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Abstract— This paper presents a new approach to extremum
seeking control for a class of single-input-single-output non-
linear systems. With the analytic form of the performance
function unknown a priori, a sliding mode observer is designed
to estimate the gradient of the performance map. Based on the
estimated gradient, a variable structure controller is proposed
to search for the optimal operating point. We establish the
conditions for the system states to enter a neighborhood of
the optimal operating point, and obtain an ultimate bound on
the size of the neighborhood. The robustness of the proposed
controller is also discussed with respect to unmodeled fast
dynamics and measurement noise.

I. INTRODUCTION

As a branch of adaptive control, extremum seeking control
addresses the control problems where a nonlinear plant is
to be regulated to the optimal operating point or to track
the optimal trajectory according to a certain performance
criterion. The explicit form of the performance function is
unknown a priori, with only the real time measurements
of its value available. The extremum seeking controller
steers the system states to the optimal point based on the
measurements. There have been accumulating interest in the
research of extremum seeking control in the 1950’s and
1960’s (for example [1], [2]). The topic was revisited in
1980’s and was considered one of the most promising field in
adaptive control (Astrom and Wittenmark [3], Section 13.3)
in 1995.

One of the popular approaches toward extremum seeking
control is based on perturbation and averaging. Meerkov ([4]-
[6]) presented pioneering work on averaging based analysis
in an extremum seeking system in 1967. His study was
extended by Krstic and Wang for stability analysis on an
extremum seeking feedback scheme with a general nonlinear
system in 2000 ([7],[8]).

During the same period, sliding mode based approaches
were also proposed to address the difficulty of unknown per-
formance functions. The theoretical development traces back
to [9], where static optimization was considered. Drakunov
and Özgüner developed a sliding mode extremum seeking
control structure for output optimization of dynamic systems
[10]. They applied the structure in anti-lock brake system
control on automobiles [11]. Haskara et al. proposed a two-
time scale approach [12]. In the slow time scale, they em-
ployed sliding mode optimization to update a free parameter
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and determine set points for the system corresponding to
the parameter. In the fast time scale, they utilized stabilizing
control to regulate the system to the set points. Pan et al.
analyzed in detail the stability and performance improvement
of the approach [13]. Rong and Özgüner discussed extremum
seeking control via sliding mode with two surfaces [14].

Both approaches require that the dynamics of the nonlinear
plant be fast enough and the adaptation gain be relatively
small to ensure convergence. There are also works that seek
to estimate the gradient and employ gradient-based opti-
mization. For example, Sera et al. [15] studied photovoltaic
power systems and proposed to estimate the sign of the
gradient by perturbation and observation to determine the
direction of hill-climbing in order to track maximum power
point. For a more general plant that might have slow or
time-delayed dynamics, Teel and Popovic ([16]) proposed
to introduce a waiting period between consecutive control
updates and measurements of performance, allowing the
system dynamics to settle before new control is determined.
The control updates can explore to utilize the already so-
phisticated nonlinear programming (NLP) algorithms. For
the most popular NLP algorithms that are based on gradient
information, it is possible to probe the performance profile
for gradient estimate.

This paper presents a new approach for extremum seeking
control, which aims to improve the convergence speed of
extremum seeking as well as robustness against measurement
noise of the performance profile, without the need of explicit
external perturbation. A discrete sliding mode observer is
designed to estimate the unknown gradient of the perfor-
mance map. Based on the sign of the gradient estimation, a
variable structure controller generates the control input for
the nonlinear plant. The gradient estimation error decreases
rapidly to the vicinity of zero and stays inside afterwards,
and the variable structure controller enforces the system to
converge to a neighborhood of the optimal operating point,
such that the deviation from the point is ultimately bounded.
The stability condition and the ultimate bound is derived. The
robustness of the control scheme is discussed in the presence
of unmodeled fast dynamics and measurement noise.

The paper is organized as follows. Section 2 states the
control problem and main assumptions of the paper. Section
3 elaborates the controller design. Section 4 analyzes the
stability and optimization performance, followed by Section
5 with the discussion of the effect of unmodeled actuator
dynamics and measurement noise. Simulation results of an
example system is given in Section 6. Finally, Section 7
presents the conclusion.
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II. PROBLEM FORMULATION

Consider a nonlinear single-input-single-output (SISO)
plant

ẋ = f(x) + g(x)u
y = h(x) (1)

where x ∈ Rn, y ∈ R, u ∈ R, and f : Rn → Rn, g : Rn →
Rn, h : Rn → R are smooth functions.

