
  

  

Abstract—Traditional structural feedback control systems are 

centralized systems.  The applications of these systems to large 

scale structures usually encounter a number of difficulties 

regarding system reliability, cost, and feedback latency.  

Decentralized control strategies offer promising alternatives that 

can address some of these difficulties.  When making control 

decisions, decentralized controllers may only require data from 

sensors located in the neighborhood of a control device.  Control 

decentralization lowers the demand on communication range in 

the sensing and control network, reduces feedback latency, and 

removes the risk associated with a centralized controller where 

single-point failure can paralyze the entire control system. 

This paper presents a time-delayed decentralized structural 

control strategy that aims to minimize the H∞ norm of the 

closed-loop system.  Feedback time delay is included in the 

formulation for the decentralized controller design, which 

employs a homotopy method through linear matrix inequalities 

(LMI).  Corresponding to certain decentralized feedback 

patterns, the homotopy method gradually degenerates a 

centralized control design into a decentralized control scheme.  

At each homotopy step, LMI constraints are satisfied to 

guarantee the performance requirement for the closed-loop H∞ 

norm.  The proposed algorithm is validated through numerical 

simulations with an example structure. 

I. INTRODUCTION 

ver the last three decades, significant research has been 

conducted in structural control technologies that aim to 

reduce excessive structural vibrations during earthquakes and 

typhoons [1, 2]. Structural control systems can be categorized 

into three major types: (a) passive control, (b) active control, 

and (c) semi-active control.  Passive control systems, e.g. base 

isolators, entail the use of passive energy dissipation devices 

to reduce the response of a structure.  Active control systems 

utilize actuators with high force capacities, such as active 

mass dampers, for direct application of control forces.  In a 

semi-active control system, control devices with adjustable 

properties are used for indirect application of control forces.  

Examples of semi-active control devices include active 

variable stiffness (AVS) devices, semi-active hydraulic 

dampers (SHD), electrorheological (ER) dampers, and 
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magnetorheological (MR) dampers, etc. 

In both active and semi-active control systems, sensors are 

deployed in the structure to collect structural response data 

during dynamic excitations.  Sensor data is sent to the 

controllers that determine appropriate control forces and 

deliver commands to structural control devices.  The control 

devices then generate forces intended to mitigate undesirable 

structural vibrations.  In traditional feedback control systems, 

coaxial wires are normally used to provide communication 

links between sensors, controllers and control devices.  The 

emergence of wireless communication and embedded 

computing technologies offers possible alternatives for the 

feedback communication links and decision making hardware 

in a structural control system [3, 4].  Incorporated with 

embedded computing power, “smart” wireless sensors can 

assume the responsibilities of both sensors and controllers.  

They can not only exchange sensor data with other 

neighboring nodes, but also make informed control decisions 

and command structural control devices.  The adoption of 

wireless communication and embedded computing has the 

potential to significantly reduce the cost and increase the 

architecture flexibility of a feedback structural control system. 

In previous research, a prototype wireless sensing and 

control system has been developed and its application to 

real-time feedback structural control has been explored in a 

laboratory setting [3].  When replacing cables with wireless 

communication channels, issues such as coordination of 

sensing and control nodes, communication range, feedback 

time delay and potential data loss need to be examined.  For 

example, time delay due to wireless communication will cause 

degradation to the performance of a feedback control system 

[5].  In general, the issue of communication time delay is 

common for any large-scale feedback control systems, 

regardless of using cabled or wireless communication.  To 

resolve some of the difficulties with centralized control, 

decentralized control strategies can be adopted [6].  For 

decentralized control, a large-scale control system is divided 

into a collection of smaller and distributed sub-systems.  In 

each subsystem, decentralized controllers rely only on local 

and neighboring sensor data to make control decisions.  For 

both cabled and wireless control networks, decentralization 

offers reduced use of communication channel, higher control 

sampling rates, shorter feedback time delay, and lower 

requirements on communication range.  Decentralization also 

removes the risk associated with a centralized controller being 

the single vulnerable point, whose failure would paralyze the 

Time-delayed Decentralized H∞ Controller Design for Civil 

Structures: a Homotopy Method through Linear Matrix Inequalities 

Yang Wang, Kincho H. Law, and Sanjay Lall 

O 

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrA20.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4549



  

entire control system.  On the other hand, because each 

decentralized controller only has local and neighboring sensor 

data available for control decisions, decentralized control 

systems may only achieve sub-optimal control performance 

when compared to centralized systems.  Therefore, 

decentralized controllers need to be designed with special 

consideration. 

To ensure satisfactory control performance, decentralized 

structural controller design based on the linear quadratic 

regulator (LQR) optimization criteria has been studied [3].  

The design provides static output feedback controllers which 

consider the effect of feedback time delay. This paper 

explores a different control methodology, namely the ∞H  

control theory that can offer excellent control performance 

when “worst-case” external disturbances are encountered.  

