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Abstract— We consider robust decentralized diagnosis of
discrete event systems, where the goal is to detect the occurrence
of unobservable fault events using a set of local diagnosers
that are themselves subject to failures. We introduce a formal
notion of robust decentralized diagnosability, called robust
codiagnosability, and study its properties. Two different tests
of robust codiagnosability are presented; one uses diagnoser
automata and the other uses verifier automata. We also revisit
the problem of centralized diagnosability and study the problem
of diagnosability under partial observation, where the set of
observable events is reduced; in this regard, we introduce
the notions of partial diagnosers and indeterminate hidden
cycles, which are subsequently used in the study of robust
codiagnosability.

I. INTRODUCTION

We are interested in the problem of fault diagnosis in

decentralized discrete event systems (DES), in the presence

of unreliable communications or unreliable diagnostic en-

gines at local sites. Our primary focus is the decentralized

architecture for diagnosis considered in [1]. Several exten-

sions of this work, involving refined local diagnostic engines

that issue conditional decisions or perform multiple levels of

inferencing, have been proposed lately; see, e.g., [2], [3], [4].

In this work, we pursue another direction. Namely, we are

interested in the robustness properties of the architecture in

[1] when local diagnostic engines go down due to faults in

communication or at sites. Such faulty behavior is common

in application areas where DES techniques for fault diagnosis

have been employed: automated transportation systems [5],

nuclear systems [6], or software systems [7].

Robustness is an important property of diagnostic systems.

It has been studied extensively in the context of continuous-

variable time-driven systems (see [8], [9] and the references

therein). Despite the large body of work on diagnosis of

DES in centralized and decentralized architectures, few

works, if any, have explicitly addressed robustness of the

diagnostic system. References [10], [6], [11] consider the

problem of event diagnosis under unreliable sensors and use

stochastic models for this purpose. The problem of fault-

tolerant control of DES, where diagnostic methodologies are

embedded in control architectures, has been considered in

This work was carried out when the first author was on a sabbatical leave
at the University of Michigan. The research of J. C. Basilio was partially
supported by the Brazilian Research Council (CNPq) grant 200820/2006-0.
The research of S. Lafortune was partially supported by NSF grants CCR-
0325571 and EECS-0624821

J. C. Basilio is with COPPE - Programa de Engenharia Elétrica, Univer-
sidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, RJ, Brazil.
basilio@dee.ufrj.br

S. Lafortune is with the Department of Electrical Engineering and
Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
stephane@eecs.umich.edu

[12], [13]. Reliability of local controllers in decentralized

control architectures (without diagnosis) has been considered

in [14].

In this paper, we consider a decentralized architecture

where the local sites do not communicate with one another

and no explicit coordination among sites is necessary. This

is the situation corresponding to Protocol 3 in [1] and is

often referred to as codiagnosability in recent work [2], [4].

Note that several works consider architectures with com-

municating diagnostic engines, e.g., [15], [16], [17], [18],

[19], where a variety of modeling formalisms are adopted:

automata, communicating automata, Petri nets, and related

models. Codiagnosability refers to the situation where it is

required that each fault be diagnosed by at least one local

site, when all local sites operate autonomously by processing

their local observations. We propose in this paper a formal

definition for a notion of robust codiganosability and study

its properties. A decentralized diagnosis strategy is robust

when it can withstand the permanent failure of one or more

sites. We do not specify why a site becomes unavailable;

it may be due to a hardware or software fault at the site,

or to a fault in the communication channel with the site.

Two methods of testing for codiagnosability are presented,

one based on diagnoser automata and one based on verifier

automata. We also discuss how to use diagnoser automata

online for robust codiagnosis. These results are presented in

Section IV.

For the purpose of establishing our results on robust

codiagnosability, we develop new results on centralized

diagnosability when the set of observable events is reduced.

We call this problem “centralized diagnosis under partial

observation” and refer to the associated diagnosers as “partial

diagnosers.” This problem is treated in Section III, where

we introduce the new notion of hidden cycle and use it to

characterize diagnosability under partial observation. Hidden

cycles and partial diagnosers play a role in the study of robust

codiagnosability in Section IV.

The next section reviews necessary results and establishes

the notation used in the sequel.

II. PRELIMINARIES

A. Fault diagnosis of discrete event systems

Let

G = (X, Σ, f, Γ, x0, Xm) (1)

be a deterministic automaton, where X is the state space, Σ
is the set of events, f is the partial transition function, Γ is

the active event function, x0 is the initial state of the system,

and Xm ⊆ X is the set of marked states. In addition, assume
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that the set of events Σ is partitioned into two subsets: Σo,

the set of observable events, i.e. the set of events whose

occurrence can be observed, and Σuo, the set of unobservable

events. The unobservable events of the system are those

whose occurrence cannot be recorded by sensors, together

with the fault events. Therefore, model G accounts for the

normal and failed behavior of the system. Let Σf ⊆ Σuo

denote the set of fault events.

The fault diagnosis problem can be stated as follows:

Given that a fault event has occurred, identify its occurrence,

assuming that, in the traces generated by G, only the events

in Σo are observed. The set of fault events Σf is usually

partitioned into different subsets Σfi
, i = 1, 2, . . . , m, not

necessarily singleton sets, so that each set Σfi
accounts for

specific fault types; the reader is referred to [20], [21], [22]

for further details. Let Πf = {Σf1
, Σf2

, . . . ,Σfm
} denote

this partition. Then, every time it is stated that a fault of

type Fi has occurred, it should be understood that some event

from the set Σfi
has occurred.

