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Abstract— This paper presents the optimal control problem
for a nonlinear polynomial system with respect to a Bolza-
Meyer criterion with a non-quadratic non-integral term. The
optimal solution is obtained as a sliding mode control, whereas
the conventional polynomial-quadratic regulator does not lead
to a causal solution and, therefore, fails. Performance of the
obtained optimal controller is verified in the illustrative example
against the conventional polynomial-quadratic regulator that is
optimal for the quadratic Bolza-Meyer criterion. The simulation
results confirm an advantage in favor of the designed sliding
mode control.

I. INTRODUCTION

Since the sliding mode control was invented in the begin-

ning of 1970s (see a historical review in [1]), the sliding

mode control technique is recently used in stabilization

[2], [3], tracking [4], observer design [5], identification [6],

frequency domain analysis [7], and other control problems.

Other promising modifications of the original sliding mode

concept, such as integral sliding mode [8], are developed.

Application of the sliding mode method is extended even to

stochastic systems ([9]–[13]) and stochastic filtering prob-

lems [14], [15]. However, although it is possible to design

a sliding manifold so that an infinite-horizon quadratic cost

functional including the system state only is minimized [1],

it seems, to the best of authors’ knowledge, that no optimal

sliding mode algorithms for nonlinear polynomial systems,

similar to the optimal polynomial-quadratic regulator [16]

or linear-quadratic feedback control [17], [18], have been

designed. Meanwhile, simply the fact that the sliding mode

control has a transparent physical sense [1] and is success-

fully applied to many technical problems [19] leads to a

conjecture that the optimal control problems whose solution

is given by a sliding mode control should exist. One of those

optimal control problems for nonlinear systems is considered

in this paper.

This paper presents the solution to the optimal control

problem for a nonlinear polynomial system with a Bolza-

Meyer criterion where the integral control and state energy

terms are quadratic and the non-integral term is of the

first degree. That type of criteria would be useful in the

joint control and parameter identification problems where the

objective should be reached for a finite time. It is shown

that optimal solution is given by a causal sliding mode
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control, whereas the conventional polynomial-quadratic reg-

ulator does not lead to a causal solution and, therefore, fails.

The theoretical result is complemented with an illustrative

example verifying performance of the designed control al-

gorithm. The optimal sliding mode regulator is compared

to the polynomial-quadratic regulator corresponding to the

quadratic Bolza-Meyer criterion ([16]). The simulation re-

sults confirm an advantage in favor of the designed sliding

mode control. For comparison purposes, both sliding mode

and polynomial-quadratic regulators are applied to minimiz-

ing the quadratic Bolza-Meyer criterion without the non-

integral term. In accordance with the developed theory, the

simulation results confirm coincidence of both, sliding mode

and polynomial-quadratic, optimal regulator algorithms in

this case.

The paper is organized as follows. Section 2 states the

optimal control problem for a nonlinear polynomial system

with a non-quadratic Bolza-Meyer criterion. The sliding

mode solution to the optimal control problem is given in

Section 3. The proof of the obtained results is given in

Appendix. Section 4 contains an illustrative example.

II. OPTIMAL CONTROL PROBLEM STATEMENT

Consider a polynomial time-varying system with linear

control input

ẋ(t) = f (x, t)+B(t)u(t), x(t0) = x0, (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input. Without loss of generality, the system (1) is assumed

to be controllable, i.e, the uncontrollable state components

are removed from the consideration.

The nonlinear function f (x, t) is considered polynomial of

n variables, components of the state vector x(t) ∈ Rn, with

time-dependent continuous coefficients. Since x(t) ∈ Rn is a

vector, this requires a special definition of the polynomial

for n > 1. In accordance with [20], a p-degree polynomial

of a vector x(t) ∈ Rn is regarded as a p-linear form of n

components of x(t)

f (x, t) = a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,

where a0 is a vector of dimension n, a1 is a matrix of

dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap

is an (p + 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form
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fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

ap ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

In the classical linear optimal control problem [17], [18],

the criterion to be minimized is defined as a quadratic Bolza-

Meyer function:

J2 =
1

2
[x(T )]T ψ[x(T )]+ (2)

1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds,

where R(t) is positive and ψ , L(t) are nonnegative definite

continuous symmetric matrix functions, and T > t0 is a

certain time moment. The solution to this problem is obtained

recently [16].

