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Abstract— A model predictive controller is developed to
regulate film porosity and minimize its fluctuation in thin film
deposition. The deposition process is modeled via kinetic Monte
Carlo (kMC) simulation on a triangular lattice. The microscopic
events involve atom adsorption and migration and allow for
vacancies and overhangs to develop. Appropriate definitions
of film site occupancy ratio (SOR), i.e., fraction of film sites
occupied by particles over total number of film sites, and
its fluctuation are introduced to describe film porosity. Deter-
ministic and stochastic ordinary differential equation (ODE)
models are also constructed to describe the time evolution
of film SOR and its fluctuation. The coefficients of the ODE
models are estimated on the basis of data obtained from the
kMC simulator of the deposition process using least-square
methods. The developed ODE models are used as the basis
for the design of model predictive control (MPC) algorithms
that include penalty on the film SOR and its variance to
regulate the expected value of film SOR at a desired level and
reduce run-to-run fluctuations. Simulation results demonstrate
the applicability and effectiveness of the proposed film porosity
control method in the context of the deposition process under
consideration.

I. INTRODUCTION

Currently, there is an increasing need to improve semicon-

ductor manufacturing process operation and yield. This need

has arisen due to the increased complexity and density of de-

vices on the wafer, which is the result of increased wafer size

and smaller device dimensions. Within this manufacturing

environment, thin film porosity has emerged as an important

film quality variable which strongly influences the electrical

and mechanical properties of microelectronic devices. For

example, low-κ dielectric films of high porosity are being

used in current interconnect technologies to meet resistive-

capacitive delay goals and minimize cross-talk. However, in-

creased porosity negatively affects the mechanical properties

of dielectric films, increasing the risk of thermo-mechanical

failures [11]. Furthermore, in the case of gate dielectrics, it

is important to reduce thin film porosity as much as possible

and eliminate the development of holes close to the interface.

Two fundamental modeling approaches, kinetic Monte

Carlo (kMC) methods [5], [6], [12], [22] and stochastic

differential equation (SDE) models [3], [4], [21], have been

developed to describe the evolution of film microscopic con-

figurations and design feedback control laws. Specifically,
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kMC models were initially used to develop a methodology

for modeling and feedback control of thin film surface

roughness [2], [13], [14]. For example, a method that couples

partial differential equation (PDE) models and kMC models

was developed for computationally efficient multiscale op-

timization of thin film growth [20]. However, kMC models

are not available in closed-form and this limitation precludes

the use of kMC models for system-level analysis and model-

based feedback control design. SDEs arise naturally in the

modeling of surface morphology of ultra thin films since they

can contain the surface morphology information and account

for the stochastic nature of the growth processes.

Advanced control methods based on SDEs have been

developed to address the need of model-based feedback

control of thin film surface roughness. Specifically, methods

for state feedback control of surface roughness based on

linear [15], [19] and nonlinear [16], [17] SDE models have

been developed. More recently, output feedback control of

surface roughness was developed [7] by incorporating a

Kalman-Bucy type filter. Despite recent significant efforts

on surface roughness control, a close study of the existing

literature indicates the lack of general and practical methods

for addressing the challenging issue of achieving desired

electrical and mechanical thin film properties by controlling

film porosity to a desired level and reducing run-to-run

porosity variability.

Motivated by above, the present work focuses on the

development of model predictive control of film porosity

in thin film deposition processes. A thin film deposition

process which involves atom adsorption and migration is

introduced and is modeled using a triangular lattice-based

kMC simulator. Appropriate definitions of film site occu-

pancy ratio (SOR) and its fluctuation are introduced to

describe film porosity. Then, deterministic and stochastic

ODE models are derived that describe the time evolution

of film SOR and its fluctuation, and their coefficients are

estimated from data obtained from the kMC simulator. The

developed ODE models are used as the basis for the design

of model predictive control (MPC) algorithms that include

penalty on the film SOR and its variance to regulate the

expected value of film SOR at a desired level and reduce

run-to-run fluctuations. The MPC algorithms are applied to

the kMC simulator of the deposition process and the closed-

loop performance is evaluated.

