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Abstract— Auto-regulatory transcriptional feedback, where
the protein expressed from a gene inhibits its own transcription,
is known to reduce stochastic fluctuations in protein numbers.
Recent work has demonstrated the existence of negative feed-
back loops not only at the transcriptional level but also at
the translational level. We investigate the noise suppression
abilities of feedback loops at the translational level and compare
them with transcriptional feedback. In particular, we consider
two feedbacks at the translational level: translation blocking
feedback, where the protein inhibits the translation of its
mRNA, and degradation enhancing feedback, where the protein
increases the degradation rate of its mRNA.

We derive analytical formulas for the protein noise level
corresponding to different feedback mechanisms. These noise
levels are then compared with each other for fixed steady-
state average number of protein and mRNA molecules. We
show that translation blocking feedback always yields smaller
levels of protein noise than transcriptional feedback. We further
show that the difference between the protein noise levels with
translation blocking and transcriptional feedback critically
depends on how fast the protein dynamics is compared to the
mRNA dynamics. In particular, this difference increases as we
make the protein dynamics faster than the mRNA dynamics,
while making it slower has an opposite effect.

Finally, we show that degradation enhancing feedback pro-
vides the same noise level as transcriptional feedback. This
result shows that regulation at the translational level may not
always be better than regulation at the transcriptional level in
terms of reducing noise in the protein population.

I. INTRODUCTION

The probabilistic nature of gene expression and low copy
numbers of RNAs and proteins within cells, lead to large
statistical fluctuations in protein levels [1], [2], [3]. Various
negative feedback mechanisms exists within gene networks
that help reduce stochastic fluctuations in protein levels.
One such common and well characterized mechanism is an
auto-regulatory transcriptional feedback, where the protein
expressed from a gene inhibits its own transcription [4], [5].
Both theoretical and experimental studies have shown that
such negative feedback at the transcriptional level reduces
noise in protein numbers [6], [7], [8], [9], [10]. Recent
work has provided evidence of negative feedback loops at
the translational level, where the protein can inhibit the
translation rate and/or enhance the degradation rate of its
mRNA [11], [12]. We investigate if such feedbacks at the
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translational level are more effective in reducing protein
noise level than transcriptional feedback.

As shown in Figure 1, we consider a simple model for
gene expression where the mRNA is transcribed at a rate
Tx, the protein is translated from the mRNA at a rate Lx,
and both the mRNA and the protein degrade at rates ax and
dx, respectively. We denote by m(t) and x(t) the number
of molecules of mRNA and protein, respectively, at time t
(see Table I for a summary of notation used in this paper). In
the stochastic formulation of this gene expression model, the
molecular counts m(t) and x(t) are both stochastic processes.
We quantify the protein noise level by the coefficient of
variation √

E∗[x2]−x∗2

x∗2 , (1)

where x∗ is the steady-state average number of protein
molecules and E∗[x2] is the steady-state value of the moment
E[x2] [13]. In section II, we start by quantifying the noise

Fig. 1. A simple model for gene expression.

level in the protein population when there is no feedback
mechanism present (as in Figure 1). In section III, we
introduce a transcriptional negative feedback by assuming
that the transcription rate of the gene is a monotonically
decreasing function g1(x) of the protein count x. Assuming
that the fluctuations in protein/mRNA counts about their
mean levels are sufficiently small, we derive an explicit
formula for the protein noise level using the linear noise
approximation. In this approximation, the protein noise level
with transcriptional feedback is always smaller than the noise
level with no feedback. It is important to point out that
this comparison is made keeping the steady-state average
production rate for both the protein and the mRNA fixed.
This ensures that the steady-state average number of mRNA
and protein molecules, with and without negative feedback,
are the same. Such a form of comparison is also referred to
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in literature as a mathematically controlled comparison [14],
[15].