Centralized ∞H  controller design in the continuous-time 

domain for structural control has been studied by researchers 

[7-10].  Their work illustrates the feasibility and effectiveness 

of centralized ∞H  control for civil structures.  For example,  it 

has been shown that ∞H  control design may achieve excellent 

performance in attenuating transient vibrations of structures 

[11].  However, decentralized ∞H  controller design has 

rarely been explored in structural control. 

∞H  controller design can be conveniently formulated using 

linear matrix inequalities (LMI) [12].  For an optimization 

problem with LMI constraints, sparsity patterns can be easily 

applied to the matrix variables.  This property offers great 

convenience for designing decentralized controllers where 

sparsity patterns in the parametric controller matrices can 

represent decentralized information feedback.  Preliminary 

research on decentralized ∞H controller design, which is 

based on static state feedback, has been reported [13].  The 

work, however, did not consider feedback time delay in the 

controller design.  Since time delay inevitably exists in a 

practical structural control system, the inability to consider 

time delay during controller design may result in significant 

performance degradation.  Because the previous formulation 

for the decentralized ∞H controller design cannot be easily 

extended to provide controllers that can effectively consider 

feedback time delay, or controllers that do not require state 

feedback, a new approach is pursued in this work. 

This paper describes a new decentralized ∞H structural 

controller design that offers dynamic output feedback 

controllers.  The control problem is formulated in 

discrete-time domain so that feedback time delay can be 

effectively considered.  A homotopy method for designing 

decentralized ∞H controllers in continuous-time domain, 

which was described by Zhai, et al. [14], is adapted for this 

work.  The method gradually degenerates a centralized 

controller into a decentralized scheme that corresponds to 

certain decentralized feedback patterns.  LMI constraints 

describing the closed-loop ∞H  norm performance are 

guaranteed at each homotopy step.  This paper first describes 

the formulation of multiple dynamical systems involved in 

controller design.  The homotopy method that computes 

decentralized ∞H  controllers is then described.  Numerical 

simulations with an example structure are conducted to 

validate the performance of the proposed controller design.  

II. PROBLEM FORMULATION 

For a lumped-mass structural model with n 

degrees-of-freedom (DOF) and instrumented with nu control 

devices, the equations of motion can be formulated as:  

 

( ) ( ) ( ) ( ) ( )
1 1t t t t t+ + = +w uMq Cq Kq T w T uɺɺ ɺ  (1) 

 

where q(t) 1n×∈ℝ  is the displacement vector relative to the 

ground; M, C, K n n×∈ℝ  are the mass, damping, and stiffness 

matrices, respectively; w1(t)
1 1wn ×∈ℝ  and u(t)

1un ×∈ℝ  are the 

external excitation vector and control force vector,  

respectively; and Tw1
1wn n×∈ℝ  and Tu

un n×∈ℝ  are the external 

excitation and control force location matrices, respectively. 

 Without any loss of generality, the discussion is based on a 

2-D shear-frame structure subject to unidirectional ground 

excitation. The control formulation can be easily extended to 

3-D structural models.  For the example structure shown in 

Fig. 1, it is assumed that the external excitation w1(t) is a 

scalar (nw1 = 1), i.e. the ground acceleration history ( )g
q tɺɺ .  

The spatial load pattern Tw1 is equal to { }
1n×

−M 1 .  Entries in 

u(t) are defined as the control forces between neighboring 

floors.  For the three-story structure, if a positive control force 

is defined to be moving the floor above the control device 

towards the left direction, and moving the floor below the 

control device towards the right direction (directions of forces 

acting on the floors are shown in Fig. 1), the control force 

location matrix Tu is determined as: 

 

1 1 0

0 1 1

0 0 1

− 
 

= − 
 − 

uT  (2) 

 

The state-space system can be formulated as: 

 

( ) ( ) ( ) ( )1I I I I It t t t= + +x A x E w B uɺ  (3) 

u3

u2

u1

u3

u2

u1 ( )g
q tɺɺ

q2

q3

q1

 
Fig. 1. A three-story controlled structure excited by unidirectional 

ground motion. 
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where ( ) ( ) ( );I t t t=   x q qɺ
2 1n×∈ℝ  is the state vector;  

AI
2 2n n×∈ℝ , EI

12 wn n×∈ℝ , and BI
2 un n×∈ℝ  are the system, 

excitation influence, and control influence matrices, 

respectively [15].   

To facilitate the derivation for decentralized control, a linear 

transformation to the state vector is performed.  The 

transformed state vector xII(t)
2 1n×∈ℝ , with the displacement 

and velocity terms at the same story being concatenated 

together, is denoted as: 

 
xII(t) = [q1(t)   1qɺ (t)   q2(t)   2qɺ (t)  …  qn(t)   nqɺ (t)]T (4) 

 

To obtain the transformed state vector xII(t), a linear 

transformation matrix Γ  is defined to shuffle the entries in the 

original state vector ( )I tx : 

 

( ) ( )II It t=x Γx  (5) 

 

Substituting ( ) ( )1

I IIt t−=x Γ x  into (3), and left-multiplying the 

equation with Γ , the state space representation using the 

transformed state vector becomes: 

 

( ) ( ) ( ) ( )1II II II II IIt t t t= + +x A x E w B uɺ  (6) 