II. THIN FILM DEPOSITION PROCESS DESCRIPTION AND

MODELING

This section is associated with the description of the

deposition process and its simulation via kMC algorithms.
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A. On-lattice kinetic Monte Carlo model of film growth

The thin film growth process considered in this work

includes two microscopic processes: an adsorption process,

in which particles are incorporated into the film from the

gas phase, and a migration process, in which surface par-

ticles move to adjacent sites [12], [22], [23]. A ballistic

deposition model is chosen to simulate the evolution of film

porosity, which allows vacancies and overhangs to model the

microstructural defects in the thin film.

Gas phase 
particles

Particles
on lattice

Substrate 
particlesSubstrate

Gas phase

Fig. 1. Thin film growth process on a triangular lattice.

The film growth model used in this work is an on-lattice

kMC model in which all particles occupy discrete lattice

sites. The on-lattice kMC model is valid for temperatures

T < 0.5Tm, where Tm is the melting point of the crystal.

In this work, a triangular lattice is selected to represent

the crystalline structure of the film, as shown in Fig.1.

All particles are modeled as identical hard disks and the

centers of the particles deposited on the film are located

on the lattice sites. The diameter of the particles equals the

distance between two neighboring sites. The width of the

lattice is fixed so that the lattice contains a fixed number of

sites in the lateral direction. The new particles are always

deposited from the top side of the lattice where the gas

phase is located; see Fig.1. Particle deposition results in film

growth in the direction normal to the lateral direction. The

direction normal to the lateral direction is thus designated

as the growth direction. The number of sites in the lateral

direction is defined as the lattice size and is denoted by L.

The lattice parameter, a, which is defined as the distance

between two neighboring sites and equals the diameter of a

particle, determines the lateral extent of the lattice, La.

The number of nearest neighbors of a site ranges from

zero to six, the coordination number of the triangular lattice.

A site with no nearest neighbors indicates an unabsorbed

particle in the gas phase (i.e., a particle which has not

been deposited on the film yet). A particle with six nearest

neighbors is associated with an interior particle that is fully

surrounded by other particles and cannot migrate. A particle

with one to five nearest neighbors is possible to diffuse to an

unoccupied neighboring site with a probability that depends

on its local environment.

In the simulation, a bottom layer in the lattice is initially

set to be fully packed and fixed, as shown in Fig.1. There are

no vacancies in this layer and the particles in this layer cannot

migrate. This layer acts as the substrate for the deposition

and is not counted in the computation of the number of the

deposited particles, i.e., this fixed layer does not influence

the film porosity (see section V-A below).

Two types of microscopic processes (Monte Carlo events)

are considered, an adsorption process and a migration pro-

cess. These Monte Carlo events are assumed to be Poisson

processes. All events occur randomly with probabilities pro-

portional to their respective rates. The events are executed

instantaneously upon selection and the state of the lattice

remains unchanged between two consecutive events.

B. Adsorption process

In an adsorption process, an incident particle comes in

contact with the film and is incorporated onto the film. The

microscopic adsorption rate, W , which is in units of layers

per unit time, depends on the gas phase concentration. The

layers in the unit of adsorption rate are densely packed

layers, which contain L particles. With this definition, W is

independent of L. In this work, the microscopic adsorption

rate, W , is treated as a process parameter. For the entire

deposition process, the macroscopic adsorption rate in terms

of incident particles per unit time, which is denoted as ra, is

related to W as follows:

ra = LW (1)

The incident particles are initially placed at random posi-

tions above the film lattice and move toward the lattice in

random directions. The initial particle position is uniformly

distributed in the continuous domain, (0, La). The incident

angle is defined as the angle between the incident direction

and the direction normal to the film. The probability distribu-

tion of the incident angle is uniform in the interval (−0.5π ,

0.5π).

A
C

B D

Fig. 2. Schematic of the adsorption event with surface relaxation. In this
event, particle A is the incident particle, particle B is the surface particle
that is first hit by particle A, site C is the nearest vacant site to particle A
among the sites that neighbor particle B, and site D is a stable site where
particle A relaxes.

