type have been 
extensively studied and Lur’e systems with sector bound are 
such cases. Because in various fields of theory and 
engineering applications, a large class of nonlinear systems 
such as Goodwin model, repressilator, toggle switch, swarm 
model and Chua’s circuit can be represented as Lur’e systems, 
synchronization of dynamical complex networks consisting 
of Lur’e systems has gained a lot of attentions of the 
researchers [12]-[15]. 

Different from general dynamical complex networks, by 
using the Lur’e system method in control theory, different 
synchronization conditions for dynamical complex networks 
composed of Lur’e systems can be derived. For example, in 
[3], the Lyapunov function method was applied to derive the 
global synchronization criterion for dynamical networks 
composed of Escherichia coli cells which can be expressed as 
Lur’e systems coupled indirectly through intercellular 
signaling and in [12], the authors discuss the synchronization 
problem for a class of dynamical complex networks with each 
node being a Lur’e system. Nevertheless, the given condition 
in [12] requires the topology matrix being symmetric. 
Considering that many realistic networks are non-symmetric, 
it is worthy of studying synchronization problem for 
dynamical complex networks with non-symmetric coupling. 

In this paper, based on the work of Liu and Wang [12], we 
extend the synchronization problem for dynamical complex 
networks composed of general Lur’e systems from symmetric 
coupling to non-symmetric coupling by using the Jordan 
canonical transformation method. The approach taken in the 
paper is to transform the synchronization problem of 
dynamical networks into absolute stability problem of 
corresponding error system. By using a Lur’e-Postnikov 
function and the Jordan canonical transformation method, 
sufficient conditions represented by LMI are given such that 
the error system is absolutely stable and consequently all 
states of the network are globally stabilized onto an expected 
homogeneous state. In order to reduce the conservativeness, a 
controller design method based on Lur’e-Postnikov function 
is proposed. It should be pointed out that no linearization 
technique is involved through derivation of all the 
synchronization criteria. In addition, in contrast to centralized 
control methods, decentralized control has many advantages, 
such as lower dimensionality, easier implementation, lower 
cost etc. 

The rest of the paper is organized as follows. In Section 2, 
some preliminary definitions and lemmas necessary for 
successive development are presented. In Section 3, based on 
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Lur’e-Postnikov function, global synchronization conditions 
for dynamical complex networks with non-symmetric 
coupling are given. Moreover, the controller design method 
in terms of Lur’e-Postnikov function is also introduced to 
reduce the conservativeness in Section 3. A numerical 
example is provided to illustrate the efficiency of the given 
results in Section 4 and concluding remarks are given in 
Section 5. 

II. PRELIMINARIES 
Consider the following nonlinear system 

0 0( , ),   ,x Ax Bf y t y Cx= + =                      (1) 

where 0,  ,  ,  ,  ,  n m n n n m m nx R y R A R B R C R f× × ×∈ ∈ ∈ ∈ ∈ is a 
memoryless, possibly time-varying nonlinear function, 
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The functions 0( , ),  1, ,l lf y t l m=  are assumed to satisfy 
the following inequalities 

2
0 0 00 ( , ) ,   1, 2, , ,l l l l lf y t y y l mδ≤ ≤ =  

for all 0ly R∈  and t R+∈ , where l Rδ ∈  and 0lδ ≥ . Taking 

0 1 2( , , )mdiag δ δ δΔ = , it can be easily seen that 

0 0 0 0( , )( ( , ) ) 0Tf y t f y t y− Δ ≤ ,                      (2) 

for all 0
my R∈  and t R+∈ . 

Definition 1. The nonlinearity 0( , )f y t  is said to be in the 
sector 0[0, ]Δ  if it satisfies (2). 
Definition 2. System (1) is said to be absolutely stable with 
respect to the sector 0[0, ]Δ  if for the nonlinearity 0( , )f y t  
satisfying (2), the equilibrium point 0x =  is globally 
asymptotically stable. 
Lemma 1. (Wu [16]). The eigenvalues of an irreducible 
matrix 0 0( ) N N

ijG g R ×= ∈ with 0 01,

N
ij iij j i

g g
= ≠

= −∑  satisfy 

the following properties: 
(i) 0 is an eigenvalue of 0G associated the eigenvector 

(1,1, ,1)T . 
(ii) If 0 0ijg ≥  for all 1 , ,i j N i j≤ ≤ ≠ , then the real parts of 

all eigenvalues of 0G  are less than or equal to 0 and all 
possible eigenvalues with zero part are 0. In fact, 0 is an 
eigenvalue of multiplicity 1. 
Lemma 2. (Boyd et al. [17] Schur complement). For any 
blocked matrix 

11 12

12 22
T

S S
S

S S
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

the following statements are equivalent: 
(i) 0S < . 
(ii) 1

11 22 12 11 120,  0TS S S S S−< − < . 