Let L denote the language generated by G. Three assump-

tions are made in this paper:

A1. The language generated by G is live, i.e. Γ(xi) 6= ∅ for

all xi ∈ X ;

A2. Automaton G has no cycle of unobservable events, i.e.

∃n0 ∈ N : ∀ust ∈ L, s ∈ Σ∗
uo, u, t ∈ Σo ⇒ ‖s‖ ≤ n0,

where ‖s‖ denotes the length of trace s.

A3. There is only one fault type i.e. Σf = {σf}.

Assumptions A1 and A2 are standard in the literature.

Assumption A1 is made for the sake of simplicity and can be

relaxed at the cost of additional technical details. Assumption

A2 is a necessary condition for diagnosability of faults,

since it precludes the existence of arbitrarily long traces of

unobservable events. Assumption A3 is made in this paper

to keep the notation and treatment simpler. It is without loss

of generality as one can always diagnose each fault type

separately.

B. Notation

The notation used throughout the paper is the usual one

[23]. The post-language of L after s is denoted by L/s, and

is defined as

L/s = {t ∈ Σ∗ : st ∈ L}. (2)

The language projection operation Po is defined in the usual

manner [24], as

Po : Σ∗ → Σ∗
o

s 7→ Po(s),
(3)

with the following properties:

Po(ǫ) = ǫ,

Po(σ) =

{

σ, if σ ∈ Σo,
ǫ, if σ ∈ Σuo,

Po(sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ,

(4)

where ǫ denotes the empty trace. The inverse projection

operator over language L, denoted by P−1
oL

, is defined as

P−1
oL

= {s ∈ L : P (s) = y}. (5)

The set of all traces that end with the fault event σf is

denoted as Ψ(Σf ). Formally,

Ψ(Σf ) = {s ∈ L : sf ∈ Σf}, (6)

where sf denotes the last event of s. With slight abuse of

notation, given a trace s, the membership relation Σf ∈ s
can be used to denote that s ∩ Ψ(Σf ) 6= ∅, where s denote

the prefix-closure of s. Finally, a trace s ∈ L is a faulty trace

if Σf ∈ s.

C. Centralized diagnosis of DES

In words, the language generated by an automaton is

diagnosable with respect to a set of observable events and a

failure set Σf if the occurrence of any fault in Σf can be

detected, within a finite delay, using only traces of observable

events. In a formal way, diagnosability is defined as follows

[20].

Definition 1: A prefix-closed and live language L is

diagnosable with respect to projection Po and Σf = {σf} if

the following holds true:

(∃n ∈ N)(∀s ∈ Ψ(Σf ))(∀t ∈ L/s)(‖t‖ ≥ n ⇒ D),

where the diagnosability condition D is

(∀ω ∈ P−1
oL

(P (st)))[Σf ∈ ω].

2

Diagnosability analysis is carried out using either a de-

terministic automaton called diagnoser or a nondetermin-

istic automaton called verifier [25]. The main advantage

of verifiers over diagnosers is that the diagnosability test

using verifiers requires polynomial time in the cardinality of

the state space of the system model; testing diagnosability

using diagnosers can be performed in polynomial time in the

cardinality of the state space of the diagnoser; however, this

state space is, in the worst case, exponential in the cardinality

of the state space of the system model. On the other hand,

diagnosers can also be used to perform online diagnosis

through the observation of the occurrences of observable

events of the system, since they provide information not

only on the possible states where the system can be after

the occurrence of an observable event, but also on fault

occurrence. The diagnoser for G, hereafter denoted as Gd,

is a deterministic automaton with labels Y and N attached

to the states of G, in the states of Gd, to indicate whether

event σf has occurred or not; specifically, they are of the

form (x, Y ) or (x, N), depending on whether or not σf is

present in the traces that take x0 to x. Formally, Gd is defined

as

Gd = (Xd, Σo, fd, Γd, x0d
). (7)

The construction of Gd was initially presented in [20]. An

equivalent approach (see [23]) is to proceed in two steps, as

follows: (i) perform the parallel computation G‖Al, where

Al = (Xl, Σl, fl, x0l
) is a two-state label automaton, with

Xl = {N, F}, Σ = {σf}, x0l
= N , fl(x0l

, σf ) = x1 =
F and fl(x1, σf ) = x1 and; (ii) compute Obs(G‖Al),
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where Obs is the deterministic observer automaton, whose

computation is presented in [23, p. 103](see also [26]).

It is not difficult to see that the language generated by Gd

is equal to Po(L) and that Xd ⊂ 2X×{N,Y }. As far as the

presence of Y and N labels in the states of Gd are concerned,

the states xd ∈ Xd are defined as certain (or faulty), normal

or uncertain [20]. A state xd is called certain (or faulty), if

ℓ = Y for all (x, ℓ) ∈ xd, and normal (or non-faulty) if

ℓ = N for all (x, ℓ) ∈ xd. If there exist (x, ℓ), (y, ℓ̃) ∈ xd, x
not necessarily distinct from y such that ℓ = Y and ℓ̃ = N ,

then xd is called an uncertain state of Gd. It can be seen

from the diagnoser construction [20] that once the diagnoser

becomes certain about fault occurrence, i.e., reaches a certain

state, it is not possible for it to become uncertain again.

Let L(G, x) denote the set of all traces that originate in

state x of G. Then

1) A set of states x1, x2, . . . , xn ∈ X forms a cycle in G
if there exists a trace s = σ1σ2 . . . σn ∈ L(G, x1) such that

f(xl, σl) = xl+1, l = 1, . . . , n − 1, and f(xn, σn) = x1.