TABLE I
A SUMMARY OF THE NOTATION USED IN THIS PAPER.

m(t) Number of mRNA molecules at time t

x(t) Number of protein molecules at time t

m∗ Steady-state average number of mRNA molecules

x∗ Steady-state average number of protein molecules

Tx Transcriptional rate of the gene with no feedback

Lx Translation rate of the gene with no feedback

ax mRNA degradation rate with no feedback

dx Protein degradation rate

Nx Burst size of the gene given by Lx/ax

ex Ratio of the protein degradation rate dx
and the mRNA degradation rate ax

g1(x) Transcription rate of the gene with
transcriptional feedback

g2(x) Translation rate of the mRNA with
translation blocking feedback

g3(x) Degradation rate of the mRNA with
degradation enhancing feedback

κ Feedback gain defined as
∣∣∣ d log(gi(x))

d log(x) |x=x∗
∣∣∣.

Assumed same for all feedback mechanisms

We next investigate the noise suppression abilities of
feedback loops at the translational level. In particular, we
focus on translation blocking feedback, where the protein
inhibits the translation of its own mRNA (see Figure 2). This
feedback is incorporated in the gene expression model by
assuming that the mRNA translation rate is a function of the
protein count x. Table II summarizes our conclusions on the
protein noise levels for the different feedback mechanisms.

Comparing these noise levels for a fixed average num-
ber of protein molecules x∗, we conclude that translation
blocking feedback is always more effective in attenuating
protein noise than transcriptional feedback. We further show
that the difference in the protein noise level with translation
blocking and transcriptional feedback critically depends on
ex = dx/ax, which is a measure of how fast the protein
dynamics is compared to the mRNA dynamics. In particular,
making the protein dynamics much faster than the mRNA
dynamics (i.e., increasing ex), increases this difference, and
enhances the noise suppression ability of the translation
blocking feedback compared to the transcriptional feedback.
On the other hand, making the mRNA dynamics much faster
than the protein dynamics (i.e., decreasing ex), decreases this
difference, and diminishes the advantage of using translation

blocking feedback over transcriptional feedback for noise
reduction.

Fig. 2. An auto-regulatory gene network with three different mechanisms
of auto-regulation. Mechanisms 1, 2 and 3 correspond transcriptional feed-
back, translation blocking feedback and degradation enhancing feedback,
respectively.

TABLE II
PROTEIN NOISE LEVELS OBTAINED USING THE LINEAR NOISE

APPROXIMATION FOR DIFFERENT NEGATIVE FEEDBACK MECHANISMS

Feedback mechanism Steady-state protein noise level

No feedback
√

1+Nx+ex
x∗(1+ex)

Transcriptional feedback
√

1+Nx+ex+κex
x∗(1+ex)(1+κ)

Translation blocking feedback
√

1+Nx+ex+κex
x∗(1+κ)(1+(1+κ)ex)

Degradation enhancing feedback
√

1+Nx+ex+κex
x∗(1+ex)(1+κ)

We also consider another feedback mechanism at the
translational level: degradation enhancing feedback, where
the protein increases the degradation rate of its mRNA. This
feedback mechanism has also been previously considered
in [16] in the context of regulated protein degradation.
Consistent with the prediction of [16], the linear noise
approximation gives the same protein noise level for degra-
dation enhancing feedback and transcriptional feedback (see
Table II). This emphasizes an important point that feedback
at the translational level is not always more effective than
feedback at the transcriptional level in terms of reducing
noise in the protein population, which contradicts what had
been previously conjectured in [22].

II. GENE EXPRESSION MODEL WITH NO REGULATION

We consider a model of gene expression which takes
into account both the mRNA and protein dynamics. As
shown in Figure 1, the protein production is decomposed
into two steps: transcription and translation. We assume that
the mRNA is transcribed from the gene GeneX at a constant
rate Tx and the protein X is translated from the mRNA at a
constant rate Lx. Both mRNA and the protein decay at rates
ax and dx respectively. As the average lifetime of a mRNA is
1/ax and proteins are made from it at a rate Lx, Nx = Lx/ax
denotes the average number of proteins produced per mRNA,
which is referred to as the burst size of the gene GeneX . We
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denote by m and x, the number of molecules of the mRNA
and protein X, respectively. As a continuous deterministic
model based on chemical rate equations does not provide
information about the stochastic fluctuation in the protein,
we consider a stochastic formulation that treats births and
deaths of the mRNA and the protein as probabilistic events.
Given that x(t) = x and m(t) = m, the probabilities of the four
reactions corresponding to births and deaths of the mRNA
and the protein happening in the infinitesimal time interval
(t, t +dt] are given by