(iii) 1
22 11 12 22 120,  0TS S S S S−< − < . 

Lemma 3. (Boyd et al. [17]). Let matrices 0 ,n mB R ×∈  

0 0C ,k l n nR Q R× ×∈ ∈ be given and suppose 0( ) ,rank B n<  

0( )rank C n< and 0 0
TQ Q= . Then there is a matrix 0K  of 

compatible dimension such that 

0 0 0 0 0 0 0( ) 0TB K C B K C Q+ + < , 

if and only if 0 0 0 0TB Q B⊥ ⊥ <  and 0 0 0 0T T TC Q C⊥ ⊥ < . 
Lemma 4. (Wu et al. [18]). Let ( )NG M C∈  be a given 
complex matrix. There is a nonsingular matrix ( )NM CΦ ∈  
such that  

1
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2 1 1
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⎢ ⎥⎣ ⎦

. 

The Jordan matrix J  of G  is unique up to permutation of the 
diagonal Jordan blocks. The eigenvalues ,  1, 2, ,i i kλ =  are 
not necessarily distinct. ( )

in iJ λ  are the Jordan blocks. 

1 0

( ) ,  1, ,
1

0

i

i

i
n i

i

J i k

λ
λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

III. MAIN RESULTS 
Consider a class of dynamical complex networks with each 

node being a general Lur’e system 

1
( ) ,  ,  1, 2, , ,

N

i i i ij j i i
j

x Ax Bf y g Dx y Cx i N
=

= + + = =∑    (3) 

where ,  ,  ,  ,  n m
i ix R y R A B C∈ ∈  have the same meanings as 

those in (1), n nD R ×∈  defines the coupling between two 
nodes, ( ) N N

ijG g R ×= ∈  is the coupling matrix of the 

network, where ijg R∈  is defined as follows: if there is a 

connection from node j  to node  ( )i i j≠ , then the coupling 
strength 0ijg ≠ ; otherwise 0ijg = , and the diagonal elements 
of  G  are defined by 

1,
,  1, 2, , .

N

ii ij
j j i

g g i N
= ≠

= − =∑  

In network model (3), the coupling matrix G is 
nonsymmetric and we always assume that G  is irreducible 
and all of its off-diagonal elements are nonnegative.  
Denote 

1i
m

i

im

y
y R

y

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

 and 
1 1( )

( )
( )

i
m

i

m im

f y
f y R

f y

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

, 

where ( ),  1, , ,  1, ,l ilf y i N l m= = satisfy the following    
inequalities: 

2
1 10 ( ) ,  0 ( ) ,l il il l il l il lf y y y f yδ δ′≤ ≤ ≤ ≤  
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for all ily R∈ and 1 0lδ ≥ . 
The dynamical complex network (3) is said to achieve 

synchronization if 
 ( 1,2, , ),   ,ix s i N t→ = → ∞                       (4) 

where s  is a solution of an isolated node, satisfying 
( )s As Bf Cs= + . 

To realize (4), the following decentralized control strategy 
is applied: 

1
1

( ) ,  ,  1, ,
N

i i i ij j i i i
j

x Ax Bf y g Dx B u y Cx i N
=

= + + + = =∑  (5) 

where ( )i iu K x s= −  and m nK R ×∈  is the control gain 
matrix. 

Defining i ie x s= −  and using the Kronecker product, the 
error dynamical system can be given by 

1 3 1 2( ) ( ; ),   e ee M M K G D e M y S y Heη= + + ⊗ + =      (6) 

where
1 1( )

,   ( ) ,
( )

Nn

N N

x s f y
e x S R F y

x s f y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = − ∈ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