 

where 1

II I

−=A ΓA Γ , 
II I=E ΓE  and 

II I=B ΓB .  The system 

output vector z(t) 1zn ×∈ℝ  is defined as: 

 

( ) ( ) ( ) ( )1IIt t t t= + +z z zz C x F w D u  (7) 

 

Similarly, the sensor measurement vector m(t)
1mn ×∈ℝ  can be 

defined in a general form as: 

 

( ) ( ) ( ) ( )1IIt t t t= + +m m mm C x F w D u  (8) 

 

 Using zero-order hold, the continuous-time dynamics in (6) 

can be discretized using a sampling period ∆t.  The complete 

discrete-time system can be summarized as: 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1

1

1

1S S

S

S

k k k k

k k k k

k k k k

 + = + +


= + +
 = + +

d d d

z z z

m m m

x A x E w B u

z C x F w D u

m C x F w D u

 (9) 

 

where k represents the discrete time step, and the subscript “d” 

denotes the corresponding variables expressed in 

discrete-time domain. 

In this work, it is assumed that one step of time delay exists 

for the sensor measurement signal m[k], i.e. the feedback time 

delay is equal to one sampling period ∆t.  This is typically 

encountered in a wireless feedback structural control system, 

where the dominant part of feedback delay is the 

communication delay [3].  The sensor noise vector is denoted 

as w2[k] 2 1wn ×∈ℝ .  To describe one-step time delay and sensor 

noises, a simple discrete-time system can be defined as: 

 

[ ] [ ]
[ ]
[ ]

[ ] [ ]
[ ]
[ ]

2

2

1TD TD TD TD

TD TD TD

k
k k

k

k
k k

k

  
+ = +  

  


 
= +  

 

m
x A x B

w

m
y C x D

w

 (10) 

 

where 

 

TD =A 0 , [ ]TD =B I 0 , 
TD =C I , 

2TD ws =  D 0 I  (11) 

 

The input to this system is the original measurement signal 

m[k] and the sensor noise w2[k], the output of the system is the 

delayed noisy signal y[k], which is the feedback signal to be 

used for control decisions.  The formulation can be easily 

adapted and extended to model multiple steps of time delay, as 

well as different steps of time delay associated with different 

sensing channels.  Parameter 
2ws  is the scaling factor 

representing sensor noise level.  For simplicity, a single 

scaling factor is assumed for all sensor noises. 

This study is interested in decentralized schemes where the 

delayed measurement signal y[k] is fed back to the controllers.  

For a clear description of the decentralized control strategy, a 

simple three-story example structure is adopted herein.  

Nevertheless, the formulation is general-purpose and applies 

to larger-scale structures, where the benefit of decentralization 

can be much more significant.  Fig. 2 illustrates two 

decentralized feedback patterns for the three-story structure.  

It is assumed that at each floor i (i = 1, 2, or 3), two 

measurement signals, y2i-1[k] and y2i[k], are acquired by 

sensors at that floor.  In Fig. 2(a), the feedback pattern is 

defined such that when making the decision for control device 

ui, only measurement signals from the i-th floor are needed.  

Fig. 2(b) illustrates a partially decentralized feedback pattern 

with information overlapping.  In this case, sensor 

measurements from neighboring floors (floor) are also 

available for making the control decision for control device ui. 

 To represent the information overlapping shown in Fig. 

2(b), one delayed measurement signal is repeated as multiple 

entries in y[k].  Redundant rows are added into the definition 

of y[k] in (10); the entries in y[k] are then aggregated 

according to different information groups.  For example, for 

the feedback pattern illustrated in Fig. 2(b), the delayed sensor 

measurement signal y[k] is replaced by the new vector yrepeat 

defined in Fig. 3.  The entries are aggregated into three 

groups, which correspond to the sensor measurements 

required by three control devices.  This process is to facilitate 

the design of uncoupled decentralized controllers.   

 The dynamical system that describes time delay, sensor 

noises, and signal repeating is connected with the structural 

system in (9) to constitute the open-loop system depicted in 

Fig. 4.  The number of state variables in the open-loop system 

is equal to the total number of state variables in the structural 

system and the time-delay system, i.e. nOL = 2n + nTD.  

Combining the structural system and the time-delay system, 

the complete open-loop system is denoted as follows:  
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[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 2

1 11 12

2 21 22

1k k k k

k k k k

k k k k

 + = + +


= + +
 = + +

x Ax B w B u

z C x D w D u

y C x D w D u

 (12) 

where w[k] contains both the external excitation w1[k] and the 

sensor noise w2[k]: 

 

[ ]
[ ]
[ ]

1

2

k
k

k

  
=  
  

w
w

w
 (13) 

 

The control objective is to design an effective feedback 

controller for the open-loop system with different feedback 

patterns.  The controller takes the feedback signal y[k] as 

input, and outputs the control force vector u[k]: 

 

[ ] [ ] [ ]
[ ] [ ] [ ]
1G G G G

G G G

k k k

k k k

 + = +


= +

x A x B y

u C x D y
 (14) 

 