The procedure of an adsorption process is illustrated in

Fig.2. After the initial position and incident angle are deter-

mined, the incident particle, A, travels along a straight line

towards the film until contacting the first particle, B, on the

film. Upon contact, particle A stops and sticks to particle B

at the contacting position; see Fig.2. Then, particle A moves

(relaxes) to the nearest vacant site, C, among the neighboring

sites of particle B. Instantaneous particle surface relaxation

is conducted since site C has only one neighboring particle
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and is considered unstable in the triangular lattice, as shown

in Fig.2. When a particle is subject to surface relaxation,

the particle moves to its most stable neighboring vacant site,

which is defined as the site with the most nearest neighbors.

In the case of multiple neighboring vacant sites with the

same number of nearest neighbors, a random one is chosen

from these sites with equal probability as the objective of the

particle surface relaxation process. Note that particle surface

relaxation is considered as part of the deposition event, and

thus, it does not contribute to the process simulation time.

There is also only one relaxation event per incident particle.

C. Migration process

In a migration process, a particle overcomes the energy

barrier of the site and jumps to its vacant neighboring site.

The migration rate (probability) of a particle follows an

Arrhenius-type law with a pre-calculated activation energy

barrier that depends on the local environment of the particle,

i.e., the number of the nearest neighbors of the particle

chosen for a migration event. The migration rate of the ith

particle is calculated as follows:

rm,i = ν0 exp

(
−

niE0

kBT

)
(2)

where ν0 denotes the pre-exponential factor, ni is the number

of the nearest neighbors of the ith particle and can take the

values of 2, 3, 4 and 5 (rm,i is zero when ni = 6 since this

particle is fully surrounded by other particles and cannot

migrate), E0 is the contribution to the activation energy

barrier from each nearest neighbor, kB is the Boltzmann’s

constant and T is the substrate temperature of the thin

film. Since the film is thin, the temperature is assumed to

be uniform throughout the film and is treated as a time-

varying but spatially-invariant process parameter. In this

work, the factor and energy barrier contribution in Eq.2 take

the following values ν0 = 1013s−1 and E0 = 0.6 eV, which

are appropriate for a silicon film [10].

When a particle is subject to migration, it can jump to

either of its vacant neighboring sites with equal probability,

unless the vacant neighboring site has no nearest neighbors,

i.e., the surface particle cannot jump off the film and it can

only migrate on the surface.

D. Simulation algorithm

To simulate the process with limited-size lattice and reduce

the boundary effects, periodic boundary conditions (PBCs)

are applied to the kMC model of the deposition process.

With the assumption that all microscopic processes are

Poisson processes, the time increment upon the execution

of a successful event is computed based on the total rates of

all the micro-processes, which can be listed and calculated

from the current state of the lattice. To further improve the

computational efficiency, a grouping algorithm is also used

in the selection of the particle that is subject to migration

[18]. In the grouping algorithm, the events are pre-grouped

to improve the execution speed. In this work, the layer of the

film emerges as a natural grouping criterion, i.e., all particles

in the same layer are considered to be part of one group.

III. ODE MODELS FOR COMPLETE AND PARTIAL FILM

SITE OCCUPANCY RATIO

For control purposes, dynamic models are required that

describe how the film porosity expressed in terms of com-

plete and partial film SOR varies with respect to potential

manipulated input variables like temperature and deposition

rate. In this section, deterministic and stochastic linear ODE

models are derived to describe the evolution of film SOR.

The derivation of these ODE models and the computation of

their parameters is done on the basis of data obtained from

the kMC model of the deposition process.

A. Definition of complete and partial film site occupancy

ratios

Since film porosity is the main objective of modeling and

control design of this work, complete film site occupancy

ratio (SOR) is introduced to represent the extent of the

porosity inside the thin film as follows:

ρ =
N

LH
(3)

where ρ denotes the film SOR, N is the total number of

deposited particles on the lattice, L is the lattice size (i.e.,

number of sites in one layer), and H denotes the number of

deposited layers. At the beginning of the deposition process

when there are no particles deposited on the lattice and only

the substrate layer is present, a zero value is assigned to the

film SOR at this state.