1 2 3 1,  ,  ,N N NM I A M I B M I B= ⊗ = ⊗ = ⊗  

  11 1 1,  ( , , , , , , ) ,  T
N e e e m eN eNmH I C y y y y y= ⊗ =  

1 ,  ( ; ) ( ) ( ).N e e S SK I K y S F y y F yη= ⊗ = + −  
Denote 

1 11 1( ; ) ( ( ; ), , ( ; ), , ( ; )) .T
e e m e m m eNmy S y s y s y sη η η η=  

It is obvious that the nonlinearities ( ; )l eily sη satisfy 

1( ; )( ( ; ) ) 0,   1, , , 1, , .l eil l eil l eily s y s y i N l mη η δ− ≤ = =   (7) 
Take 1 11 1( , , )mdiag δ δΔ = and 1 1 1( , , , )diagΔ = Δ Δ Δ . We 
deduce that the nonlinearity ( ; )ey Sη belongs to the 
sector [0, ]Δ . It is shown from above representations that the 
synchronization problem of the dynamical complex network 
(3) is transformed into an equivalent absolute stability 
problem of the error dynamical system (6).  

From Lemma 4, there is a nonsingular matrix ( )NM CΦ ∈ , 

such that 1G J −= Φ Φ . Let ( )ne I θ= Φ ⊗ , then, one has 

( )ne I θ= Φ ⊗ ,                                 (8) 
and 

1 3 1 2( ) ( ; ),eM M K J D M y Sθ θ η= + + ⊗ +             (9) 

where 1 2( , , , ) ,  T nN n
N iR Rθ θ θ θ θ= ∈ ∈ .  The variable θ  is 

a linear combination of all the errors ie , and the 
synchronization state s  of the network (5) is globally stable 
if the origin of (9) is globally stable.  
Proposition 1. The system (9) is globally stable with respect    
to the sector [ ]0,Δ  and the controlled network (5) is globally 

stabilized onto s  if there exist: 

1 11 1 1 11 10, diag( , , ) 0, diag( , , ) 0,m mP T t tλ λ> Λ = ≥ = > and 

1 11 1diag( , , ) 0mT t t′ ′ ′= >  such that 

1
1 2 1 1 22

1 2 1

1

( )
* ( ) 0,
* *

T

T T
N

N

PM T C
I T M C

I T

⎡ ⎤Σ + Φ ⊗ Δ Σ
⎢ ⎥Ω = − ⊗ Φ ⊗ Λ <⎢ ⎥
⎢ ⎥′− ⊗⎣ ⎦

(10) 

where ( )∗ denotes the terms induced by symmetry, 

1 1 3 1 1 3 1( ) ( ) ,TP M M K J D M M K J D PΣ = + + ⊗ + + + ⊗  
1

2 1 3 1 1 1 12( ) ( ) ( ) .T T TM M K J D C T C′Σ = + + ⊗ Φ ⊗ Λ + Φ ⊗ Δ  
Proof: We choose the following Lur’e-Postnikov function 

0
1 1

2 ( )d ,eil
N m yT

il l eil eil
i l

V P f y yθ θ λ
= =

= + ∑∑ ∫  

where 11 1 10, diag( , , , , , , ) 0m N NmP λ λ λ λ> Λ = ≥ are to 
be determined. 

Taking the derivative of V with respect to (9) yields 

11 1 11 11 1 1 1

1 1 1 1

2[ ( ) ( )
     ( ) ( ) ]

     2 ( ) .

T T
e e m m e m e m

N eN eN Nm m eNm eNm

T T T
e

V P P f y y f y y
f y y f y y

P P F y He

θ θ θ θ λ λ
λ λ

θ θ θ θ

= + + + +
+ + + +

= + + Λ

 

Considering the sector conditions on the nonlinearities ( )eF y  
and ( ; )ey Sη , we have 

1
1 1

( ; )( ( ; ) )
N m

il l eil l eil l eil
i l

V V t y s y s yη η δ
= =

≤ − −∑∑  

1
1 1

    ( )( ( ) ),
N m

il l eil l eil l eil
i l

t f y f y yδ
= =

′− −∑∑               (11) 

where 0, 0,  1, , ,  1, ,il ilt t i N l m′> > = =  are introduced to 
reduce the conservativeness. 
Denote  

11 1 1diag( , , , , , , ) 0,m N NmT t t t t= >  

11 1 1diag( , , , , , , ) 0,m N NmT t t t t′ ′ ′ ′ ′= >  
and it is easy to see that 

1
1 1

( ; )( ( ; ) )
N m

il l eil l eil l eil
i l

t y s y s yη η δ
= =

−∑∑    

( ; ) ( ; ) ( ; ) ,T T
e e ey S T y S y S THeη η η= − Δ             (12) 

1
1 1

( )( ( ) )
N m

il l eil l eil l eil
i l

t f y f y yδ
= =

′ −∑∑       

( ) ( ) ( ) .T T
e e eF y T F y F y T He′ ′= − Δ                      (13) 