In this paper, the criterion to be minimized includes a non-

quadratic terminal term and is defined as follows:

J1 =
n

∑
i=1

ψii | xi(T ) | + (3)

1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds,

where R(s) is positive and L(s) is a nonnegative definite

continuous symmetric matrix functions, ψ is a diagonal

nonnegative definite matrix, and | xi | is the absolute value

of the component xi of the vector x ∈ Rn.

The optimal control problem is to find the control u∗(t),
t ∈ [t0,T ], that minimizes the criterion J1 (3) along with the

trajectory x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t)
into the state equation (1).

A solution to the stated optimal control problem is given

in the next section and then proved in Appendix. As demon-

strated, the obtained solution is a sliding mode control that

is optimal with respect to the criterion (3).

III. OPTIMAL CONTROL PROBLEM SOLUTION

The solution to the optimal control problem for the poly-

nomial system (1) and the criterion (3) is given as follows.

The optimal control law takes the sliding mode control form

u∗(t) = (R(t))−1BT (t)Q(t)Sign[x(t)], (4)

where the Signum function of a vector x = [x1, . . . ,xn]∈ Rn is

defined as Sign[x] = [sign(x1), . . . , sign(xn)]∈ Rn, the signum

function of a scalar x is defined as sign(x) = 1, if x > 0,

sign(x) = 0, if x = 0, and sign(x) = −1, if x < 0.

The matrix function Q(t) satisfies the matrix equation with

time-varying coefficients

Q̇(t)= L(t)∗ | x(t) | −[a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+. . .

(5)
+pap(t)x(t) . . .p−1 times . . .x(t)]

T Q(t),

where | x |= [| x1 |, . . . , | xn |] ∈ Rn is defined as the vector of

absolute values of the components of the vector x ∈ Rn, and

A ∗ b denotes a product between a matrix A ∈ Rn×n and a

vector b ∈ Rn, that results in the matrix defined as follows:

all entries of the j-th column of the matrix A are multiplied

by the j-th component of the vector b, j = 1, . . . ,n.

The terminal condition for the equation (5) is defined as

Q(T ) = −ψIn, where In is the n× n identity matrix, if the

state x(t) does not reach the sliding manifold x(t) = 0 within

the time interval [t0,T ], x(t) 6= 0, t ∈ [t0,T ]. Otherwise, if the

state x(t) reaches the sliding manifold x(t) = 0 within the

time interval [t0,T ], x(t) = 0 for some t ∈ [t0,T ], then the

Q(t) is set equal to a matrix function Q0(t) that is such a

solution of (5) that x(t) reaches the sliding manifold x(t) = 0

under the control law (4) with the matrix Q0(t) exactly at

the final time moment t = T , x(T ) = 0, but x(t) 6= 0, t < T .

The trivial case x(t0) = 0 and, therefore, x(t) = 0, t ∈ [t0,T ],
is not considered here. Indeed, if x(t) = 0, then u(t) = 0;

therefore, the value of Q(t) is not needed.

Upon substituting the optimal control (4) into the state

equation (1), the optimally controlled state equation is ob-

tained

ẋ(t) = f (x, t)+B(t)(R(t))−1BT (t)Q(t)Sign[x(t)], x(t0) = x0.
(6)

Consequently, the main result is formulated in the follow-

ing theorem and proved in Appendix.

Theorem 1. The optimal regulator for the linear system (1)

with respect to the criterion (3) is given by the sliding mode

control law (4) and the gain matrix differential equation

(5). The optimally controlled state of linear system (1) is

governed by the equation (6).