Another concept of film SOR introduced in this section,

termed partial film SOR, is the film SOR calculated by

accounting only for the top Hp layers of the film; this concept

will be used to address the porosity variance reduction

problem. Mathematically, the partial film SOR is defined as

follows:

ρp =
Np

LHp

(4)

where ρp denotes the partial film SOR and Np denotes the

number of particles in the top Hp layers and Hp denotes the

number of top layers of the film included in the computa-

tion of the partial film SOR. Specifically, Hp fully-packed

substrate layers are assumed to exist in the film before the

deposition process begins and are used in the calculation of

ρp when not enough layers have been deposited, i.e., H < Hp.

Although complete film SOR and partial film SOR are

defined similarly, they are different variables which are used

to describe different aspects of the film. The cumulative

property of the complete film SOR averages the fluctuations

of the porosity from different layers of the film and results in

the decay of the variance of the complete film SOR to zero

with respect to time. The partial film SOR, on the contrary,

only accounts for the porosity of the newly deposited Hp

layers of the film and the variance of the partial film SOR

does not decay with respect to time. Therefore, the variance

of ρp is selected to represent the porosity fluctuations and is

used for modeling and control design. The partial film SOR

variance, Var(ρp), is computed by the following expression

Var(ρp) =
〈
(ρp −

〈
ρp

〉
)2

〉
(5)
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where 〈·〉 denotes the average (mean) value.

B. Deterministic and stochastic dynamic models

The dynamics of the expected values of the complete and

partial film SORs evolution can be approximately described

by first-order deterministic and stochastic ODE models, re-

spectively. A linear first-order deterministic ODE is chosen to

describe the dynamics of the complete film SOR as follows:

τ
d 〈ρ(t)〉

dt
= ρss −〈ρ(t)〉 (6)

where τ is the time constant and ρss is the steady-state

value of the complete film SOR. The model parameters, τ
and ρss, depend on substrate temperature. This dependence

will be mathematically expressed in section III-C below. The

deterministic ODE system of Eq.8 is subject to the following

initial condition:

〈ρ(t0)〉 = ρ0 (7)

where t0 is the initial time and ρ0 is the initial value of

the complete film SOR (ρ0 = 0 by convention in this work).

From Eqs.6 and 7, it follows that

〈ρ(t)〉 = ρss +(ρ0 −ρss)e−(t−t0)/τ . (8)

A linear stochastic ODE is used to model the dynamics

of the partial film SOR. Similarly to the deterministic ODE

model for the expected complete film SOR of Eq.6, a first-

order stochastic ODE is chosen for the computation of the

partial film SOR as follows:

τp

dρp(t)

dt
= ρss

p −ρp(t)+ξp(t) (9)

where ρss
p and τp are the two model parameters which denote

the steady-state value of the partial film SOR and the time

constant, respectively, and ξp(t) is a Gaussian white noise

with the following expressions for its mean and covariance:

〈ξp(t)〉 = 0

〈ξp(t)ξp(t
′)〉 = σ2

pδ (t − t ′)
(10)

where σp is a parameter which measures the intensity of the

Gaussian white noise and δ (·) denotes the standard Dirac

delta function. The model parameters ρss
p , τp and σp are

functions of the substrate temperature.

The stochastic ODE system of Eq.9 is subject to the

following initial condition:

ρp(t0) = ρp0 (11)

where ρp0 is the initial value of the partial film SOR. Note

that ρp0 is a random number, which follows a Gaussian

distribution.

The following analytical solution of Eq.9 can be obtained

from a direct computation as follows:

ρp(t) = ρss
p +

(
ρs0 −ρss

p

)
e−(t−t0)/τp +

∫ t

t0

e−(s−t0)/τpξsds.