Pr{x(t +dt) = x,m(t +dt) = m+1}= Txdt (2a)
Pr{x(t +dt) = x,m(t +dt) = m−1}= axmdt (2b)
Pr{x(t +dt) = x+1,m(t +dt) = m}= Lxmdt (2c)
Pr{x(t +dt) = x−1,m(t +dt) = m}= dxxdt (2d)

[17], [18]. We model the time evolution of the number of
molecules x and m through a Stochastic Hybrid System
(SHS), the state of which is y = [m,x]T . This SHS is
characterized by trivial continuous dynamics

ẏ = 0 (3)

and four reset maps φi(y)

y 7→ φ1(y) =
[

m+1
x

]
, y 7→ φ2(y) =

[
m−1

x

]
(4a)

y 7→ φ3(y) =
[

m
x+1

]
, y 7→ φ4(y) =

[
m

x−1

]
(4b)

with transition intensities

λ1(y) = Tx, λ2(y) = axm, λ3(y) = Lxm, λ4(y) = dxx (5)

corresponding to the transcription, translation, mRNA and
protein degradation rates in (2) (see [19]). We now determine
the time evolution of the first and second order moments of y,
i.e., the expected values E[m], E[x], E[x2], E[m2] and E[mx].
This moment dynamics can be obtained using the Dynkin’s
equation for the above SHS, according to which we have
that

dE[ψ(y)]
dt

= E

[
4

∑
i=1

(ψ(φi(y))−ψ(y))λi(y)

]
(6)

[20], [21]. Using (6) with appropriate choices for ψ(y) we
conclude that

dE[m]
dt

= Tx−axE[m] (7a)

dE[x]
dt

= LxE[m]−dxE[x] (7b)

dE[m2]
dt

= Tx +axE[m]+2TxE[m]−2axE[m2] (7c)

dE[x2]
dt

= LxE[m]+dxE[x]+2LxE[mx]−2dxE[x2] (7d)

dE[mx]
dt

= LxE[m2]+TxE[x]−dxE[mx]−axE[mx]. (7e)

By setting to zero the right-hand sides of (7), we obtain the
following steady-state moments:

m∗ =
Tx

ax
, x∗ =

LxTx

dxax
(8a)

E∗[m2] =
axTx +T 2

x

a2
x

(8b)

E∗[x2] =
LxTx

dxax
+

Lx(dxaxLxTx +dxLxT 2
x +axLxT 2

x )
d2

x a2
x(dx +ax)

(8c)

E∗[mx] =
dxaxLxTx +dxLxT 2

x +axLxT 2
x

dxa2
x(dx +ax)

(8d)

where m∗ and x∗ represent the steady-state average number
of molecules of the mRNA and the protein, respectively, and
E∗ denotes the steady-state value of the respective moment.
Substituting the steady-states from (8) in (1) we obtain the
following coefficient of variation of x

CVno−regulation =

√
1+Nx + ex

x∗(1+ ex)
(9)

where ex = dx/ax is the ratio of the protein and the mRNA
degradation rate, and CVno−regulation represents the protein
noise level when there is no feedback mechanism present.

III. TRANSCRIPTIONAL REGULATION IN GENE
EXPRESSION

We now put a negative feedback in the gene expression
model introduced in the previous section. In particular, this
feedback is at the transcriptional level where any increase
(decrease) in protein numbers, decreases (increases) the tran-
scription rate of the gene. We assume that the transcription
rate of the gene is given by g1(x) where g1 is a monotonically
decreasing function of the protein count x. Such an auto-
regulatory gene network with transcriptional feedback can
be modeled by the SHS (3)-(5), except that now

λ1(y) = g1(x). (10)