Remark 1. It is not difficult to see that the solution Q0(t)
really exists and can be calculated. Indeed, if ψ = 0 in the

criteria (2) and (3) and the non-integral term is absent, then

the optimal solutions with respect to both criteria coincide. In

this case, as follows from the optimal polynomial-quadratic

regulator theory [17], [18], [16], the optimal gain matrix

Q(t) has zero terminal value, Q(T ) = 0, however, the state

terminal value may be different from zero, x(T ) 6= 0. Then,

decreasing the value of −ψ as the terminal condition for the

equation (5) and, consequently, increasing the energy of the

control (4), the zero terminal state value would be reached for

a certain negative value of −ψ0, taking into account that each

manifold xi = 0, i = 1, . . . ,n, is sliding for the corresponding

component xi and the system (1) is assumed controllable.

Finally, the solution of the equation (5) with the terminal

condition −ψ0 would be the desired solution Q0(t).
Remark 2. Note that Theorem 1 suggests a feasible

algorithm for numerical solution of the gain matrix equation

(5). Indeed, first, the system of equations (1),(4),(5) is solved

with a given initial condition x0 and the terminal condition

−ψ corresponding to the non-integral term in the criterion

(3). Any known numerical method, such as ”shooting,” which

consists in varying initial conditions for (5) until a given

terminal condition is satisfied, could be used. If the system

state x(t) does not reach zero in the interval [0,T ] or reaches

exactly at the final moment t = T , then the optimal trajectory

and the optimal control are found. If x(t) reaches zero at

84



any point t < T , the system of equations (1),(4),(5) is solved

again with the initial condition x0 and the terminal condition

−ψ0, yielding the solution Q0(t). The corresponding solution

of the equation (1) yields the optimal trajectory. The formula

(4) with substituted Q0(t) and the optimal trajectory yields

the optimal control as a function of time.

Remark 3. As follows from Theorem 1, application of

the sliding mode control (4) leads to a causal terminal

condition for the gain matrix equation (5), which makes the

optimal control problem numerically solvable. In contrast,

application of the linear feedback control u∗(t) = K(t)x(t)
leads to the terminal condition Q(T )∗ | x(T ) |= −ψ , which

explicitly depends on the unknown value x(T ), and, there-

fore, is non-causal. As well-known, non-causal problems are

not numerically solvable and unusable in practice. Thus, in

case of a criterion (3), the sliding mode control allows one

to obtain a feasible solution to the optimal control problem,

whereas the linear feedback control fails.

IV. EXAMPLE

This section presents an illustrative example of designing

the optimal regulator for a system (1) with a criterion (3),

using the scheme (4)–(6).

Consider a scalar linear system

ẋ(t) = 0.1x2(t)+u(t), x(0) = 1. (7)

The control problem is to find the control u(t), t ∈ [0,T ],
T = 5, that minimizes the criterion

J1 = 25 | x(T ) | +
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt], (8)

where | x | denotes the absolute value of a scalar variable x.

Applying the optimal regulator (4)-(6), the control law (4)

takes the form

u∗(t) = Q∗(t)sign[x(t)], (9)

where Q∗(t) satisfies the equation

Q̇∗(t) =| x(t) | −0.2x(t)Q∗(t), (10)

with the initial condition Q∗(5) = −50, if x(t) 6= 0 for any

t < 5, and Q∗(5) = 0, otherwise.

Upon substituting the control (9) and the obtained expres-

sion for Q∗(t) into (7), the optimally controlled system takes

the form

ẋ(t) = 0.1x2(t)+Q∗(t)sign[x(t)], x(0) = 1. (11)

The obtained system (10),(11) can be solved using simple

numerical methods, such as ”shooting.” This method consists

in varying initial conditions of (10) until the given terminal

condition is satisfied.

The system (10),(11) is first simulated with the terminal

condition Q∗(5) = −50. As the simulation shows, the state

x(t) reaches zero before the final moment T = 5. Accord-

ingly, the terminal condition for the equation (10) is reset

to Q∗(5) = 0, and the system (10),(11) with (10),(11) is

simulated again. The results of applying the regulator (9)–

(11) to the system (7) are shown in Fig. 1, which presents the

graphs of the gain matrix (10) Q∗(t), the control (9) u∗(t),
the state (11) x(t), and the criterion (8) J1(t) in the interval

[0,5]. The value of the criterion (8) at the final moment T = 5

is J1(5) = 1.0693.