(12)

In Eq.12, ρp(t) is a random process, the expected value

of which,
〈
ρp(t)

〉
, can be obtained as follows:〈

ρp(t)
〉

= ρss
p +

(
〈ρs0〉−ρss

p

)
e−(t−t0)/τp . (13)

The analytical solution of Var(ρp) can be obtained from

the solution of Eq.12 using the following result [1]:

Result 1: If (1) f (x) is a deterministic function, (2)

η(x) is a random process with 〈η(x)〉 = 0 and covariance

〈η(x)η(x′)〉 = σ2δ (x− x′), and (3) ε =
∫ b

a f (x)η(x)dx, then

ε is a real random variable with 〈ε〉 = 0 and variance

〈ε2〉 = σ 2
∫ b

a f 2(x)dx.

Using Result 1, the variance of the partial film SOR, Var(ρp),
can be obtained from the analytical solution of Eq.12 as

follows:

Var(ρp(t)) =
τpσ 2

p

2
+

(
Var(ρp0)−

τpσ2
p

2

)
e−2(t−t0)/τp (14)

where Var(ρp0) is the variance of the partial film SOR at

time t = 0, which is calculated as follows:

Var(ρp0) =
〈
(ρp0 −

〈
ρp0

〉
)2

〉
. (15)

A new model parameter, Varss
p , is introduced to simplify

the solution of Var(ρp) in Eq.14 as follows:

Varss
p =

τpσ2
p

2
(16)

where Varss
p stands for the steady-state value of the variance

of the partial film SOR. With the introduction of this new

model parameter, the solution of the variance of the partial

film SOR, Var(ρp), can be rewritten in the following form:

Var(ρp(t)) = Varss
p +

(
Var(ρp0)−Varss

p

)
e−2(t−t0)/τp . (17)

C. Parameter estimation and dependence on the process

parameters

Since the ODE models of Eqs.6 and 9 are linear, the five

parameters, ρss, τ , ρss
p , τp and Varss

p , can be estimated from

the solutions of Eqs.8 and 13. Specifically, the parameters

ρss
p and τp are estimated using Eq.8 and the parameters

ρss
p , τp and Varss

p are estimated using Eq.13, solving two

separate least square problems. Specifically, the two least-

square problems can be solved independently to obtain the

first four model parameters. The steady-state variance, Varss
p ,

is obtained from the steady-state values of the variance

evolution profiles at large times.

The data used for the parameter estimation are obtained

from the open-loop kMC simulation of the thin film growth

process. The process parameters are fixed during each open-

loop simulation so that the dependence of the model param-

eters on the process parameters can be obtained for fixed

operation conditions. The complete film SOR and the partial

film SOR are calculated on the basis of the deposited film

at specific time instants. Due to the stochastic nature of the

process, multiple independent simulation runs are performed

to obtain the expected values of the complete film SOR and

of the partial film SOR as well as of the variance of the partial

film SOR. Details of the modeling results can be found in

[9].
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IV. MODEL PREDICTIVE CONTROL DESIGN

In this section, we design model predictive controllers

based on the deterministic and stochastic ODE models of

Eqs.6 and 9 to simultaneously control the complete film SOR

of the deposition process to a desired level and minimize the

variance of the partial film SOR. State feedback controllers

are considered in this work, i.e., the values of the complete

film SOR and of the partial film SOR are assumed to be

available for feedback control. Such measurements may be

obtained in real-time through a combination of real-time gas

phase measurements and empirical models that predict film

porosity from gas phase measurements.

A. Regulation of complete film site occupancy ratio

Since the film porosity is the main control objective in

this work, we first consider the problem of regulation of the

expected complete film SOR to a desired level, ρset , within a

model predictive control framework. The substrate tempera-

ture is used as the manipulated input and the deposition rate

is fixed at a certain value, W0, during the entire closed-loop

simulation. To account for a number of practical considera-

tions, several constraints are added to the control problem.

First, there is a constraint on the range of variation of the

substrate temperature. This constraint ensures validity of the

on-lattice kMC model. Another constraint is imposed on the

rate of change of the substrate temperature to account for

actuator limitations. We note that classical control schemes

like proportional-integral (PI) control cannot be designed

to explicitly account for input/state constraints, optimality

considerations and the batch nature of the deposition process,

and thus, their use will not be pursued in this work.