The cost criterion is a function of the system output y:

z = H(y)

The function H(·) or some of its parameters are unknown
a priori. With only real-time measurement of z, the control
objective is to steer the plant to operate at the maximum or
minimum of z. Without of loss of generality, we consider
minimization here.

We make a few assumptions on the plant and the perfor-
mance function:
1. There exist a global diffeomorphism

y = γ(ξ)

such that the function Z(ξ) = H ◦ γ(ξ) = H(γ(ξ))) is
smooth and has a unique minimum at ξ∗.
2. The second-order derivative of Z(ξ) is bounded. That is,
there exist M > 0, such that |∂

2Z
∂ξ2 | < M, ∀ξ ∈ R.

3. The system with ξ as the output

ẋ = f(x) + g(x)u
ξ = ϕ(x) (2)

where ϕ(x) = γ−1◦g(x), has global relative degree ρ. More-
over, there exists a global diffeomorphism that transforms the
system into normal form

η̇ = f0(η, ζ)
ζ̇ = Acζ + Bcβ(x)[u− α(x)]
ξ = ζ1

(3)

Here ζ = [ζ1, ζ2, · · · , ζρ]T ∈ Rρ, (Ac, Bc) are in Brunovsky
form:

Ac =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

 , Bc =


0
...
0
1


4. The internal dynamics η̇ = f0(η, ζ) of the system is input-
to-state stable with respect to ζ.

III. CONTROLLER DESIGN

Fig. 1. The block diagram for the controller design.

Fig. 1 illustrates the block diagram for the proposed
extremum seeking controller. The design of the controller
has two folds. First of all, a sliding mode observer is built
to estimate the gradient of the performance map. Then a
variable structure controller is constructed to enforce finite-
time convergence of ξ to the optimal point ξ∗. Based on the
sign of the estimated gradient, the controller determines a
reference rate r for the derivative of ξ so as to minimize
Z(ξ). The plant is regulated such that ξ̇ converges to the
reference r asymptotically.

A. Sliding mode observer design for gradient estimation

For the design of the discrete-time sliding mode observer,
consider a sampling period T . At the sampling instant kT ,
zk is available by measurement, and the value of ξk is also
attainable through the plant output:

ξk = γ−1(yk)

Due to possible noise in performance measurement, the
finite-difference approximation of gradient could amplify the
noise drastically. To avoid the problem, sliding mode is
utilized in our observer for estimating the gradient of Z(ξ).
We choose the sliding surface as

sk = pk−1 −
∆zk

∆ξk

where ∆zk = zk−zk−1, and ∆ξk = ξk−ξk−1. The observer
for ∂Z

∂ξ is designed as:

pk = pk−1 − V0T sgn(sk∆ξk)sgn(∆ξk) (4)

The sgn(·) function is defined as

sgn(s) =
{

1, s ≥ 0
−1, s < 0

Note that by definition sgn(s) 6= 0 for all s ∈ R. This is
important for the observer to work properly. If sgn(∆ξk)
were zero at some point, pk would stop updating, and in
turn sgn(∆ξk) would remain at zero thereafter. Therefore,
the way we define sgn(·) is crucial to avoid possible deadlock
in the observer.

B. Variable structure controller design for the plant

The objective of the controller is to ensure that ξ converge
to the optimal operating point ξ∗ with a constant rate
specified by the designer. For minimization of Z(ξ), the
reference r for the derivative of ξ is determined by the
estimated gradient as:

r = −dsign(pk)

where d > 0.
Consider system (3). Define ζ̃2 = ζ2 − r. Consider the

subsystem
˙̃
ζ2 = ζ3

...
ζ̇ρ = β(x)[u− α(x)]

(5)
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Let (A′
c, B

′
c) be in Brunovsky form of (ρ − 1)-th order,

and K be such that A′
c + B′

cK is Hurwitz. To achieve
asymptotic stability of the origin of the subsystem, the
control is designed as

u =
1

β(x)
Kζ̃ + α(x) (6)

where ζ̃ = [ζ̃2, ζ3, · · · , ζρ]T .