2) A set of uncertain states xd1
, xd2

, . . . , xdn
∈ Xd forms

an indeterminate cycle if the following conditions hold true:

2.1) xd1
, xd2

, . . . , xdn
form a cycle in Gd, i.e. there exist

σl ∈ Σo, l = 1, 2, . . . , n, such that fd(xdl
, σl) = xdl+1

,

l = 1, 2, . . . , n − 1, and fd(xdn
, σn) = xd1

;

2.2) ∃(xkl

l , ℓkl

l ), (x̃rl

l , ℓ̃rl

l ) ∈ xdl
, xkl

l not necessarily dis-

tinct from x̃rl

l , l = 1, 2, . . . , n, kl = 1, 2, . . . , ml, and

rl = 1, 2, . . . , m̃l such that

a) Y ∈ ℓkl

l , Y /∈ ℓ̃rl

l , for all l, k and r;

b) The sequences of states {xkl

l }, l = 1, 2, . . . , n, kl =
1, 2, . . . , ml and {x̃rl

l }, l = 1, 2, . . . , n, rl = 1, 2, . . . , m̃l

form cycles in G, such that the corresponding traces s and

s̃, formed with the events that define the evolution of the

cycles, have as projection σ1σ2 . . . σn, where σ1, σ2, and σn

are defined in 1).

In addition, the following relationship between the traces

of the language generated by G and the states of Gd has

been established [20].

Lemma 1:

(i) Let xd = fd(x0d
, s). If xd is a certain state, then for all

ω ∈ P−1
oL

(s), Σf ∈ ω.

(ii) If xd is an uncertain state, then there exist s1, s2 ∈ L
such that Σf ∈ s1 and Σf /∈ s2, but Po(s1) = Po(s2) and

fd[x0d
, P (s1)] = fd[x0d

, P (s2)] = xd. 2

The following necessary and sufficient condition for lan-

guage diagnosis can be stated [20].

Theorem 1: A language L generated by an automaton G
is diagnosable with respect to projection Po and Σf = {σf}
if, and only if, its diagnoser Gd has no indeterminate cycles.

2

III. CENTRALIZED DIAGNOSABILITY UNDER

PARTIAL OBSERVATION

The dependence of language diagnosability on the set of

observable events suggests that it may be possible that the

language generated by an automaton can also be diagnosable

with respect to another projection P ′
o : Σ∗ → Σ′∗

o , where

Σ′
o ⊂ Σo. This problem is known as centralized diagnos-

ability under partial observation, and in order to address it,

besides Assumptions A1–A3, the following assumption is

also made:

A4. L is diagnosable with respect to projection Po : Σ∗ →
Σ∗

o and Σf (centralized diagnosable).

Let G′
d = (X ′

d, Σ
′
o, f

′
d, Γ

′
d, x

′
0d

) denote the diagnoser for L
assuming partial observation, i.e. G′

d is capable of observing

only events in a set Σ′
o ⊂ Σo. For this reason, G′

d will be

referred to as a centralized diagnoser with partial observation

or simply partial diagnoser. The following result can be

stated.

Theorem 2: Let Gd = (Xd, Σo, fd, Γd, x0d
) and G′

d =
(X ′

d, Σ
′
o, f

′
d, Γ

′
d, x

′
0d

) denote centralized diagnosers, assum-

ing, respectively, full and partial observation, i.e. Σ′
o ⊂ Σo

and Σ′
o 6= ∅. Then, Obs(Gd, Σ

′
o) = (X̂d, Σ

′
o, f̂d, Γ̂d, x̂0d

) (the

observer of Gd with respect to projection P ′
o : Σ∗

o → Σ′∗
o )

and G′
d are equal up to the following renaming of states:

x̂d = {xd1
, xd2

, . . . , xdn
} ∈ X̂d, xdi

∈ Xd

⇔ x′
d =

⋃n

i=1 xdi
∈ X ′

d.
Proof: The proof is omitted here; it can be found in [26]. 2

According to Theorem 2, the partial diagnoser G′
d that

observes the events in a subset Σ′
o of the set of observable

events Σo can be built from Gd in a straightforward way as

follows:

1) The states of G′
d are obtained by merging all the states of

Gd that are connected by the events in Σo \Σ′
o into a single

state formed by the union of the sets of the states merged;

2) The transition function for each state x′
d defined in the

previous step is defined as

f ′
d(x

′
d, e) =

⋃

xd merged and e∈Σ′

o∩Γd(xd)

fd(xd, e),

where xd merged denotes all states that have been merged

to form the new state x′
d.

Another contribution of Theorem 2 is that, although the

language generated by the centralized diagnoser with full

observation is always live (due to Assumption A2), the

languages generated by partial diagnosers are not necessarily

live. This happens whenever the events that form a cycle in

Gd become unobservable in the partial diagnoser. It is not

difficult to see that when this happens, this cycle reduces to a

single state in G′
d. When unobservable events occur after the

system reaches such a particular state, even though there is

no change of state in the partial diagnoser, the actual states of

the automaton change cyclically. In this case, it is said that

this particular partial diagnoser has a hidden cycle, whose

formal definition is as follows.