The control action, at a time t and state ρ , is obtained

by solving a finite-horizon optimal control problem. The

optimal temperature profile is calculated by solving a finite-

dimensional optimization problem in a receding horizon

fashion. Specifically, the MPC problem is formulated based

on the deterministic ODE of Eq.6 as follows:

min
T1,...,Ti,...,Tp

J(ρ(t)) =
p

∑
i=1

qsp,i [ρset −〈ρ(t + iΔ)〉]2

subject to

〈ρ(t + iΔ)〉 = ρss(Ti,W0)

+(〈ρ(t +(i−1)Δ)〉−ρss(Ti,W0))e−Δ/τ(Ti,W0)

Tmin < Ti < Tmax, |Ti+1 −Ti|/Δ ≤ LT , i = 1,2, . . . , p
(18)

where t is the current time, Δ is the sampling time, p is the

number of prediction steps, pΔ is the specified prediction

horizon, Ti, i = 1, 2, . . . , p, is the substrate temperature at

the ith step (Ti = T (t + iΔ)), respectively, W0 is the fixed

deposition rate, qsp,i, i = 1, 2, . . . , p, are the weighting

penalty factors for the error of the complete film SOR at the

ith prediction step, Tmin and Tmax are the lower and upper

bounds on the substrate temperature, respectively and LT is

the limit on the rate of change of the substrate temperature.

In the MPC formulation of Eq.18, J is the cost function,

which contains penalty on the squared difference between

the desired value of the complete film SOR, ρset , and the

predicted values of this variable at all time steps.

The dynamics of the expected value of the complete film

SOR are described by the deterministic first-order ODE

of Eq.8. The dependence of model parameters on process

parameters is obtained from the parameter estimation at a

variety of conditions. Due to the availability of analytical

solutions of the linear ODE model of Eq.8, these analytical

solutions can be used directly in the MPC formulation of

Eq.18 for the prediction of 〈ρ(t)〉. The system state, ρ(t), is

the complete film SOR at time t. Note that ρ(t), which is ob-

tained directly from the simulation in real-time, is considered

as the expected complete film SOR and can be used as an

initial condition for the solution of the deterministic ODE

of Eq.8. In the closed-loop simulations, the instantaneous

values of ρ and ρp are made available to the controller at

each sampling time; however, no statistical information, e.g.,

the expected value of complete/partial film SOR, is available

for feedback. The optimal set of control actions, (T1, T2,

. . . , Tp), is obtained from the solution of the multi-variable

optimization problem of Eq.18, and only the first value of the

manipulated input trajectory, T1, is applied to the deposition

process during the time interval (t, t + Δ). At time t + Δ, a

new measurement of ρ is received and the MPC problem of

Eq.18 is solved for the next control input trajectory.

B. Fluctuation regulation of partial film site occupancy ratio

Reduction of run-to-run variability is another goal in

process control of a thin film growth process. In this work,

the fluctuation of film SOR is represented by the variance

of partial film SOR, Var(ρp). Ideally, a zero value means

no fluctuation from run to run. However, it is impossible

to achieve zero variance of partial film SOR due to the

stochastic nature of the thin film growth process. Thus, the

control objective of fluctuation regulation is to minimize the

variance by manipulating the process parameters.

In this work, the fluctuation is included into the cost

function together with the error of the complete film SOR.

Specifically, the MPC formulation with penalty on the error

of the expected complete film SOR and penalty on the

variance of the partial film SOR is given as follows:

minT1,...,Ti,...,Tp J(ρ(t)) =
p

∑
i=1

{
qsp,i [ρset −〈ρ(t + iΔ)〉]2 +qvar,iVar[ρp(t + iΔ)]

}
subject to

〈ρ(t + iΔ)〉 = ρss(Ti,W0)

+(〈ρ(t +(i−1)Δ)〉−ρss(Ti,W0))e−Δ/τ(Ti,W0)

Var(ρp(t + iΔ) = Varss
p (Ti,W0)

+
(
Var [ρp(t +(i−1)Δ)]−Varss

p (Ti,W0)
)

e−Δ/τp(Ti,W0)