IV. STABILITY ANALYSIS

A. Gradient Estimation

It follows from (4) that

sk+1 − sk = pk −
zk+1 − zk

ξk+1 − ξk
− (pk−1 −

zk − zk−1

ξk − ξk−1
)

= −zk+1 − zk

ξk+1 − ξk
+

zk − zk−1

ξk − ξk−1
− V0T sgn(sk)

From Assumption 1, the cost function Z(ξ) is smooth. By
Taylor expansion,

Z(ξ) = Z(ξ0)+
∂Z

∂ξ
(ξ0)(ξ−ξ0)+

∂2Z

∂ξ2
(ξ0)(ξ−ξ0)2+O((ξ−ξ0)3)

Then,

zk+1 = zk +
∂Z

∂ξ
(ξk)∆ξk+1 +

∂2Z

∂ξ2
(ξk)∆ξ2

k+1 + O(∆ξ3
k+1)

Consequently,

sk+1 − sk = −∂Z

∂ξ
(ξk) +

∂Z

∂ξ
(ξk−1)−

∂2Z

∂ξ2
(ξk)∆ξk+1

+
∂2Z

∂ξ2
(ξk−1)∆ξk −O(∆ξ2

k+1) + O(∆ξ2
k)

−V0T sgn(sk)

By Assumption 2,
∣∣∣∂2Z

∂ξ2

∣∣∣ < M . On the other hand, there

exists ξ̂ ∈ R such that ∂Z
∂ξ (ξ1)− ∂Z

∂ξ (ξ2) = ∂2Z
∂ξ2 (ξ̂)(ξ1− ξ2).

Therefore,∣∣∣∣∂Z

∂ξ
(ξ1)−

∂Z

∂ξ
(ξ2)

∣∣∣∣ < M |ξ1 − ξ2|, ∀ξ1, ξ2 ∈ R

As a result,∣∣∣−∂Z
∂ξ (ξk) + ∂Z

∂ξ (ξk−1)− ∂2Z
∂ξ2 (ξk)∆ξk+1 + ∂2Z

∂ξ2 (ξk−1)∆ξk

∣∣∣
< 2M |∆ξk|+ M |∆ξk+1|

To derive the bound on ∆ξk, let ζ̄ = [ζ2, ζ3, . . . , ζρ]T .
Consider the ζ̄-subsystem in the normal form (3) with control
(6):

˙̄ζ = A′
cζ̄ + B′

cβ(x)[u− α(x)]
= A′

cζ̄ + B′
cKζ̃

= (A′
c + B′

cK)ζ̄ −B′
cK1r

where K1 is the first column of the feedback matrix K.
Because A′

c + B′
cK is Hurwitz, there exist positive definite

matrices P and Q, such that

(A′
c + B′

cK)T P + P (A′
c + B′

cK) ≤ −Q

Let Vζ̄ = ζ̄T P ζ̄. Its derivative satisfies

V̇ζ̄ ≤ −ζ̄T Qζ̄ + 2|ζ̄T PBK1r|
≤ −λmin|ζ̄|2 + 2d|PBK1||ζ̄|
= −λmin|ζ̄|(|ζ̄| − ε)

where λmin is the smallest eigenvalue of Q, and ε =
2d

λmin
|PBK1|. Thus whenever |ζ̄| > ε, we have V̇ζ̄ < 0.

Let λ1 and λ2 be the smallest and the largest eigenvalue of
P , respectively, then λ1|ζ̄|2 ≤ ζ̄T P ζ̄ ≤ λ2|ζ̄|2. Therefore if
the initial condition of the system satisfies