It is noted that the matrices ,  TΛ and T ′  are introduced to 
reduce the conservativeness. So in the following, we choose                      

0,  0il jl il jlt tλ λ= ≥ = > and 0il jlt t′ ′= > . 
Denote 1 11 12 1 1 11 12 1diag( ,  , ,  ),  diag( ,  , ,  )m mT t t t T t t t′ ′ ′ ′= = a

nd 1 11 12 1diag( , , , ).mλ λ λΛ =  SubstitutingV and above (12) 
and (13) into the right hand of (11), we obtain 

,TV q q≤ Ω  
where  

( ; ) .
( )

e

e

q y S
F y

θ
η

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

If 0Ω < , there exists a sufficiently small number 

5769



 
 

 

0ε > such that 0T TV q q q qε≤ Ω ≤ − <  for 0q ≠ . This 
completes the proof. 

In order to get a common gain matrix K , P  should have 
the form of 1 1 1diag ( ,  ,  , ) 0P P P P= > , where 1 0P > . To 
reduce the conservativeness of designing controller, we 
choose the similar method used in [12], and derive the 
following results. 
Theorem 1. The system (9) is globally stable with respect    to 
the sector [ ]0,Δ  and the controlled network (5) is globally 
stabilized onto s  if there exist: 

1 11 1 1 11 10,  diag( ,  ,  ) 0,  diag( , , ) 0,m mY T t tλ λ> Λ = ≥ = >  

1 11 1diag ( ,  ,  ) 0mT t t′ ′ ′= > , a nonsingular matrix 1X and any 
matrix 2X  such that 

1 1 1

1
1

1 1 12

2

1

1
1

1 1 1 22

1 1

1 1

0
0

0
0

0,0
0

0 0

T
N N

T
N

T T
N

T

N

T
N N

T T

T T T
N

N

N

I X I X
I Y

I B T CX

I X

I B I X
X C T

I T B C
CB I T

I Y

⎡− ⊗ − ⊗ Ψ
⎢ Ψ − ⊗⎢
⎢ ⊗ Φ ⊗ Δ
⎢

Ψ⎢
⎢ ⊗⎣

⎤⊗ ⊗
⎥Φ ⊗ Δ Ψ ⎥
⎥ <− ⊗ Φ ⊗ Λ
⎥

′Φ ⊗ Λ − ⊗ ⎥
⎥− ⊗ ⎦

  (14) 

where 1 1 1 2 1( ) ,T T
N NI AX B X J DX I YΨ = ⊗ + + ⊗ + ⊗  

2 1 1 1 2 1 1

1
1 1 12

( ( )) ( )

        .

T T T T

T T

C AX B X J CDX

X C T

Ψ = Φ ⊗ Λ + + Φ ⊗ Λ

′+ Φ ⊗ Δ
 

Moreover, the control gain matrix is given by 2 1 .TK X X −=  
Proof: Based on the Schur complement and Lemma 3, we get 
(10) is equivalent to the following matrix inequality (15).  

1

1 1
1

2 1 12
4
2

2
1

1 1 22

1 2 1

1 2 1

1

( ) ( )
0

0

( ) 0
( ) 0

( ) 0 0,
( ) 0

0 0

T
N N

T
N

T T
N

T
N

N N
T

T T
N

N

N

I V I V
I P

M I V T C

I V

I V M I V
T C

I T M C
C M I T

I P

⎡− ⊗ − ⊗ Ξ
⎢ Ξ − ⊗⎢
⎢ ⊗ Φ ⊗ Δ
⎢

Ξ⎢
⎢ ⊗⎣

⊗ ⊗ ⎤
⎥Φ ⊗ Δ Ξ ⎥
⎥− ⊗ Φ ⊗ Λ <
⎥′Φ ⊗ Λ − ⊗ ⎥
⎥− ⊗ ⎦

   (15) 

Here, the matrix V is not necessary to be symmetric and 
positive definite. Pre- and post-multiplying both sides of (15) 
by 1 1 1diag ( ,  , , , )N N N m N m NW I V I V I I I I I V− − −= ⊗ ⊗ ⊗ ⊗ ⊗  

and TW , and letting 1
1 2 1 1 1 1,  ,  T TX V X KX Y X P X−= = = , we 

can derive the matrix inequality (14). This completes the 
proof. 