In order to write the moment dynamics we linearize the
function g1(x) about the steady-state average number of
protein molecules x∗. This approximation is valid as long
as the stochastic fluctuations are small in the sense that the
protein count does not leave the region in which g1(x) is
approximately linear. Towards this end, we assume

λ1(y) = g1(x)≈ g1(x∗)
[

1−κ

(
x−x∗

x∗

)]
(11)

where the dimensionless constant

κ =− x∗

g1(x∗)
dg1(x)

dx
|x=x∗ > 0 (12)

can be though of as the feedback gain and g1(x∗) is the av-
erage transcription rate. For comparison purposes we choose
g1(x∗) such that the steady-state average counts of the mRNA
and the protein are equal to their corresponding values in the
previous section, where there was no regulation. This is done
by taking the average transcription rate g1(x∗) = Tx, which is
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the transcription rate of the gene when there is no negative
feedback (see Figure 1).

Using Dynkin’s equation with the linearized transition
intensity (11) we have the following moment dynamics

dE[m]
dt

= Tx−κTx
E[x]−x∗

x∗
−axE[m] (13a)

dE[x]
dt

= LxE[m]−dxE[x] (13b)

dE[m2]
dt

= Tx(1+κ)+axE[m]+2TxE[m]+2κTxE[m]

−2axE[m2]−κTx
E[x]
x∗

−2κTx
E[mx]

x∗
(13c)

dE[x2]
dt

= LxE[m]+dxE[x]+2LxE[mx]−2dxE[x2] (13d)

dE[mx]
dt

= LxE[m2]+TxE[x]+κTxE[x]−dxE[mx]

−axE[mx]−κTx
E[x2]

x∗
. (13e)

From (13a) and (13b) the steady-state means are given by

m∗ =
Tx

ax
, x∗ =

LxTx

dxax
(14)

which, by construction, are the same as those obtained in
Section II with no feedback [see (8)]. A steady-state analysis
of the remaining equations yields the following steady-state
coefficient of variation of x

CVtranscription−regulation =

√
1+Nx + ex +κex

x∗(1+ ex)(1+κ)
. (15)

Comparing (15) with the noise level (9) when there is no
feedback, we see that

CVtranscription−regulation

CVno−regulation
=

√
1+Nx + ex +κex

(1+κ)(1+Nx + ex)
. (16)

As expected, when κ = 0, the right-hand-side of (16) is equal
to one. When κ > 0, this quantity is always smaller than one,
which shows that for fixed m∗ and x∗, the protein noise level
with transcriptional negative feedback is always smaller than
the noise level with no feedback.

IV. TRANSLATIONAL REGULATION IN GENE EXPRESSION

We now consider more sophisticated forms of negative
feedback where regulation occurs at the translational level.
In particular, we consider two such forms of feedback:
translation blocking feedback and degradation enhancing
feedback.

A. Translation blocking feedback

We first consider a negative feedback mechanism where
the protein inhibits the translation of its own mRNA and
refer to it as the translation blocking feedback. The sim-
plest biological mechanism by which such a feedback is
implemented is when a protein binds to its own mRNA and
prevents ribosomes from accessing the mRNA and carry out
translation. We model this translation blocking feedback by
assuming that the translation rate of the mRNA is given by

g2(x), where g2 is a monotonically decreasing function of
the protein count x.

The SHS corresponding to this feedback mechanism is
given by (3)-(5), but now with

λ3(y) = g2(x)m. (17)

As before, we assume that the stochastic fluctuations in x and
m around their respective means x∗ and m∗ are sufficiently
small and approximate the above transition intensity as

λ3(y) = g2(x)m ≈ g2(x∗)
[

m−κ m∗
(

x−x∗

x∗

)]
, (18)

ignoring quadratic and higher order terms in x−x∗ and m−
m∗. In equation (18), the dimensionless constant

κ =− x∗

g2(x∗)
dg2(x)

dx
|x=x∗ > 0 (19)

is the feedback gain of the translation blocking feedback
and g2(x∗) is the average translation rate of the mRNA. We
take g2(x∗) = Lx, which is the translation rate of the mRNA
when there is no negative feedback (see Figure 1). As we will
shortly see, this choice ensures that the steady-state means x∗
and m∗ are equal to their corresponding values when there
is no feedback.