It is assumed that the controller has same number of states 

as the open-loop system, i.e. G Gn n

G

×∈A ℝ  and nG = nOL.  For 

convenience, a matrix variable G
( ) ( )G u G yn n n n+ × +

∈ℝ  is defined 

to contain all controller parametric matrices: 

 

G G

G G

 
=  
 

A B
G

C D
 (15) 

III. DECENTRALIZED DISCRETE-TIME H∞ CONTROLLER 

DESIGN 

For a decentralized controller design, the decentralized 

feedback can be represented by sparsity patterns in the 

controller matrices AG, BG, CG and DG.  For this purpose, 

entries in the feedback signal y[k] and the control force u[k] 

are divided into N groups.  While making control decisions for 

one group of control force entries, only one group of 

corresponding feedback signals is needed.  Block-diagonal 

patterns are assigned to controller matrices in order to 

represent a decentralized control architecture that includes 

decentralized controllers GI, GII, …, and GN: 

 

( ), , ,
I II NG G G Gdiag=A A A A⋯ , ( ), , ,

I II NG G G Gdiag=B B B B⋯ ,

( ), , ,
I II NG G G Gdiag=C C C C⋯ , ( ), , ,

I II NG G G Gdiag=D D D D⋯  
(16) 

 

Using the sparsity patterns shown in (16), the controller in 

(14) is equivalent to multiple uncoupled controllers, each 

controller requiring only one group of feedback signals to 

determine the control forces for that group: 

 

[ ] [ ] [ ]

[ ] [ ] [ ]

1
I I I I

I I I

G G G G I

I G G G I

k k k

k k k

 + = +


= +

x A x B y

u C x D y
, 

…, 

[ ] [ ] [ ]

[ ] [ ] [ ]

1
N N N N

N N N

G G G G N

N G G G N

k k k

k k k

 + = +


= +

x A x B y

u C x D y
 

(17) 

 

As an example, for the feedback pattern with information 

overlapping shown in Fig. 2(b), the total number of groups, N,  

is equal to three and each control force group contains one 

entry; the feedback signals are aggregated as illustrated in Fig. 

3, which shows that feedback signal group [ ]I
ky  has four 

entries, [ ]II
ky  has six entries, and [ ]III

ky  has four entries. 

 Assuming that the D22 matrix in the open-loop system in 

(12) is a zero matrix, the  following notations are defined [14]: 

 

1 2

1 2

1 11 12 1 11 12

2 21

2 21

G G

G

n n

n

 
  
  
 = 
  
     
  

A 0 B 0 B

0 0 0 I 0A B B

C D D C 0 D 0 D

0 I 0C D

C 0 D

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ

 (18) 

 

 Zero submatrices with unspecified dimensions should have 

compatible dimensions with neighboring submatrices.  Using 

the definitions above, the closed-loop system in Fig. 4 can be 

formulated by concatenating the open-loop system with the 

controller system: 

 

 
(a) 

 
(b) 

 

Fig. 2. Decentralized feedback patterns: (a) fully decentralized with no 

information overlapping; (b) partially decentralized with information 

overlapping. 

 

u1[k] u2[k] u3[k]

[ ]
T

1 2 3 4 1 2 3 4 5 6 3 4 5 6repeat
y y y y y y y y y y y y y y=y

 
Fig. 3. Redundant entries are used to represent signal repeating for 

decentralized feedback with information overlapping. 

 

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1

1

1

1
S S

S

S

k k k k

k k k k

k k k k

 + = + +


= + +
 = + +

d d d

z z z

m m m

x A x E w B u

z C x F w D u

m C x F w D u

[ ] [ ] [ ]
[ ] [ ] [ ]
1G G G G

G G G

k k k

k k k

 + = +


= +

x A x B y

u C x D y

[ ] [ ]
[ ]
[ ]

[ ] [ ]
[ ]
[ ]

2

2

1TD TD TD TD

TD TD TD

k
k k

k

k
k k

k

  
+ = +  

  


 
= +  

 

m
x A x B

w

m
y C x D

w

 
Fig. 4. Diagram of the structural control system. 
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[ ] [ ] [ ]
[ ] [ ] [ ]
1CL CL CL CL

CL CL CL

k k k

k k k

 + = +


= +

x A x B w

z C x D w
 (19) 

 

where 

 

2 2 1 2 21, ,CL CL= + = +A A B GC B B B GDɶ ɶɶ ɶ ɶ ɶ  

1 12 2 11 12 21
,

CL CL
= + = +C C D GC D D D GDɶ ɶɶ ɶ ɶ ɶ  

(20) 

 

and G is defined in (15).  Note that the input to the closed-loop 

system is w[k] defined in (13), and the output is the structural 

response z[k].  According to the Bounded Real Lemma, the 

following two statements are equivalent in specifying the 

performance criterion based on the ∞H -norm [16]: 

1. The ∞H -norm of the closed-loop system in  (19) is 

less than γ, and ACL is stable in the discrete-time sense (i.e. all 

of the eigenvalues of ACL fall in the unit circle on the complex 

plane); 

2. There exists a symmetric positive definite matrix 

0>P  such that the following matrix inequality holds: 