Remark 1. The diagonal matrices 1 1 10, 0, 0T T ′Λ ≥ > > are 
introduced to reduce the conservativeness. The change of 
them does not affect the feasibility of (14). Choosing the 
matrices 1 1 1, ,T T ′Λ firstly, the inequality (14) is turned into 
LMI and the control gain matrix K can be constructed via the 
feasible solutions of the derived LMI. 

IV. NUMERICAL EXAMPLES 
To test the effectiveness of our results, we investigate a 

network composed of 6 identical chaotic Chua’s oscillators 
with global unidirectional coupling. The entire network can 
be described by the following equations: 

6
2 1

1 1
11 1 1

1
1 2

2 3
2

3

2 0 3

1 ( ( ))

1 ( ) , 1, ,6

1 ( )

iji i
i j

j
i

i i
i i

i

i i

gv v
g v v

C R R C
v

v v
v i i

C R
i

v R i
L

=

⎡ ⎤−
− +⎢ ⎥

⎢ ⎥⎡ ⎤ ⎢ ⎥−⎢ ⎥ = + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

∑

 (16) 

where 0 1 20.0011 ,  1 ,  0.1096 ,  1 ,R R C F C F= Ω = Ω = =  

1 1 10.0680 ,  0.3 ,  1.1384 ,  0.7225 ,a bL H R G S G S= = Ω = − = −  
1

1 1 1 1 1 1 12( ) ( ) 1 1 ,i a i a b i ig v G v G G v v= + − ⎡ + − − ⎤⎣ ⎦  

and the coupling matrix is 
5 1 1 1 1 1

0 4 1 1 1 1
0 0 3 1 1 1

( ) ,
0 0 0 2 1 1
0 0 0 0 1 1
0 0 0 0 0 0

ijG g

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= = ⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which is nonsymmetric. 
Obviously, system (16) can be reformulated as the following 
forms 

6

1

( ) ,  ,  1, ,6i i i ij j i i
j

x Ax Bf y g Dx y Cx i
=

= + + = =∑    (17) 

where

1 1

2 2

3 3

1.2628 9.1241 0
,  1 1 1 ,  

0 14.7059 0.0162

i i

i i i

i i

v x
x v x A

i x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

9.1241 30.4136 0 0
0 ,  0 0 0 ,
0 0 0 0

B D
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

[ ] 1 1 11 0 0 ,    ( ) ( )i i a iC f y g v G v= = − and ( )if y satisfies 
2

1 10 ( ) ( ) .i i b a if y y G G y≤ ≤ −  
If the network (17) is expected to be stabilized on the 

origin, we choose the decentralized control strategy proposed 
in the paper to realize the purpose. In the case, 1B B=  and 

,  1, ,6i iu Kx i= = are applied, where K  is the control gain 
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matrix to be solved. Choosing 1 120,  20T T ′= =  and 

1 0.1Λ = firstly, the following feasible solutions 

1

19.4381 0.0764 0.3390
0.2519 24.1525 193.2668 ,
0.6528 248.4727 248.5840

X
− −⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

[ ]2 62.1719 22.7753 196.3574 ,X =  

are derived and then [ ]3.1994 0.5848 0.1868K = −  is 

followed. The states 1 2,  i ix x and 3ix  of (17) with i iu Kx=  are 
presented in Fig. 1-Fig. 3, from which we observe that the 
network (17) realizes synchronization. 

V. CONCLUSIONS 
In this paper, we investigate the synchronization problem 

for a class of dynamical complex networks composed of 
general Lur’e systems with non-symmetric coupling. This 
problem is converted into an equivalent absolute stability 
problem of corresponding error system. Based on a 
Lur’e-Postnikov function and the Jordan canonical 
transformation method, the problem of designing a linear 
feedback controller such that states of all nodes are globally 
stabilized onto an expected homogeneous state is addressed 
and the synchronization criteria are established and 
formulated as LMI. Since the criteria are constructed on the 
Jordan canonical transformation method instead of the matrix 
diagonalization method, the obtained results are much 
sharper. In order to reduce the conservativeness, a 
decentralized control strategy based on the projection lemma 
in LMI method is proposed by introducing a freedom matrix 
which is not necessary to be symmetric and positive definite. 
Finally, numerical examples are provided to demonstrate the 
effectiveness of the proposed results. 
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Fig. 1. The states 1ix  of the network (17) 
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Fig. 2. The states 2ix  of the network (17) 
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Fig. 3. The states 3ix  of the network (17) 
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