Tmin < Ti < Tmax, |Ti+1 −Ti|/Δ ≤ LT , i = 1,2, . . . , p
(19)
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where qsp,i and qvar,i, i = 1, 2, . . . , p, are weighting penalty

factors on the error of the complete film SOR and of the

variance of the partial film SOR, respectively. Other variables

in Eq.19 are defined similarly to the ones in Eq.18. The same

constraints as in Eq.18 are imposed on the MPC formulation

of Eq.19. Due to the unavailability of statistical information

of the partial film SOR in real-time, the initial condition of

the partial film SOR is regarded as a deterministic variable

and the initial condition at t = 0 for Var(ρp(t)) is considered

to be zero in the MPC formulation.

V. SIMULATION RESULTS

In this section, open-loop simulations of the kMC model

of a silicon thin film growth process using the methodology

described in Section II are presented. The data obtained from

the open-loop simulations of different conditions are used as

the basis for parameter estimation. Model predictive con-

trollers of Eqs.18 and 19 are applied to the thin film growth

process to simultaneously control the complete film SOR of

the deposition process to a desired level and minimize the

variance of the partial film SOR.

A. Open-loop simulations

In this subsection, the thin film deposition process is

simulated according to the algorithm described in section

II. The evolution of complete film SOR and the variance

of partial film SOR are computed from Eqs.3 and 5, re-

spectively. The lattice size L is equal to 100 throughout this

work. The choice of lattice size is determined from a balance

between statistical accuracy and reasonable requirements

for computing power. Dependence of film porosity on the

lattice size has been discussed in [8], [9]. 1000 independent

simulation runs are carried out to obtain the expected value

and the variance of the film SOR. The simulation time is

1000 s. All simulations start with an identical flat initial

condition, i.e., only a substrate layer is present on the lattice

without any deposited particles.

Fig.3 shows the evolution profile of the mean value of

the complete film SOR and the variance of the partial film

SOR during the deposition process for the following process

parameters: T = 600 K and W = 1 layer/s. In Fig.3, the film

SOR is initially 0 and as particles begin to deposit on the

film, the film SOR increases with respect to time and quickly

reaches a steady-state value. The top 100 layers are chosen

in the calculation of the partial film SOR, i.e., Hp = 100 in

Eq.4. Snapshots of the thin film microstructure at different

times, t = 100 s, 400 s, 700 s and 1000 s, of the open-loop

simulation are shown in Fig.4.

B. Closed-loop simulations

In this section, the model predictive controllers of Eqs.18

and 19 are applied to the kMC model of the thin film growth

process described in section II. The dependence of the model

parameters on the substrate temperature is obtained using the

parameter estimation described in subsection III-C on the

basis of the open-loop simulation data.
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Fig. 3. Mean value of the complete film SOR (solid line) and variance
of the partial film SOR (dashed line) versus time for a 1000 s open-loop
deposition process with substrate temperature T = 600 K and deposition
rate W = 1 layer/s.
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Fig. 4. Snapshots of the film microstructure at t = 100 s, 400 s, 700 s
and 1000 s of the open-loop deposition process with substrate temperature
T = 600 K and deposition rate W = 1 layer/s.

In the closed-loop simulation, the value of the substrate

temperature is obtained from the solution of the problem of

Eqs.18 and 19 at each sampling time and is applied to the

closed-loop system until the next each sampling time. The

complete film SOR and the partial film SOR are obtained

directly from the kMC model of the thin film at each

sampling time as the state of the system and are fed into

the controller. The sampling time is fixed in all closed-

loop simulations to be Δ = 5 s, which is in the same order

of magnitude of the time constant of the dynamics of the

complete film SOR, τ . The optimization problems in the

MPC formulations of Eqs.18 and 19 are solved using a local

constrained minimization algorithm.