 
1

*
0

* *

* * *

CL CL

T

CL

T

CL
γ

γ

− −
 

−  <
 −
 

−  

P A B 0

P 0 C

I D

I

 (21) 

 

where * denotes a symmetric entry, and “< 0” means that the 

matrix at the left side of the inequality is negative definite.  Pre 

and post-multiplying (21) by a positive definite matrix 

diag( , , ,P I I I ), the congruence transformation leads to the 

following matrix inequality: 

 

*
0

* *

* * *

CL CL

T

CL

T

CLγ

γ

− 
 

−  <
 −
 

− 

P PA PB 0

P 0 C

I D

I

 (22) 

 

Substituting the definitions in (20) into (22), we define a 

matrix variable F which is a function of G and P as: 

 

( )

( ) ( )

( )

( )

2 2 1 2 21

1 12 2

11 12 21

*
,

* *

* * *

T

T

γ

γ

 − + +
 
 

− + =
 

− + 
 

−  

P P A B GC P B B GD 0

P 0 C D GC
F G P

I D D GD

I

ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶɶ

ɶ ɶ ɶ

 
(23) 

 

If there exists a decentralized controller G (with parameter 

structures illustrated in (16)), a positive real number γ, and a 

symmetric positive definite matrix P, such that F(G,P) < 0, 

then the closed-loop ∞H -norm is less than γ.  Because both G 

and P are unknown variables, the optimization problem has a 

bilinear matrix inequality (BMI) constraint [17].  When there 

is no sparsity requirements on the matrix G, efficient solvers 

are available for computing an ordinary controller matrix GC 

that minimizes the closed-loop ∞H -norm [16, 18]: 

C C

C C

G G

C

G G

 
=  
  

A B
G

C D
 (24) 

 

In general, 
CGA , 

CGB , 
CGC , and 

CGD  are full matrices 

that represent centralized information feedback.  When 

sparsity patterns in the controller matrices are specified to 

achieve decentralized information feedback, off-the-shelf 

algorithms for solving the optimization problem with BMI 

constraints are not available [17].  In this study, a heuristic 

homotopy method for designing continuous-time 

decentralized controllers [14] is adapted for the discrete-time 

controller design.  Starting with a centralized controller, the 

algorithm searches for a decentralized controller along 

following homotopy path: 

 

( )1 ,0 1C Dλ λ λ= − + ≤ ≤G G G  (25) 

 

where λ gradually increases from 0 to 1.  GC  represents the 

initial centralized controller and GD the desired decentralized 

controller.  Assume that a total number of M steps are assigned 

for the homotopy path, and denote: 

 

, 0,1,...,k
k k M

M
λ = =  (26) 

 

At every step k along the homotopy path, the two matrix 

variables GD and P are held constant one at a time, so that only 

one variable needs to be solved every time.  In this way, the 

BMI constraint in (23) degenerates into a linear matrix 

inequality (LMI) constraint.  For convenience, a matrix 

variable H is defined based on (23) as a function of variables 

GD, P, and λ: 

 

( ) ( ) ( )( ), , , 1 , 0D C Dλ λ λ= = − + <H G P F G P F G G P  (27) 

 

Note that the centralized controller GC is initially solved using 

any conventional methods and remains constant during the 

homotopy search. 

At the beginning of a homotopy search, an upper bound for 

the closed-loop ∞H -norm, i.e. γ, is specified.  The unknown 

variables in the above matrix inequality consist of GD and P 

only. When GD is held constant, a new P matrix can be 

computed for the next step; on the other hand, when P is held 

constant, a new GD matrix is computed.  If a homotopy search 

fails, γ is increased by certain relaxation factor and a new 

search is conducted.  The modified algorithm is described as 

follows: 

[i]  Compute a centralized controller GC and the minimum 

closed-loop ∞H -norm γC using existing robust control 

solvers [16, 18]; set γ ←γC , and set an upper limit (γmax) 

for γ, e.g. 10
6γC.  

[ii] Initialize M, the total number of homotopy steps, to be a 

positive number, e.g. 2
8
, and set an upper limit (Mmax) for 
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M, e.g. 2
13

; Set k ← 0, λ0 ← 0, and GD0 ← 0; compute a 

feasible solution P0 under the constraint 

( )0 0 0, , 0D λ <H G P . 

[iii] Set k ← k+1, and λk ← k/M; compute a solution GD under 

the constraint ( )1, , 0D k kλ− <H G P . If it is not feasible, go 

to Step [iv].  If ( )1, , 0D k kλ− <H G P  is feasible, set GDk ← 

GD, and compute a solution P under the constraint 

( ), , 0
kD kλ <H G P .  If ( ), , 0

kD kλ <H G P  is feasible, set Pk 

← P, and go to Step [v]; if not, go to Step  [vi]. 

[iv] Compute a solution P for ( )
1
, , 0

kD kλ
−

<H G P . If 

( )
1
, , 0

kD kλ
−

<H G P  is not feasible, go to Step [vi].  If it is 

feasible, set Pk ← P and compute a solution GD under the 

constraint ( ), , 0D k kλ <H G P .  If ( ), , 0D k kλ <H G P  is 

feasible, set GDk ← GD  and go to Step [v]; if not, go to 

Step [vi]. 