∣∣ζ̄0

∣∣ ≤ λ2
λ1

ε,

|ζ̄| ≤ λ2

λ1
ε, ∀t ≥ 0

Obviously |ζ2| ≤ |ζ̄|, and

|ζ2| ≤
λ2

λ1
ε, ∀t ≥ 0

It follows

|∆ξk| =

∣∣∣∣∣
∫ kT

(k−1)T

ζ2dt

∣∣∣∣∣ ≤ λ2

λ1
εT

Hence,

|∆ξk| ≤
λ2

λ1
εT, ∀ρ ≥ 1,∀t ≥ 0

Note that we can choose related parameters to ensure
|λ2
λ1

εT | � 1. As a result, the term

−O(∆ξ2
k+1) + O(∆ξ2

k)

is negligible because both |∆ξk| � 1 and |∆ξk+1| � 1.
Consider the Lyapunov function Vk = s2

k. Note that

∆Vk = Vk+1 − Vk = s2
k+1 − s2

k = (sk+1 + sk)(sk+1 − sk)

Choose V0 > 3M λ2
λ1

ε. Let δ = 2V0. When |sk| > δ, it
is true that sgn(sk+1) = sgn(sk) and thereby sgn(sk+1 +
sk) = sgn(sk) because |sk+1 − sk| < δ. On the other hand,
sgn(sk+1 − sk) = −sgn(sk). Therefore,

∆Vk < 0, ∀|sk| > δ

In summary, the conditions for the gradient estimation to
enter the boundary layer |sk| < δ of the sliding surface sk =
0 and stay inside it afterwards are:

V0 > 3M λ2
λ1

ε, and
λ2
λ1

εT � 1
(7)

B. Optimization Accuracy

After the sliding mode gradient observer reaches the
boundary layer |sk| < δ, the estimation error of the gradient
is bounded by δ, that is∣∣∣∣pk −

∂Z

∂ξ
(ξk)

∣∣∣∣ = |sk| < δ

As a result, when
∣∣∣∂Z

∂ξ (ξk)
∣∣∣ > δ, we have sgn(pk) =

sgn(∂Z
∂ξ (ξk)). Without loss of generality, assume ∂Z

∂ξ (ξk) <
−δ, then the reference rate r = d > 0. With the asymptot-
ically stabilizing control (6), the states of the ζ̃-subsystem
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(5) enter the invariant manifold Sζ = {ζ̃ ∈ Rρ−1
∣∣∣|ζ̃| < d}

in finite time. Inside the manifold Sζ , it is guaranteed that
|ζ̃2| < d, and equivalently ξ̇ = ζ2 > 0. As a result, ξ
increases. Therefore, ξ eventually enters the manifold Sξ =
{ξ ∈ R

∣∣∣|∂Z
∂ξ | < δ }.

Once ξ is inside Sξ, the distance between ξ and Sξ, defined
as

dist(ξ,Sξ) = min
ξ1∈Sξ

|ξ − ξ1|

will be bounded by a constant value thereafter. The reasoning
is as follows. When ξ leaves Sξ, the reference rate is
r = −dsign(∂Z

∂ξ ) because sgn(pk) = sgn(∂Z
∂ξ ) at this time.

Consider the time ts needed for ξ̇ to enter the neighborhood
Bd = {|ξ̇−r| ≤ d} of r so that sgn(ξ̇) = −sgn(∂Z

∂ξ ). Define
Vζ̃ = ζ̃T P ζ̃. Then λ1|ζ̃|2 ≤ Vζ̃ ≤ λ2|ζ̃|2, and

V̇ζ̃ = −ζ̃T Qζ̃ ≤ −λmin|ζ̃|2

It has been proved earlier that |ζ̄| < λ2
λ1

ε, ∀t ≥ 0. Also,
ξ̇ = ζ2 ∈ Bd if |ζ̄| < d. It follows

ts ≤
λ2(λ2

λ1
ε)2 − λ1d

2

λmind2

Let l = ts max(λ2
λ1

ε, d), then

dist(ξ,Sξ) ≤ l

Let ξl and ξr be the closest points to ξ∗ that satisfy
∂Z
∂ξ (ξl) = −δ and ∂Z

∂ξ (ξr) = δ, respectively. The optimiza-
tion accuracy, in terms of the error between ξ and ξ∗, is
ultimately bounded by

|ξ − ξ∗| < max(|ξl − ξ∗|, |ξr − ξ∗|) + l

We conclude this section with the following theorem:
Theorem 4.1: Assume that the plant (1) satisfies Assump-

tions 1-3 in Section 2, and that there exist a global dif-
feomorphism that transforms the plant with new output (2)
into normal form (3). Assume also the initial condition of
the system satisfies that |ζ̄0| ≤ λ2