Using (18) and the Dynkin’s equation, the time evolution
of all the first and second order moments of x and m are
now given by

dE[m]
dt

= Tx−axE[m] (20a)

dE[x]
dt

= LxE[m]−κLx
m∗(E[x]−x∗)

x∗
−dxE[x] (20b)

dE[m2]
dt

= Tx +axE[m]+2TxE[m]−2axE[x2] (20c)

dE[x2]
dt

= LxE[m]+κLxm∗+dxE[x]+2LxE[mx]

+2κLxm∗E[x]−2dxE[x2]− κLxm∗E[x]
x∗

− 2κLxm∗E[x2]
x∗

(20d)
dE[mx]

dt
= LxE[m2]+κLxE[m]m∗+TxE[x]−dxE[mx]

−axE[mx]−κTx
m∗E[mx]

x∗
. (20e)

A steady-state analysis of the above equations yields

m∗ =
Tx

ax
, x∗ =

LxTx

dxax
(21a)

CVtranslation−blocking =

√
1+Nx + ex +κex

x∗(1+κ)(1+(1+κ)ex)
. (21b)

Comparing the above noise level (21b) with the noise level
(9) we have that

CVtranslation−blocking

CVno−regulation
=√

(1+Nx + ex +κex)(1+ ex)
(1+Nx + ex)(1+(1+κ)ex)(1+κ)

< 1, κ > 0, (22)
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which implies that like transcriptional feedback, for fixed m∗

and x∗, translation blocking feedback also results in smaller
protein noise level than the noise level when there is no
feedback. We next compare the noise suppression abilities
of transcriptional and translation blocking feedback. Towards
that end, we compute that

CVtranslation−blocking

CVtranscription−regulation
=

√
1

1+κ
ex

1+ex

< 1 (23)

which shows that translation blocking feedback is always
better than transcriptional feedback in terms of reducing
noise in the protein population. Note from (23) that, for
a fixed feedback gain κ , the above ratio monotonically
decreases with increasing ex and

lim
ex→0

CVtranslation−blocking

CVtranscription−regulation
= 1 (24a)

lim
ex→∞

CVtranslation−blocking

CVtranscription−regulation
=

√
1

1+κ
. (24b)

We recall that ex = dx/ax is a measure of how fast the
protein dynamics is compared to the mRNA dynamics. The
above result shows that when ex is large, i.e., the protein
dynamics is much faster than the mRNA dynamics, the noise
suppression ability of the translation blocking feedback is far
superior to that of transcriptional feedback. However, when
ex is small, i.e., the protein dynamics is much slower than
the mRNA dynamics, the difference in the noise suppression
abilities of the two feedback mechanisms is small.

B. Degradation enhancing feedback

We next consider another negative feedback mechanism at
the translational level where the protein enhances the degra-
dation rate of its own mRNA. We refer to this mechanism as
the degradation enhancing feedback. Such a feedback mech-
anism arises when the protein activates enzymes involved in
the degradation of the mRNA. We model the degradation
enhancing feedback by assuming that the degradation rate
of the mRNA is given by g3(x) where g3 is a monotonically
increasing function of x.

The SHS corresponding to this feedback mechanism is
given by (3)-(5) but now with

λ2(y) = g3(x)m. (25)

Linearizing this transition intensity we have

λ2(y) = g3(x)m ≈ g2(x∗)
[

m+κ m∗
(

x−x∗

x∗

)]
(26)

where

κ =
x∗

g3(x∗)
dg3(x)

dx
|x=x∗ > 0 (27)

is the feedback gain of the degradation enhancing feedback.
Taking g3(x∗) = ax, which is the degradation rate of the

mRNA when there is no negative feedback (see Figure 1),
we have the following moment dynamics

dE[m]
dt

= Tx−axE[m]−κax
m∗(E[x]−x∗)

x∗
(28a)

dE[x]
dt

= LxE[m]−dxE[x] (28b)

dE[m2]
dt

= Tx +axE[m]+2TxE[m]−2axE[x2]−axκm∗

+2axκE[m]m∗+axκ
m∗E[x]

x∗
−2axκ

m∗E[xm]
x∗

(28c)

dE[x2]
dt

= LxE[m]+dxE[x]+2LxE[mx]−2dxE[x2] (28d)

dE[mx]
dt

= LxE[m2]+κaxE[x]m∗+TxE[x]−dxE[mx]