Definition 2: (Hidden cycle and indeterminate hidden

cycle) Let x′
d ∈ X ′

d be obtained by merging states

xd1
, xd2

, . . . , xdn
∈ Xd. Then, there exists a hidden cycle

in x′
d in G′

d if, for some {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n},

xdi1
, xdi2

, . . . , xdik
form a cycle in Gd. Moreover, if x′

d is

uncertain and all states xdi1
, xdi2

, . . . , xdik
are certain, then

the hidden cycle is indeterminate. 2
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Due to Assumption A4, it is not difficult to see that states

xdk
, k = 1, 2, . . . , n, that form the cycle that is hidden in x′

d,

must all be either faulty or normal. For this reason, hidden

cycles will be represented in the state transition diagrams of

partial diagnosers by dashed self-loops: indeterminate hidden

cycles will be labeled as ihc and hidden cycles in normal or

certain states will be labeled simply as hc, since, as it will

be seen in the sequel, they do not interfere in diagnosability

under partial observation.

According to the diagnosability condition given in De-

finition 1, all traces s ∈ Ψ(Σf ) must be diagnosed by

the partial diagnoser G′
d. The following theorem provides

a necessary and sufficient condition for diagnosability under

partial observation.

Theorem 3: Assuming that a language L is diagnosable

with respect to projection Po and Σf , then L will be also

diagnosable with respect to projection P ′
o : Σ∗ → Σ′∗

o , Σ′
o ⊂

Σo, and Σf = {σf} if, and only if, G′
d has no indeterminate

cycles (hidden cycles included).

Proof: A necessary and sufficient condition for diagnosabil-

ity has been established by Theorem 1 when G′
d has no

hidden cycles. It remains to address the case when G′
d has

indeterminate hidden cycles.

Let UR(x, Σuo) denote the unobservable reach of x with

respect to the unobservable set Σuo [23, p. 102]. For some

xdunc
∈ Xd, define x′

dunc
= UR(xdunc

, Σo \ Σ′
o) ∈ X ′

d, and

assume that, for l = 1, . . . , n, states x
(l)
dcert

∈ x′
dunc

form

an indeterminate hidden cycle in x′
dunc

. It is not hard to see

that there exists a trace stuk ∈ L that satisfies the following

conditions:

1) s ∈ Ψ(Σf) and fd(x0d
, Po(s)) = xdunc

;

2) t ∈ (Σo \ Σ′
o)

∗ is such that fd(x0d
, Po(st)) = x

(1)
dcert

;

3) uk ∈ (Σo \Σ′
o)

∗, ‖uk‖ = k, where k can be arbitrarily

large, is such that fd(x
(1)
dcert

, uk) = x
((k mod n)+1)
dcert

.

It is immediate that f ′
d(x0d

, P ′
o(stuk)) = x′

dunc
, which

implies that, since fd(x0d
, Po(s)) = xdunc

, then, according

to item (ii) of Lemma 1, there exists w ∈ P ′−1
oL

(stuk) such

that Σf /∈ w, which violates the diagnosability condition. 2

Example 1: In order to illustrate the results presented in

this section, consider automaton G = (X, Σ, f, Γ, x0, Xm)
depicted in Figure 1(a), where Σ = Σo∪Σuo, Σo = {a, b, c}
and Σuo = Σf = {σf}. The corresponding diagnoser is

shown in Figure 1(b), on the left, and it is clear that the

language L generated by G is diagnosable with respect to

projection Po and Σf . Consider now the partial diagnoser

G′
d shown in Figure 1(b), in the middle, whose set of

observable events is Σ′
o = {a, c}. Notice that, since there

is an indeterminate cycle in state {1N, 2Y, 3N}, then L
is not diagnosable with respect to P ′

o and Σf . The same

conclusion can be drawn when the set of observable events

is Σ′′
o = {b, d}. This is so because the partial diagnoser

G′′
d , shown in Figure 1(b), on the right, has an indeterminate

hidden cycle in state {1N, 2Y, 3N} due to unobservability

of event c. It is important to point out that G′′
d has two other

hidden cycles, one in state {1N, 2Y, 3N} and the other in

state {3Y }, both due to event c. 2
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Fig. 1. Automaton G (a) and its centralized diagnoser Gd (b) for example
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Local diagnostics

Failure information

Fig. 2. Coordinated decentralized architecture.

IV. ROBUST CODIAGNOSABILITY

A. Codiagnosability of DES

In practice, due to the distributed nature of some systems,

centralized diagnosers cannot always be employed. In order

to circumvent this problem, the decentralized architecture

depicted in Fig. 2 has been proposed [1]. In this decentralized

architecture, sensor readings are no longer centralized, but

distributed over different sites Si, i = 1, 2, . . . , n, each

site observing the system behavior based on its available

sensing capabilities, or equivalently, on the set of observable

events Σo,i, i = 1, 2, . . . , n. Each site processes the informa-

tion received (event occurrences), and, in the decentralized

architecture proposed in [1], the sites are only allowed

to communicate their diagnostic to a coordinator, which

processes this information according to a prescribed rule and

takes a decision on the fault occurrence. It is worth remarking

that the coordinator has no knowledge of the system model,

and is supposed to have limited memory and processing

capabilities.

The definition of diagnosability for the coordinated de-

centralized architecture shown in Fig. 2 depends on the

fault event set Σf and also on four elements: (i) the rules

used to generate local diagnostics; (ii) the communication

rules between sites and coordinator; (iii) the fault diagnosis

decision rules employed by the coordinator and; (iv) the
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projections

Po,i : Σ → Σo,i, i = 1, 2, . . . , n,

associated with each site Si. The first three elements are

usually referred to in the literature as a protocol.