λ1
ε. Then the sliding mode

estimator (4) with (7) and the variable structure controller (6)
in Section 3 solve the extremum seeking control problem. In
particular:
1. the sliding mode gradient observer converges to a δ-
vicinity of the real value in finite time, that is, there exists
T1 > 0, such that∣∣∣∣pk −

∂Z

∂ξ

∣∣∣∣ < δ, ∀t > T1

2. the optimizing variable ξ converges to a neighborhood of
the optimal value ξ∗ in finite time, and the error |ξ − ξ∗| is
ultimately bounded; that is, there exist T2 > 0 and l′ > 0,
such that

|ξ − ξ∗| < l′, ∀t > T2

where l′ = max(|ξl − ξ∗|, |ξr − ξ∗|) + l.
Remark 1: The assumption on the initial condition |ζ̄0| ≤

λ2
λ1

ε is not restrictive. When it is not satisfied, set r = 0,
and the system will achieve the condition in finite time.
After that, we can apply the designed controller to solve
the extremum seeking problem as described above.

V. THE EFFECT OF UNMODELED ACTUATOR DYNAMICS
AND MEASUREMENT NOISE

A. Unmodeled Actuator Dynamics
In variable structure control, unmodeled actuator dynamics

is often a potential source of deteriorated performance or
even instability. In previous sections, we have neglected
the actuator dynamics for simplicity of design and stability
analysis. However, it is important that we examine the
effect of unmodeled actuator dynamics on the stability and
optimization performance of the controlled system.

Consider the controlled subsystem (5) with the following
actuator dynamics:

˙̃
ζ = Acζ̃ + Bcβ(x)[v − α(x)]

εω̇ = Aω + B[
1

β(x)
Kζ̃ + α(x)]

v = Cω

where A is a Hurwitz matrix, and −CA−1B = I . Because
actuator dynamics are typically much faster than the plant
dynamics, we can assume that ε is small, and apply singular
perturbation analysis on the overall system. With the con-
troller design in Section 3, the origin of the reduced system
(5) is exponentially stable. Define ω̃ = ω+A−1B[ 1

β(x)Kζ̃ +
α(x)]. Let τ = t/ε. The boundary-layer model is given by

dω̃

dτ
= Aω̃

whose origin is also exponential stable since A is Hurwitz.
By the Singular Perturbation Theorem (Theorem 11.4, [17]),
the origin of the actual closed-loop system is exponentially
stable for sufficiently small ε. Therefore, |ξ−ξ∗| is ultimately
bounded. However, we should be aware that the ultimate
bound could be larger now because of possible increase in
ts.

B. Noise in Performance Measurement
In realistic applications, measurement noise is almost in-

evitable. A robust controller needs to reduce the disturbance
from noise as much as possible. In the case of gradient
estimation this is especially important, because noise is often
greatly magnified due to the differential calculation.

Zero-mean white noise in performance measurement is
considered in the problem. The sliding mode observer has
greatly improved the accuracy of gradient estimation by
limiting the rate of change of the estimate. Moreover, the
fact that the variable structure controller depends only on
the sign of the estimate, not the magnitude also adds to the
robustness of the overall system.

Note that increasing the sampling period is a good way to
reduce the noise level in gradient estimate.

VI. SIMULATION EXAMPLES

Consider the following system

ẋ1 = −x1 + 1
1+x2

3
u

ẋ2 = x3

ẋ3 = x1x3 + u
ξ = x2

(8)
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The objective of the control was to minimize the perfor-

Fig. 2. Gradient Estimate of the performance map.

mance criterion

z = 10(ξ − 5)2 − 10

The change of coordinates [η, ζ1, ζ2] = [x1 − tan−1 x3,
x2, x3] transforms the system into normal form