The optimal regulator (9)–(11) is compared to the optimal

polynomial regulator for the criterion (2) with the quadratic

non-integral term

J2 = 25x2(T )+
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt]. (12)

As follows from the optimal polynomial-quadratic theory

[16], the control law takes the form

u(t) = Q(t)x(t), (13)

where the gain matrix Q(t) satisfies the equation

Q̇(t) = L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) =−ψ . Substituting numer-

ical values from (7),(12) for the parameters, the last equation

turns to

Q̇(t) = 1−0.3x(t)Q(t)− (Q(t))2, Q(5) = −50, (14)

Upon substituting the control (13) into (7), the controlled

system takes the form

ẋ(t) = 0.1x2(t)+Q(t)x(t), x(0) = 1. (15)

Note that the comparison of the sliding mode optimal

regulator (9)–(11) to the best linear regulator (13)–(15) with

respect to the criterion (8) is conducted for illustration

purposes, since the sliding mode optimal regulator (9)–(11)

should theoretically yield a better result, as follows from

Theorem 1.

The results of applying the regulator (13)–(15) to the

system (7) are shown in Fig. 2, which presents the graphs

of the gain matrix (14) Q(t), the control (13) u(t), the state

(15) x(t), and the criterion (8) J1(t) in the interval [0,5]. The

value of criterion (8) at the final moment T = 5 is J1(5) =
1.0693+6.6∗10−3 = 1.0759. To provide better comparison,

Figure 3 presents the graphs of the state trajectories x(t) (11)

and (15) in detail in the interval [4.995,5].
It can be observed that the optimal sliding mode control

(9) yields a certainly better value of the criterion (8) in

comparison to the polynomial-quadratic regulator (13). Note

again that the linear feedback control fails to provide a causal

optimal control for the criterion (8) (see also Remark 3).

For verification purposes, both, the sliding mode and

polynomial-quadratic regulators, are applied to minimizing

the criterion

J =
1

2
[
∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt], (16)
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which coincides with the criteria (8) and (12), if the non-

integral term is absent. In this case, the optimal sliding mode

regulator

u∗(t) = Q∗(t)sign[x(t)],

Q̇∗(t) =| x(t) | −0.2x(t)Q∗(t), Q(5) = 0, (17)

ẋ(t) = 0.1x2(t)+Q∗(t)sign[x(t)], x(0) = 1.

and the optimal polynomial-quadratic regulator

u(t) = Q(t)x(t),

Q̇(t) = 1−0.3x(t)Q(t)− (Q(t))2, Q(5) = 0. (18)

ẋ(t) = 0.1x2(t)+Q(t)x(t), x(0) = 1.

yield the same control u∗(t)= u(t) and, accordingly, the same

optimal trajectory x(t) and the same final criterion value

J(5) = 1.0691, although the gain matrices Q∗(t) and Q(t)
are different. The graphs of the gain matrices Q∗(t) and Q(t)
are shown in Fig. 4.

V. APPENDIX

Proof of Theorem 1. Necessity. Define the Hamiltonian

function [17] for the optimal control problem (1),(3) as

H(x,u,q, t) =
1

2
(uT R(t)u+ xT L(t)x)+qT ẋ(t) =

=
1

2
(uT R(t)u+ xT L(t)x)+qT [ f (x, t)+B(t)u]. (19)

Applying the maximum principle condition ∂H/∂u = 0 to

this specific Hamiltonian function (19) yields

∂H/∂u = 0 ⇒ R(t)u(t)+BT (t)q(t) = 0.

Accordingly, the optimal control law is obtained as

u∗(t) = −R−1(t)BT (t)q(t).

Let us seek q(t) as a signum function of x(t) multiplied by

a gain matrix

q(t) = −Q(t)Sign[x(t)], (20)

where Q(t) is a square symmetric matrix of dimension n×n.