Let C denote the coordinator diagnostic information, and

note that, for each path of the system, C is represented

by an information set that is protocol-dependent. Then the

coordinator diagnostic information is said to be certain if,

based on C, the coordinator is certain that a fault in Σf

has occurred. Therefore, Definition 1 can be changed to

accommodate coordinated decentralized systems as follows

[1].

Definition 3: A prefix-closed and live language L is said

to be diagnosable under a protocol, a set of projections Po,i,

i = 1, . . . , n, and Σf = {σf} if the following holds true

(∃n ∈ N)(∀s ∈ Ψ(Σf ))(∀t ∈ L/s)(‖t‖ ≥ n ⇒ C is certain).

2

As in the case of centralized diagnosis, the detection of any

fault should be achieved by the coordinator within a finite

delay of its occurrence.

Three protocols are proposed in [1], and necessary and

sufficient conditions for diagnosability with respect to each

protocol are presented. In particular, for Protocol 3, a partial

diagnoser is implemented in each site, whose state, after

the occurrence of an observable event, is the diagnostic

information, based on which, the site is supposed to infer

the occurrence of faults. When one site observes an event

that leads to a certain state in its diagnoser, it communicates

the fault occurrence to the coordinator. The coordinator

declares the occurrence of a fault whenever at least one

site communicates a fault occurrence, and remains silent if

there is no report on fault occurrence. It is clear that protocol

3 can be regarded as an extension of centralized diagnosis

to coordinated decentralized diagnosis, and, therefore, from

now on, diagnosability under Protocol 3 will be referred to

as codiagnosability and the diagnosers at each site will be

called partial diagnosers.

In dealing with codiagnosability, besides Assumptions A1

to A3, the following assumptions are also made:

A5. L is not diagnosable with respect to Po,i, i = 1, 2, . . . , n.

A6. There is a reliable communication between the local sites

and the coordinator, i.e., all messages sent from a local site

are received by the coordinator correctly and in order.

Assumption A5 precludes the trivial case when one site

performs as the centralized diagnoser, and Assumption A6

will be removed later in this work. It is worth remarking

that assumption A2 of [1] (namely that G has no cycle of

unobservable events with respect to Σo,i, i = 1, 2, . . . , n)

has been removed here. As seen in section III, this may lead

to hidden cycles.

B. Analysis of robust codiagnosability using diagnosers

The idea behind codiagnosis is that all traces in s ∈ Ψ(Σf )
must be diagnosed by at least one partial diagnoser. A trace

s ∈ Ψ(Σf ) that is not diagnosed by any partial diagnoser

is called a fully-ambiguous trace. The formal definition of

fully-ambiguous trace is given below [1].

Definition 4: A trace s ∈ L is said to be fully-ambiguous

with respect to projections Po,i, i = 1, 2, . . . , n, and σf , if

there exist n arbitrarily long traces s1, s2, . . . , sn ∈ L, not

necessarily distinct, such that

1) Σf ∈ s but Σf /∈ si, i = 1, 2, . . . , n;

2) Po,i(s) = Po,i(si), i = 1, 2, . . . , n. 2

Therefore, in order to verify whether L is codiagnosable

or not with respect to projections Po,i, i = 1, 2, . . . , n
and Σf = {σf}, it is enough to identify the existence

of fully-ambiguous traces. In order to derive a test for

detecting whether fully-ambiguous traces exist or not, let

Gdi
= (Xdi

, Σo,i, fdi
, Γdi

, x0di
) denote the partial diagnoser

for site Si, i = 1, 2, . . . , n, and let Gd denote the centralized

diagnoser. Consider the diagnoser Gtestn defined as follows:

Gtestn = (‖n
i=1Gdi

)‖Gd. (8)

It is not hard to see that

L(Gtestn) = {
n
⋂

i=1

P−1
i [L(Gdi

)]}
⋂

L(Gd),

where P−1
i , i = 1, 2, . . . , n is with respect to Σo and not Σ.

Therefore,

L(Gtestn) = L(Gd), (9)

which shows that Gtestn provides the means to identify the

current state of diagnosers Gdi
, i = 1, 2, . . . , n after the

execution of a trace in the language L. Note that state xtn

of Gtestn has the following structure

xtn
= (xd1

, xd2
, . . . , xdn

, xd),

where xdi
∈ Xdi

and xd ∈ Xd. Therefore, the definition of

uncertain state and indeterminate cycle can be extended to

coordinated decentralized diagnosability, as follows [1].

Definition 5: A state xt of Gtestn is certain if xd is certain

and xdi
is certain for some i ∈ {1, 2, . . . , n}, and is uncertain

if xd is certain and xdi
is uncertain for all i ∈ {1, 2, . . . , n}.

2

Definition 6: A cycle in Gtestn is said to be indeterminate

if all the corresponding cycles (hidden cycles included) in

Gdi
, i = 1, 2, . . . , n are indeterminate. 2

According to Definition 4, a fully-ambiguous trace s is a

trace s ∈ Ψ(Σf ) that leads to indeterminate cycles in all

partial diagnosers Gdi
. In addition, due to Assumption A4,

for any s ∈ Ψ(Σf ), there always exists a finite length string

t such that st leads to a certain state of Gd. Therefore, Gtestn

can be used to verify the existence of fully-ambiguous traces,

as stated in the following result, which is a variation of

Theorem 11 in [1], that accounts for the modified Definition

6 above and the notion of hidden cycles introduced in this

paper.