[v] If k < M, go to Step [iii]. If k is equal to M, GDk is the 

solution of the decentralized control problem. 

[vi] Set M ← 2M under the constraint M ≤ Mmax and restart 

the searching from Step [ii].  If M reaches over Mmax, set 

γ ← sγγ (sγ is a relaxation factor that is greater than one) 

under the constraint γ ≤ γmax and restart from Step [ii].  If 

γ  reaches over γmax, it is concluded that the computation 

doesn’t converge. 

A decentralized controller is found when k is equal to M at 

step [v].  The controller has the property that the closed-loop 

∞H -norm is less than γ.  It should be pointed out that since the 

homotopy algorithm is heuristic in nature, non-convergence in 

the computation does not imply that the decentralized ∞H  

control problem has no solution. 

IV. NUMERICAL EXAMPLE 

This section first illustrates procedures of the decentralized 

∞H  controller design using a three-story example structure.  

Performance of the decentralized ∞H  controllers is then 

presented.  

A. Formulation of the Three-story Example Structure 

As shown in Fig. 1, the three-story building is modeled as an 

in-plane lumped-mass structure with one control device 

allocated between every two neighboring floors.  The mass, 

stiffness, and damping matrices are given as: 

 

3
6

6 10
6

 
= × 
  

M kg, 6
3.4 1.8
1.8 3.4 1.6 10

1.6 1.6

− 
= − − × 
 − 

K N/m,  

3
12.4 5.16
5.16 12.4 4.59 10

4.59 7.20

− 
= − − × 
 − 

C N/(m/s) 

(28) 

 

A discrete-time system describing the structural dynamics 

is given in (9).  Considering inter-story drifts as the control 

parameters, the output matrices are defined as follows: 

 

1 0 0 0 0 0
1 0 1 0 0 0

0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 
− 
 −

=  
 
  

zC , =zF 0 , 6

0 0 0
0 0 0
0 0 0

10
1 0 0
0 1 0
0 0 1

−

 
 
 

= × 
 
 
 

zD  (29) 

 

With Cz and Dz defined above, the 2-norm of the output 

vector z[k] becomes a quadratic function of the inter-story 

drifts and the control forces: 

 

[ ] [ ] [ ]

[ ] [ ] [ ]( ) [ ] [ ]( )

[ ] [ ] [ ]( )

2 2

2 2

2 22

1 2 1 3 2

12 2 2 2

1 2 310

Sk k k

q k q k q k q k q k

u k u k u k
−

= +

 = + − + − +  

+ +

z zz C x D u

 (30) 

 

where qi[k] and ui[k] represent, respectively, the floor 

displacement relative to the ground and the control force for 

floor  i.  The relative weighting between the structural 

response and the control effort is reflected by the magnitude of 

matrices Cz and Dz. 

It is assumed that inter-story drifts and velocities can be 

measured, i.e. the measurement vector m[k] is defined as 

{ [ ]1q k , [ ]1q kɺ , [ ] [ ]2 1q k q k− , [ ] [ ]2 1q k q k−ɺ ɺ , [ ] [ ]3 2q k q k− , 

[ ] [ ]3 2q k q k−ɺ ɺ }
T
.  Hence, the measurement matrices in (9) are 

determined as: 

 

1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0

0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 
 
 −

=  −
 −
 − 

mC , =mF 0 , =mD 0  (31) 

 

B. Controller Designs with Different Feedback Patterns 

Controllers are designed for three different feedback 

patterns: fully decentralized, partially decentralized, and 

centralized.  The two decentralized feedback patterns follow 

the schematics in Fig. 2.  For example, in the fully 

decentralized case, only two sensor measurements (i.e. the 

inter-story drift and velocity) are available for the 

sub-controller at each story.  In the centralized feedback case, 

all six measurements at three stories are available while 

making control decisions for each control device.  As shown 

in Table 1, each feedback pattern is identified by a 

degree-of-centralization (DC). For the partially decentralized 

pattern with information overlapping, the feedback signal is 

re-defined as shown in Fig. 3.  A sampling period of 5ms is 

first used for the results presented below; this implies that the 

feedback time delay is also set as 5ms.   

Table 1  Three Feedback Patterns 

 

Degrees of 

Centralization (DC) 
DC�  DC�  DC�  

Description 

Fully 

decentralized 

(Fig. 2a) 

Partially 

decentralized 

(Fig. 2b) 

Centralized 
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The homotopy method is used to compute the time-delayed 

decentralized control solutions. For the fully decentralized 

case DC� , each uncoupled controller, 
I

G� , 
II

G� , or 
III

G� .  

takes two feedback signals as input (i.e. inter-story drift and 

velocity at the story housing the decentralized controller), and 

outputs the desired control force at this story.  For example, 

the decentralized controller 
I

G�  determined by the homotopy 

search has 2 input variables, 4 state variables, and 1 output 

variable.  For the partially decentralized case DC� , three 

uncoupled decentralized controllers are computed as well, 

where the dimensions of the three controllers are summarized 

in Table 2. For case DC� , the centralized controller has 6 

input variables (inter-story drifts and velocities at all stories), 

12 state variables, and 3 output variables (control forces). 