This yields the complete form of the optimal control

u∗(t) = R−1(t)BT (t)Q(t)Sign[x(t)]. (21)

Using the co-state equation dq(t)/dt = −∂H/∂x, which

gives

−dq(t)/dt = L(t)x(t)+ [∂ f (x, t)/∂x]T q(t), (22)

and substituting (21) into (22), we obtain

Q̇(t)Sign[x(t)]+Q(t)d(Sign[x(t)])/dt =

= L(t)x(t)− [∂ f (x, t)/∂x]T Q(t)Sign[x(t)].

Substituting the polynomial representation for f (x, t) and

taking into account the expression for ∂ f (x, t)/∂x

∂ f (x, t)/∂x = a1(t)+2a2(t)x+3a3(t)xxT +

. . .+ pap(t)x . . .p−1 times . . .x,

the following equation for Q(t) is obtained

Q̇(t)Sign[x(t)]+Q(t)d(Sign[x(t)])/dt = (23)

= L(t)x(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)Sign[x(t)].

Taking into account that d(Sign[x(t)])/dx = 0 almost ev-

erywhere outside the sliding manifold x(t) = 0, the following

equation is obtained

Q̇(t)Sign[x(t)] = L(t)x(t)− [a1(t)+2a2(t)x(t)+ (24)

3a3(t)x(t)x
T (t)+ . . .+ pap(t)x(t) . . .p−1 times . . .x(t)]

T×

Q(t)Sign[x(t)].

Note that if x(t) = 0, then u(t) = 0; therefore, the value of

Q(t) is no longer needed. The equation (24) is satisfied, if

Q(t) is assigned as a solution of the equation (5).

Note that if the state x(t) does not reach the sliding

manifold x(t) = 0 in an interior point of the interval [0,T ],
the transversality condition [17] for q(T ) implies that

q(T ) = −Q(T )Sign[x(t)] = ∂J/∂x(T ) = ψSign[x(t)]

and, therefore,

Q(T ) = −ψ. (25)

However, if x(t) reaches the sliding manifold x(t) = 0 before

the final moment t = T , since the problem becomes a two

fixed point problem where the terminal point is fixed at an a

priori unknown time moment when x(t) reaches the sliding

manifold x(t) = 0. Given that the final state value x(T )
remains equal to zero, if the state enters the sliding mode

before the final moment t = T , only the integral part of the

criterion should be minimized over all control laws providing

that x(t) reaches the sliding manifold x(t) = 0 within the

interval [0,T ]. Since the minimal value of the integral part

of the criterion (3) over all possible controls is provided by

the linear feedback control solving the optimal polynomial-

quadratic regulator problem (see also Remark 1 in Section

3), which may lead to a nonzero final state value x(T ) 6= 0

(see [17], [18], [16]), the minimal value of the integral part

of the criterion (3) over all control laws providing that x(t)
reaches the sliding manifold x(t) = 0 within the interval [0,T ]
is given by the control law, which yields the state to the

sliding manifold x(t) = 0 exactly at the final moment t = T .

This control law corresponds to the gain matrix Q0(t) in

view of its definition in the paragraph after (5). Thus, the

terminal conditions for the equation (5) are correctly defined

by Theorem 1. The necessity part is proved.

Sufficiency. The optimality of the optimal control law u∗(t)
given in Theorem 1 and by the formula (21) is proved in a

standard way (see details, for example, in [21]): composing

the Hamilton-Jacobi-Bellman (HJB) equation, corresponding

to the Hamiltonian (19), and demonstrating that it is satis-

fied with the Bellman function V (x, t) = −xT Q(t)Sign[x] =

−
n

∑
i, j=1

Qi j(t)sign[x j]xi, where Qi j(t) are the entries of the

matrix Q(t) solving the equation (5). The demonstration
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mostly repeats the formulas (22)–(25) in the necessity part.