−axE[mx]−κax
m∗E[x2]

x∗
. (28e)

A steady-state analysis of the above equations yields

m∗ =
Tx

ax
, x∗ =

LxTx

dxax
(29a)

CVdegradation−enhancing =

√
1+Nx + ex +κex

x∗(1+ ex)(1+κ)
. (29b)

Comparing (29b) with (15), we conclude that the protein
noise level with degradation enhancing feedback is identical
to the noise level with transcriptional feedback. This result
shows that regulation at the translational level is not always
better than regulation at the transcriptional level in terms of
reducing stochastic fluctuations in protein numbers.

V. DISCUSSION AND FUTURE WORK

We analyzed the noise suppression properties of three
different auto-regulatory negative feedback loops. Assuming
that stochastic fluctuations in the populations of the protein
and the mRNA are sufficiently small, we derived explicit
analytical formulas for the protein noise level for each of
the three feedback mechanisms. Comparing these formulas
for fixed steady-state average number of molecules and fixed
feedback gain κ we concluded that

CVtranslation−blocking < CVtranscription−regulation (30a)
CVdegradation−enhancing = CVtranscription−regulation (30b)
CVtranscription−regulation < CVno−regulation. (30c)

These results show that transcriptional feedback and degrada-
tion enhancing feedback, which directly control the produc-
tion and degradation of the mRNA, and hence indirectly con-
trol the production of the protein, provide the same protein
noise level. On the other hand, translation blocking feedback
which directly controls the production of the protein always
provides smaller noise in protein numbers. In summary, the
mechanism by which regulation at the translational level can
provide better noise suppression than regulation at transcrip-
tional level is through translation blocking feedback where
the translation rate of the mRNA decreases with increasing
protein count.
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Our results support and explain the observation made in
[22] that regulation at the translational level always pro-
vides better noise suppression than transcriptional regulation.
This observation was based on an auto-regulatory negative
feedback mechanism where the protein binds to its mRNA
and changes both the translation and degradation rate of
the mRNA. This feedback loop corresponds to a mixture
of translation blocking and degradation enhancing feedback.
Our analysis shows that it is the translation blocking com-
ponent of the feedback that causes this mixed feedback to
provide better noise suppression than transcriptional feed-
back. Without the translation blocking feedback component,
we predict that this feedback at the translational level would
provide the same noise suppression as the transcriptional
feedback.

We investigated the noise suppression properties of both
translation blocking and transcriptional feedback when the
protein dynamics is much faster/slower than the mRNA
dynamics. In particular, we showed that in the limit when the
protein dynamics is much slower than the mRNA dynamics,
we have

lim
ex→0

(CVtranscription−regulation−CVtranslation−blocking) = 0,

(31)

and both feedback mechanisms provide the same level of
noise suppression. However, as we increase ex from zero,
i.e., as we make the protein dynamics much faster than the
mRNA dynamics, this difference increases and translation
blocking feedback becomes increasingly more effective in
reducing protein noise than transcriptional feedback.

One direction for future work is to determine if translation
blocking feedback indeed occurs more often when ex is not
small. Another direction of future work is to analyze other
auto-regulatory mechanisms that are possible in our gene ex-
pression model. Figure 3 plots eight different auto-regulatory
mechanisms out of which six are negative feedback loops
and two are negative feedforward loops. Our goal would be
analyze and compare the noise suppression abilities of all
these feedback and feedforward loops.

Fig. 3. An auto-regulatory gene network with eight different mechanisms
of auto-regulation. Auto-regulation mechanisms 1, 2, 3, 4, 5, 8 are negative
feedback loops while mechanisms 6 and 7 are negative feedforward loops.
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