 Table 3 shows the open-loop ∞H -norm of the uncontrolled 

structure, as well as the closed-loop ∞H -norms of the 

controlled structure.  Compared with the three controlled 

cases, the uncontrolled structure has a much higher ∞H -norm, 

which indicates larger worst-case amplification from the 

disturbance w to the output z.  Among the three controlled 

cases, the centralized controller assumes that complete state 

information is available for control decisions of all three 

control devices; accordingly, the centralized controller 

achieves the minimum closed-loop ∞H -norm (which means 

best ∞H  performance).  The fully decentralized control case 

achieves the largest closed-loop norm among the three 

controlled cases, as the least amount of information is 

available for control decisions.  It can be seen that, even with 

5ms of time delay in the feedback loop, all three controlled 

cases achieve smaller closed-loop ∞H  norms than the 

uncontrolled structure. 

C. Simulation Results 

One ideal actuator that generates arbitrary desired control 

force is deployed at each story of the structure.  The 1940 El 

Centro NS (Imperial Valley Irrigation District Station) 

earthquake record with its peak acceleration scaled to 2m/s
2
 is 

used as the ground excitation.  As described in the last 

subsection, decentralized/centralized controllers considering 

5ms of feedback delay are designed for the three feedback 

patterns (DC � , DC � , and DC � ).  To improve the 

simulation accuracy, regardless of the feedback time delay or 

sampling time period, a time step of 1ms is used in the 

dynamic simulation.  Simulated inter-story drifts at all three 

stories are plotted in Fig. 5.  For clarity, the plots are zoomed 

in to the part when peak drifts occur.  Also presented are the 

inter-story drifts of the uncontrolled structure.  As shown in 

the figure, although 5ms of feedback time delay exists, all 

three feedback control cases achieve significant reduction in 

the inter-story drifts.  No control instability is observed even 

though the actuators can generate arbitrarily large forces. 

Fig. 6 presents the peak inter-story drifts at the three stories, 

and the peak actuator forces required by the three different 

control cases.  As shown in Fig. 6(a), the partially 

decentralized case, DC� , achieves the least overall peak 

inter-story drifts among the three feedback patterns.  The fully 

decentralized case, DC� , achieves small peak drifts at the 

first and the third story, but has the highest peak drift at the 

second story.  The centralized case, DC� , results in higher 

drifts at all three stories, when compared with case DC� .  

The better performance of case DC�  on reducing inter-story 

drifts is partly attributed to its higher requirement on peak 

actuator forces.  As shown in Fig. 6(b), case DC�  requires 

higher peak actuator forces than the other two cases. 

To illustrate the effect of different time delays due to 

different degrees of decentralization, additional simulations 

are conducted with different time delays adopted for three 

different feedback patterns.  For case DC � , where each 

actuator only requires sensor data at its own story to make 

control decisions, time delay is chosen to be the minimum as 

5ms.  For case DC � , where data from sensors on the 

actuator’s own story and neighboring story (stories) are 

required, 10ms time delay is adopted.  For the centralized case 

Table 2  Dimensions of Decentralized Controllers for Pattern DC�  

 

Number of variables I
G

�  
II

G
�  

III
G

�  

Input 4 6 4 

State 4 4 4 

Output 1 1 1 

 

Table 3   ∞H -norms of Uncontrolled and Controlled Structures 

 Uncontrolled DC�  DC�  DC�  

∞zwH  0.1688 0.06113 0.02419 0.02348 
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Fig. 5. Inter-story drifts of the three-story structure (time delay is 5ms). 
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DC� , 15ms time delay is adopted.  For feedback patterns 

DC�  and DC� , controllers are re-computed based on the 

different time delays.  Simulated peak inter-story drifts and 

actuator forces are presented in Fig. 7.  A comparison between 

Fig. 7(a) and Fig. 6(a) shows that due to longer time delay, the 

performance of cases DC�  and DC�  degrades.  Among the 

three feedback cases shown in Fig. 7(a), the partially 

decentralized case DC �  offers the most preferable 

performance in terms of reducing peak inter-story drifts.  Fig. 

7(b) illustrates that case DC�  again requires the highest peak 

actuator forces.  The peak floor accelerations achieved by 

DC �  are comparable with DC � ; both these two cases 

achieve slightly larger peak accelerations than DC� . 

V. CONCLUSION 

This paper presents a decentralized controller design that 

aims to minimize the closed-loop ∞H   norm of a controlled 

structure.  The design is formulated in discrete-time domain, 

and considers possible feedback time delay. The decentralized 

controller design employs a homotopy method, which 

gradually degenerates a centralized controller into a set of 

uncoupled decentralized controllers.  LMI constraints 

describing the closed-loop ∞H  norm performance are 

ensured at each homotopy step. Performance of the 

decentralized ∞H  controller design is validated through 

numerical simulations.  It is illustrated that decentralized 

control strategies may provide equivalent or even better 

control performance, given that their centralized counterparts 

could suffer longer sampling periods due to communication 

and computation constraints.  