Finally, minimizing the right-hand side of the HJB equation

over u yields the optimal control u∗(t) in the form (21). The

theorem is proved. ¥

Proof of Proposition in Remark 1. Consider the optimal

control problem for a linear system (1) with respect to the

Bolza-Meyer criterion without a non-integral term

J =
1

2

∫ T

t0

(uT (s)R(s)u(s)+ xT (s)L(s)x(s))ds. (26)

As follows from the optimal polynomial-quadratic regula-

tor theory [16], the optimal control law can be represented

as

u∗(t) = (R(t))−1BT (t)Q(t)x(t), (27)

where Q(t) satisfies the equation

Q̇(t)x(t) = L(t)x(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+

(28)
. . .+ pap(t)x(t) . . .p−1 times . . .x(t)]

T Q(t)x(t)−Q(t)a0(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]x(t)−

Q(t)B(t)R−1(t)BT (t)Q(t)x(t),

with the terminal condition Q(T ) = 0, which reflects the

presence of the non-homogeneous term a0(t) in the state

equation (1). The optimally controlled system takes the form

ẋ(t) = A(t)x(t)+B(t)R−1(t)BT (t)Q(t)x(t), x(t0) = x0.
(29)

Let us show that the optimal polynomial-quadratic reg-

ulator (27)-(29) coincides with the optimal sliding mode

regulator given by Theorem 1. Indeed, upon introducing the

new gain matrix Q∗(t) = Q(t)∗ | x(t) |, the control law (27)

turns to the sliding mode control (4) and the equation (29)

coincides with (6). Furthermore, in view of (28) and (29),

the newly introduced gain matrix Q∗(t) satisfies the equation

Q̇∗(t) =
d(Q(t)∗ | x(t) |)

dt
=

dQ(t)

dt
∗ | x(t) | +Q(t)∗

d(| x(t) |)

dt
=

(L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t))∗ | x(t) | −

Q(t)∗ (a0(t)∗Sign[x(t)])−

(Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−

Q(t)B(t)R−1(t)BT (t)Q(t))∗ | x(t) | +

Q(t)∗ (a0(t)∗Sign[x(t)])+

Q(t)([a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]∗ | x(t) | +

R−1(t)BT (t)Q(t)∗ | x(t) |) =

L(t)∗ | x(t) | −[a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)∗ | x(t) |=

L(t)∗ | x(t) | −[a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q∗(t),

with the terminal condition Q∗(T ) = 0, where a ∗ b de-

notes the component-wise product between vectors a =
[a1, . . . ,an] ∈ Rn and b = [b1, . . . ,bn] ∈ Rn, which results

in the vector [(a ∗ b)1, . . . ,(a ∗ b)n] = [a1b1, . . . ,anbn] ∈ Rn.

The obtained equation for Q∗(t) coincides with (5). The

proposition is proved. ¥

VI. CONCLUSIONS

This paper presents an optimal control problem for nonlin-

ear polynomial systems, whose solution is given by a sliding

mode control. The optimal control problem is considered

for a nonlinear polynomial system with a Bolza-Meyer

criterion, where the integral control and state energy terms

are quadratic and the non-integral term is of the first degree.

That type of criteria would be useful in the joint control and

parameter identification problems where the objective should

be reached for a finite time. It is shown that optimal solution

is given by a causal sliding mode control, whereas the

conventional polynomial-quadratic regulator fails to provide

a feasible solution. It is also verified that both sliding mode

and polynomial-quadratic regulators yield the same optimal

trajectory, being applied to the optimal control problem

with respect to the quadratic Bolza-Meyer criterion without

the non-integral term, whose solution is known from the

optimal polynomial-quadratic regulator theory. The proposed

approach based on a sliding mode control is expected to

be applicable to other optimal control problems with non-

quadratic criteria, where the conventional linear feedback

control would not work.
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Fig. 1. Sliding mode regulator optimal with respect to criterion J1. Graphs
of the gain matrix (10) Q∗(t), the control (9) u∗(t), the state (11) x(t), and
the criterion (8) J1(t) in the interval [0,5].
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Fig. 2. Polynomial-quadratic regulator. Graphs of the gain matrix (14)
Q(t), the control (13) u(t), the state (15) x(t), and the criterion (8) J1(t) in
the interval [0,5].
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Fig. 3. Graphs of the state trajectories x(t) (11) (thick) and (15) (thin) in
detail in the interval [4.995,5].
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Fig. 4. Graphs of the gain matrices Q∗(t) (above) and Q(t) (below) for
criterion J1 without non-integral term.
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