Theorem 4: A live and prefix-closed language L is co-

diagnosable with respect to the set of projections Po,i : Σ∗ →
Σ∗

o,i, i = 1, 2, . . . , n and Σf = {σf} if, and only if, Gtestn

does not have any indeterminate cycles. 2
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Proof: The proof presented in [1] is also valid here, since

Definition 6 has been modified to account for indeterminate

hidden cycles. 2

Let us now remove Assumption A6, that is, let us assume

from this point onwards that communication between the

local sites and the coordinator is not reliable. This could be

due to a break down of the communication channel between

a site and the coordinator, or due to the break down of the

diagnoser itself at a site. A question arises immediately: Is it

still possible to continue using the decentralized architecture

and Protocol 3 to diagnose de language generated by an

automaton G with respect to Po,i, i = 1, 2, . . . , n and Σf =
{σf} even in the case of permanent loss of communication

between one or more sites and the coordinator? This leads

to the concept of robust codiagnosability.

Definition 7: (Rm-robust codiagnosability) A prefix-

closed and live language L that is diagnosable with respect

to Protocol 3, a set of projections Po,i, i = 1, 2, . . . , n and

Σf = {σf} is Rm-robust if it is still diagnosable after m
sites no longer communicate with the coordinator. 2

It is clear from Assumption A6 that robust codiagnosability

requires the existence of at least m+2 sites. It is also imme-

diate from Definition 7 that L is Rm-robust codiagnosable if,

and only, it is diagnosable with respect to Protocol 3, Σf =
{σf}, and all sets of projections Po,j1 , Po,j2 , . . . , Po,jn−m

,

where {j1, j2, . . . , jn−m} ∈ Pn,m with Pn,m being the set

formed with all

(

n
n − m

)

combinations of {1, 2, . . . , n}

taken n−m at a time. The following result is a consequence

of this fact.

Lemma 2: L is Rm-robust codiagnosable with respect

to Protocol 3, a set of projections Po,i, i = 1, 2, . . . , n and

Σf = {σf} if, and only if,

G
j1,j2,...,jn−m

test = Gdj1
‖Gdj2

‖ . . . ‖Gdjn−m
‖Gd (10)

does not have any indeterminate cycle for all sets

{j1, j2, . . . , jn−m} ∈ Pn,m.

Proof: The proof is straightforward and can be performed

through repeated applications of Theorem 4. 2

Lemma 2 shows that in order to check whether or not

a decentralized architecture is Rm-robust codiagnosable, it

is necessary to perform

(

n
n − m

)

parallel compositions

formed according to (10). Even in the simplest case of

R1-robust codiagnosability, it is not difficult to see that

robustness verification involves the computation of the n
parallel compositions

G1,...,k−1,k+1,...,n
test = (‖n

i=1,i6=k)Gdi
)‖Gd, k = 1, 2, . . . , n.

(11)

Therefore, it would be useful to generate a less computa-

tionally demanding test for this verification. As in the case

of codiagnosability, a simpler test for robust codiagnosability

requires the definition of indeterminate Rm-robust cycle. For

the sake of simplicity, m = 1 will be assumed from this point

onwards.

Definition 8: (Indeterminate R1-robust cycle) Let L be

diagnosable with respect to Protocol 3, a set of projec-

tions Po,i, i = 1, 2, . . . , n and Σf = {σf}. A cycle

in Gtestn formed by states xt1 , xt2 , . . . , xtp
, where xtk

=

(x
(k)
d1

, x
(k)
d2

, . . . , x
(k)
dn

, x
(k)
d ), x

(k)
di

∈ Xdi
and x

(k)
d ∈ Xd, is

indeterminate R1-robust if there exists ℓ ∈ {1, 2, . . . , n}

such that x
(k)
dℓ

, k = 1, 2, . . . , p, do not form an indeterminate

cycle, and all n − 1 components x
(k)
di

, i 6= ℓ, of states xtk
,

k = 1, 2, . . . , p, form indeterminate cycles (hidden cycles

included) in Gdi
. 2

Definition 8 leads to the following result.

Theorem 5: A language L, diagnosable with respect to

Protocol 3, a set of projections and Σf = {σf}, is R1-

robust codiagnosable if, and only if, Gtestn does not have

any indeterminate R1-robust cycle.

Proof (=⇒) Assume that Gtestn has an indeterminate R1-

robust cycle formed by states xt1 , xt2 , . . . , xtp
of Gtestn

where xtk
= (x

(k)
d1

, x
(k)
d2

, . . . , x
(k)
dn

, x
(k)
d ). Therefore, accord-

ing to Definition 8, there exists an ℓ ∈ {1, 2, . . . , N}

such that x
(k)
dℓ

, k = 1, 2, . . . , p, do not form an inde-

terminate cycle, and all n − 1 components x
(k)
di

, i 6= ℓ,

of states xtk
, k = 1, 2, . . . , p, form indeterminate cycles

(hidden cycles included) in Gdi
. Note that, since Gtestn =

Gd1
‖Gd2

‖ . . . ‖Gdℓ
‖ . . . ‖Gdn

‖Gd, then, it is not difficult

to see that G1,2,...,ℓ−1,ℓ+1,...,n
test , defined in accordance with

Equation (10), will have an indeterminate cycle formed

by states x′
tk

= (x
(k)
d1

, x
(k)
d2

, . . . , x
(k)
dℓ−1

, x
(k)
dℓ+1

, . . . , x
(k)
dn

, x
(k)
d ),

k = 1, 2, . . . , p, which implies that L is not diagnosable

with respect to Protocol 3, the set of projections Po,i, i =
1, 2, . . . , n, i 6= ℓ and Σf = {σf}.