η̇ = −
(
1 + ζ2

1+ζ2
2

)
η − tan−1 ζ2

(
1 + ζ2

1+ζ2
2

)
ζ̇1 = ζ2

ζ̇2 = x1x3 + u
ξ = ζ1

Let Vη = 1
2η2, then

dV
dη η̇ = −

(
1 + ζ2

1+ζ2
2

)
η2 − tan−1 ζ2

(
1 + ζ2

1+ζ2
2

)
η

≤ −1
2η2 − tan−1 ζ2

(
1 + ζ2

1+ζ2
2

)
η

≤ −1
4η2 + |η|

(
− 1

4 |η|+
3
2 | tan−1 ζ2|

)
≤ −1

4η2 when|η| > 6| tan−1 ζ2|

where the fact
∣∣∣ ζ2
1+ζ2

2

∣∣∣ ≤ 1
2 is used. Therefore, the η-dynamics

satisfies the input-to-state stable condition with respect to ζ.
It is easy to see that the optimal output here is ξ∗ = 5.

The controller parameters in our simulation are selected as
V0 = 400, T = 0.01s, d = 1, K = −4, and the initial
condition is x10 = 2, x20 = 2, x30 = 0. The sign(·) function
in r = −dsign(pk) is approximated by a continuous function

Φ(π) =
{

π/µ, |π| < µ
π/|π|, |π| ≥ µ

with µ = 0.1. Fig. 2 demonstrates the gradient estimate. Af-
ter a short period of reaching phase, the estimate stays close
to the real value. Fig. 3 shows the real-time measurement of
the performance cost function, the trajectory of ξ, and the
corresponding control input. At the rising stage of ξ, the rate
of increase follows closely to the reference rate r = d = 1.
It is straightforward to change the convergence rate of ξ by
adjusting the reference rate d. As we can see, the steady-state
oscillation of ξ is very small.

Fig. 3. Performance index z, optimizing variable ξ and control input u.

To simulate the effect of actuator dynamics, we include
an unknown second-order fast dynamics ω1 = 1

(1+εs)2 u in
the previous example. The system of interest is

ẋ1 = −x1 + 1
1+x2

3
ω1

ẋ2 = x3

ẋ3 = x1x3 + ω1

ω̇1 = ω2

ε2ω̇2 = u− ω1 − 2εω2

ξ = x2

Fig. 4 shows the simulation results for this system with
ε = 0.02, using the same controller designed for the nominal
system (8) above. We still observe a steady convergence
of ξ to ξ∗. While the ultimate boundedness remains valid,
the steady-state oscillation of z and ξ is slightly larger than
without actuator dynamics.

Fig. 5 demonstrates the case where we have white noise
in the measurement z. The standard variance of the noise
in the simulation is σ = 0.1. Again, ξ converges towards
ξ∗ steadily, and then oscillates within a neighborhood of the
optimal point.

VII. CONCLUSION

For a class of nonlinear systems, this paper proposes a
variable structure extremum seeking scheme based on gradi-
ent estimation. The sliding mode observer for performance
gradient is proved to converge to the vicinity of the real
value. The variable structure controller is shown to be able
to enforce the system states to be enter a neighborhood of the
equilibrium corresponding to the optimal performance value.
The deviation from the optimal operating point is ultimately
bounded. For systems with unmodeled fast dynamics, it is
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Fig. 4. Performance index z, optimizing variable ξ and control input u
for the system with fast dynamics.

shown that the ultimate boundedness is still valid when
additional conditions are satisfied. The controller is also
robust to measurement noise. In both situations, the ultimate
bound is subject to a possible increase in size. Simulation
results with a prototype problem illustrates the foregoing
conclusions.
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[14] R. Xu and Ü. Özgüner, Extremum Seeking Control via Sliding Mode
with Two Surfaces, Proceedings of the 16th IFAC World Congress,
Prague, Czech, 2005, pp. 2212-2217.

[15] D. Sera, R. Teodorescu, J. Hantschel and M. Knoll, Optimized
Maximum Power Point Tracker for Fast-Changing Environmental
Conditions, IEEE Trans. on Industrial Electronics, vol. 55, 2008, pp.
2629-2637.

[16] A. R. Teel and D. Popovic, Solving smooth and nonsmooth mul-
tivariable extremum seekingproblems by the methods of nonlinear
programming, Proceedings of the American Control Conference, vol.
3, 2001, pp. 2394-2399.

[17] H.K. Khalil, Nonlinear Systems, Third Edition, Prentice Hall, NY;
2002.

13