ACKNOWLEDGMENT 

This work was partially supported by NSF, Grant Number 

CMMI-0824977, awarded to Prof. Kincho H. Law of Stanford 

University. The authors appreciate the insightful opinions on 

this research from Prof. Jerome P. Lynch of the University of 

Michigan.  The authors would also like to thank Prof. 

Chin-Hsiung Loh of the National Taiwan University for 

sharing the 3-story structure model built at the National Center 

for Research on Earthquake Engineering in Taiwan. 

REFERENCES 

[1] T. T. Soong, Active Structural Control: Theory and Practice. Harlow, 

Essex, England: Wiley, 1990. 

[2] B. F. Spencer, Jr. and S. Nagarajaiah, "State of the art of structural 

control," Journal of Structural Engineering, vol. 129, pp. 845-856, 

2003. 

[3] Y. Wang, R. A. Swartz, J. P. Lynch, K. H. Law, K.-C. Lu, and C.-H. 

Loh, "Decentralized civil structural control using real-time wireless 

sensing and embedded computing," Smart Structures and Systems, vol. 

3, pp. 321-340, 2007. 

[4] J. P. Lynch, Y. Wang, R. A. Swartz, K.-C. Lu, and C.-H. Loh, 

"Implementation of a closed-loop structural control system using 

wireless sensor networks," Structural Control and Health Monitoring, 

vol. 15, pp. 518-539, 2008. 

[5] J. P. Lynch and D. M. Tilbury, "Implementation of a decentralized 

control algorithm embedded within a wireless active sensor," in 

Proceedings of the 2nd Annual ANCRiSST Workshop, Gyeongju, 

Korea, 2005. 

[6] D. D. Siljak, Decentralized Control of Complex Systems. Boston: 

Academic Press, 1991. 

[7] J. G. Chase and H. A. Smith, "Robust H� control considering actuator 

saturation. I: theory," Journal of Engineering Mechanics, vol. 122, pp. 

976-983, 1996. 

[8] C.-C. Lin, C.-C. Chang, and H.-L. Chen, "Optimal H� output feedback 

control systems with time delay," Journal of Engineering Mechanics, 

vol. 132, pp. 1096-1105, 2006. 

[9] E. A. Johnson, P. G. Voulgaris, and L. A. Bergman, "Multiobjective 

optimal structural control of the Notre Dame building model 

benchmark," Earthquake Engineering & Structural Dynamics, vol. 27, 

pp. 1165-1187, 1998. 

[10] J. N. Yang, S. Lin, and F. Jabbari, "H�-based control strategies for civil 

engineering structures," Structural Control and Health Monitoring, 

vol. 11, pp. 223-237, 2004. 

[11] J. G. Chase, H. A. Smith, and T. Suzuki, "Robust H� control 

considering actuator saturation. II: applications," Journal of 

Engineering Mechanics, vol. 122, pp. 984-993, 1996. 

[12] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix 

Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 

1994. 

[13] Y. Wang, J. P. Lynch, and K. H. Law, "Decentralized H� controller 

design for large-scale wireless structural sensing and control systems," 

in Proceedings of the 6th International Workshop on Structural Health 

Monitoring, Stanford, CA, 2007. 

[14] G. Zhai, M. Ikeda, and Y. Fujisaki, "Decentralized H� controller design: 

a matrix inequality approach using a homotopy method," Automatica, 

vol. 37, pp. 565-572, 2001. 

[15] S. Y. Chu, T. T. Soong, and A. M. Reinhorn, Active, Hybrid, and 

Semi-active Structural Control: a Design and Implementation 

Handbook. Hoboken, NJ: Wiley, 2005. 

[16] P. Gahinet and P. Apkarian, "A linear matrix inequality approach to H

� control," International Journal of Robust and Nonlinear Control, vol. 

4, pp. 421-448, 1994. 

[17] J. G. VanAntwerp and R. D. Braatz, "A tutorial on linear and bilinear 

matrix inequalities," Journal of Process Control, vol. 10, pp. 363-385, 

2000. 

[18] R. Y. Chiang and M. G. Safonov, MATLAB robust control toolbox, 2 

ed. Natick, MA: MathWorks, Inc., 1998. 

0 0.005 0.01 0.015 0.02 0.025
1

2

3

Drift (m)

S
to

ry
Maximum Inter-story Drifts

DC1(5ms)

DC2(5ms)

DC3(5ms)

No control

 
0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

1

2

3

Force (N)

S
to

ry

Maximum Actuator Force

DC1(5ms)

DC2(5ms)

DC3(5ms)

 
(a) (b) 

Fig. 6. Peak inter-story drifts and actuator forces when ideal actuators are 

deployed on the three-story structure; time delay of 5ms is adopted for all 

three feedback patterns. 
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Fig. 7. Peak inter-story drifts and actuator forces when ideal actuators are 

deployed on the three-story structure; different time delays are adopted for 

different feedback patterns. 
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