(⇐=) Assume that Gtestn has no indeterminate R1-robust

cycle. Then, for any set of states xt1 , xt2 , . . . , xtp
of Gtestn ,

where xtk
= (x

(k)
d1

, x
(k)
d2

, . . . , x
(k)
dn

, x
(k)
d ), that form cycles in

Gtestn , there always exist ℓ1, ℓ2 ∈ {1, 2, . . . , n}, ℓ1 6= ℓ2,

such that x
(k)
dℓ1

and x
(k)
dℓ2

, k = 1, 2, . . . , p, do not form

indeterminate cycles. It is therefore not difficult to see that

G1,...,k−1,k+1,...,n
test = (‖n

i=1,i6=k)Gdi
)‖Gd, k = 1, 2, . . . , n,

will have no indeterminate cycle since either Gdℓ1
, Gdℓ2

or both will appear in G1,...,k−1,k+1,...,n
test for any k. Thus,

according to Lemma 2, L will be R1-robust codiagnosable

with respect to Protocol 3, a set of projections Po,i, i =
1, 2, . . . , n and Σf = {σf}. 2

Example 2: In order to illustrate the results presented in

this section, consider automaton G depicted in Figure 1(a).

As was seen in Example 1, the language L generated by G
is diagnosable with respect to projection Po and Σf .

Consider initially the design of a decentralized architecture

composed of three sites. The observable event sets for each

site are as follows: Σo1
= {a, c}, Σo2

= {b, c} and Σo3
=

{c, d}. Building the partial diagnosers for each one of these

observable event sets, it can be seen that L is not diagnosable

with respect to Po,i, i = 1, 2, 3 due to the existence of

indeterminate cycles. In spite of this fact, the decentralized

structure is diagnosable with respect to Protocol 3, Po,i,

i = 1, 2, 3 and Σf , as one can see in Figure 3(a). However,

since all cycles that appear in Gtest3 are indeterminate R1-

robust, this decentralized diagnoser is not R1-robust.
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{1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 3Y ; 3Y } {1N, 2Y, 3Y ; 3Y ; 1N, 2Y, 3Y ; 3Y }{3Y ; 1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 3Y }

? z9

?

� � �

d a b

c cc

)
c{1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 1N, 2Y }

(a)

{3Y ; 1N, 2Y, 3Y ; 3Y ; 3Y } {1N, 2Y, 3Y ; 3Y ; 3Y ; 3Y }{3Y ; 3Y ; 1N, 2Y, 3Y ; 3Y }

? z9

?

� � �

d a b

c cc

)
c{1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 1N, 2Y, 3Y ; 1N, 2Y }

(b)

Fig. 3. Test automata for the design of a three-site R1-robust codiagnoser for the following choices of observable events by each site: Σo1
= {a, c},

Σo2
= {b, c} and Σo3

= {c, d} (a), and Σo1
= {a, c, d}, Σo2

= {a, b, c} and Σo3
= {b, c, d} (b).

Assume now that the observable events for each site are

Σo1
= {a, c, d}, Σo2

= {a, b, c} and Σo3
= {b, c, d}. In this

case, the language L is R1-robust codiagnosable since, as

shown in Figure 3(b), Gtest3 does not have any indeterminate

R1-robust cycle. It is clear in Figure 3(b) that the fault

occurrence is always detected by two sites, meaning that

if one site breaks down, the fault occurrence will always

be reported to the coordinator by at least one of the two

remaining sites. 2

Remark 1: For systems that are R1-robust codiagnos-

able, Protocol 3 can be used again at runtime. In this case,

at least two diagnosers will diagnose each fault (if none are

down) and at least one will (if one is down). 2

C. Verification of robust codiagnosability using verifiers

A test for robust codiagnosability using diagnoser au-

tomata was proposed in the previous subsection. However,

it is well known that the state space of the diagnoser is,

in the worst case, exponential in the cardinality of the state

space of the system model. This problem can be circum-

vented with the use of verifiers [27], [25], [4]. Verifiers are

nondeterministic automata, whose state space is polynomial

in the cardinality of the state space of the system model; the

verification of diagnosability however requires polynomial

time for both, diagnoser and verifier automata.

Consider a system modeled by a deterministic automa-

ton defined according to Equation (1), and let Σo,i, i =
1, 2, . . . , n be the sets of observable events for each site.

The one-level verifier to test if L is diagnosable with respect

to projections Po,i, i = 1, 2, . . . , n, and Σf = {σf} is

the nondeteministic automaton V1 = (XV1 , ΣV1 , fV1 , xV1

0 ),
where XV1 = (X × {N, Y })n+1, ΣV1 = (Σ ∪ {ǫ})n+1,

xV1

0 = (x0, N, x0, N, . . . , x0, N) is a (2n + 2)-dimensional

vector, and fV1 is defined as follows: (i) let xV1 =
(x1, ℓ1, x2, ℓ2, . . . , xn+1, ℓn+1), where xi ∈ X , i = 1, . . . , n,

and assume that x′
i = f(xi, σ), σ ∈ Γ(xi); (ii) for a

set J ⊆ In+1 = {1, 2, . . . , n + 1}, define the sequence

σJ = σ1σ2 . . . σn+1 such that σi = σ, ∀i ∈ J and σi = ǫ,

otherwise; (iii) then, for each σ ∈ ∪n
i=1Γ(xi):

1) if σ ∈ Σo, define the sets of indices L =
{l1, l2, . . . , ln} ⊆ {1, 2, . . . , n}, where li ∈ L if and only

if σ ∈ Σo,i, K = {k} and M = L ∪ {n + 1}. Then

fV1(xV1 , σM ) = xV1

M ,

fV1(xV1 , σK) = xV1

K , ∀k ∈ In+1 \ M,

where xV1

M and xV1

K are defined similarly, i.e., for any set

W ⊆ In+1, xV1

W = (xW,1, ℓ1, . . . , xW,n+1, ℓn+1), with

xW,i = x′
i, ∀i ∈ W and xW,i = xi, otherwise.

2) if σ ∈ Σuo \ Σf , then

fV1(xV1 , σK) = xV1

K , ∀k ∈ In+1,

where xV1

K is defined as in 1) above.

3) if σ = σf , then

fV1(xV1 , σK) = xV1

Kf
, ∀k ∈ In+1,

where xV1

Kf
= (xV1

Kf ,1, ℓ
K
1 , . . . , xV1

Kf ,n+1, ℓ
K
n+1), with xV1

Kf ,k

= x′
k, ℓK

k = Y , and xV1

Kf ,i = xi, ℓK
i = ℓi, otherwise.

The idea behind the construction of one-level verifiers is

summarized by the following proposition.

Proposition 1: [4] There exists a path from xV1

0 to xV1 =
(x1, ℓ1, x2, ℓ2, . . . , xn+1, ℓn+1) ∈ XV1 obtained by using the

transition rules of V1 defined above if and only if the traces

si, i = 1, . . . , n, and s formed, respectively, with the i − th
and (n+1)− st component of the transitions along the path

satisfy the following three conditions: 1) si, i = 1, . . . , n,

and s reach states x1, x2, . . . , xn+1 ∈ X ; 2) si is faulty if

and only if ℓi = Y , i = 1, 2, . . . , n+1; 3) Po,i(si) = Po,i(s),
i = 1, 2, . . . , n 2

A one-level verifier state xV1 = (x1, ℓ1, x2, ℓ2, . . . , xn+1,
ℓn+1) is called an (ℓ1, ℓ2, . . . , ℓn+1)-state (for exam-

ple, the initial state xV1

0 is an (N, N, . . . , N)-state). A

strongly connected component (SCC) of V1 is called an

(ℓ1, ℓ2, . . . , ℓn+1)-SCC if every state in the SCC is an

(ℓ1, ℓ2, . . . , ℓn+1)-state. With that in mind, a test for codi-

agnosability using the one-level verifier is provided by the

following theorem.

Theorem 6: [4], [2] The language L is not diagnosable

with respect to projections Po,i, i = 1, 2, . . . , n, and Σf =
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{σf} if and only if the one-level verifier V1 of G has

an (N, N, . . . , N, Y )-SCC, in which there exists an edge

σ1σ2 . . . σnσ such that σ 6= ǫ. 2

Following the same reasoning as for robust codiagnosabil-

ity using the Gtestn automaton, the following result (which

is a counterpart of Lemma 2) can be stated.

Lemma 3: L is not Rm-robust codiagnosable with re-

spect to Protocol 3, a set of projections Po,i, i = 1, 2, . . . , n
and Σf = {σf} if, and only if, for at least one set of

projections Po,ji
, where ji ∈ Pn,m, i = 1, 2, . . . , n − m,

and Pn,m is the set of all

(

n
n − m

)

combinations of

{1, 2, . . . , n} taken n−m at a time, the corresponding one-

level verifiers V
j1,j2,...,jn−m

1 = (XV1 , ΣV1 , fV1 , xV1

0 ), where

XV1 = (X × {N, Y })n−m+1, ΣV1 = (Σ ∪ {ǫ})n−m+1,

has an (N, N, . . . , N, Y )-SCC, in which there exists an edge

σ1σ2 . . . σn−mσ such that σ 6= ǫ. 2

Assuming m = 1, indeterminate R1-robust cycles become

non-R1-robust SCC, as follows.

Definition 9: (non-R1-robust SCC) Assume that the lan-

guage L is diagnosable with respect to projections Po,i,

i = 1, 2, . . . , n, and Σf = {σf}. An (ℓ1, ℓ2, . . . , ℓn, Y )-
SCC is a non-R1-robust SCC if there exists exactly one

i ∈ {1, 2, . . . , n} such that ℓi = Y . 2

A necessary and sufficient condition for R1-robust co-

diagnosability using verifiers is provided by the following

theorem

Theorem 7: Assume that the language L is diagnosable

with respect to projections Po,i, i = 1, 2, . . . , n, and Σf =
{σf}. Then L will be not R1-robust codiagnosable if and

only if the corresponding verifier V1 has at least one non-

R1-robust SCC.

Proof: The proof is omitted. If follows by adapting and

combining the methodologies of the proofs of Theorems 6

and 5, and by using Lemma 3. 2

V. CONCLUSION

We have revisited the problem of centralized diagnosabil-

ity and used the notions of partial diagnosers and hidden

cycles to characterize the effect of reducing the set of

observable events. We have proposed an intuitive notion of

robustness in the context of decentralized diagnostic architec-

tures. We have developed necessary and sufficient conditions

for testing robust codiagnosability using familiar tools such

as diagnosers and verifiers. An interesting direction for

future investigations is the problem of selecting/adjusting

the local observable event sets in order to achieve robust

codiagnosability.
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