The constraint on the rate of change of the substrate

temperature is imposed onto the optimization problem, which

is realized in the optimization process in the following way:

Ti −LT Δ ≤ Ti+1 ≤ Ti +LT Δ, i = 1,2,3,4, and 5. (20)

The desired value (set-point) for the complete film SOR in

the closed-loop simulations is 0.9. The number of prediction

steps is 5. The deposition rate is fixed at 1 layer/s and

all closed-loop simulations are initialized with an initial
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temperature of 300 K. The maximal rate of change of the

temperature is 10 K/s. Expected values and variances are

calculated from 1000 independent simulation runs.

1) Regulation of complete film site occupancy ratio: First,

the closed-loop simulation results of complete film SOR

regulation using the model predictive control formulation

of Eq.18 are provided. In this MPC formulation, the cost

function contains only penalty on the difference of the

complete film SOR from the set-point value. Specifically,

the optimization problem is formulated to minimize the

difference between the complete film SOR set-point and the

prediction of the expected complete film SOR at the end

of each prediction step. All weighting penalty factors, qsp,i,

i = 1, 2, . . . , 5, are assigned to be equal. Fig.5 shows the

profiles of the expected value of the complete film SOR in the

closed-loop system simulation. The profiles of the complete

film SOR and of the substrate temperature from a single

simulation run are also included in Fig.5.
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Fig. 5. Closed-loop profiles of the complete film SOR (solid line) and
of the expected value of the complete film SOR (dotted line) under the
controller of Eq.18. The profile of the substrate temperature is also included
(dash-dotted line).

In Fig.5, the substrate temperature increases linearly at the

initial stages due to the constraint on the rate of change, and

it approaches to a value around 650 K, which is calculated

from the optimization problem based on the current complete

film SOR. The expected complete film SOR reaches the

value of 0.87 at the end of the simulation. There is a

difference of 0.03 from the set point, which is due to the fact

that the first-order ODE model is not an exact description

of the film SOR dynamics, but rather an approximation.

However, for the purpose of control design, the first-order

ODE model is acceptable. Another reason for the difference

is the cumulative nature of the complete film SOR. Since

the initial temperature, 300 K, is far below the optimal

temperature for the desired film SOR, it takes some time for

the substrate temperature to reach the optimal temperature.

The initial condition of the substrate temperature results in

a period of low temperature at the initial stages. In this

period, layers with higher porosity are deposited onto the

film and, as a result, the complete film SOR is lowered.

Thus, it takes longer time for the complete film SOR to

reach its steady-state value. The difference between the set-

point and the closed-loop steady-state value can be overcome

by pre-setting a higher initial substrate temperature. Another

possible method to improve the closed-loop performance

is to replace the quadratic cost function that penalizes the

deviation of the SORs from the desired values with other

functions, since quadratic terms slow down the convergence

speed in the vicinity of the set point. Snapshots of the film

microstructure at different times, t = 100 s, 400 s, 700 s and

1000 s, of the closed-loop simulation are shown in Fig.6.

0 50 100
0

200

400

600

800

1000

1200

t=100 s

Width (sites)
He

ig
ht

 (l
ay

er
s)

0 50 100
0

200

400

600

800

1000

1200

t=400 s

Width (sites)

He
ig

ht
 (l

ay
er

s)

0 50 100
0

200

400

600

800

1000

1200

t=700 s

Width (sites)

He
ig

ht
 (l

ay
er

s)

0 50 100
0

200

400

600

800

1000

1200

t=1000 s

Width (sites)

He
ig

ht
 (l

ay
er

s)

Fig. 6. Snapshots of the film microstructure at t = 100 s, 400 s, 700 s
and 1000 s of the closed-loop simulation under the feedback controller of
Eq.18 with qsp,i = 1, i = 1,2,3,4, and 5.

2) Fluctuation regulation of partial film site occupancy

ratio: To reduce the run-to-run variability of the film poros-

ity, the variance of the partial film SOR is added into the cost

function in the model predictive controller of Eq.19. There

are two weighting factors, qsp,i and qvar,i, which represent

the weights on the complete film SOR and on the variance

of the partial film SOR prediction, respectively. Fig.7 shows

the profiles of the expected complete film SOR and of the

substrate temperature in the closed-loop simulation, with the

following values assigned to the weighting factors:

qsp,i = 1, qvar,i = 10, i = 1,2,3,4, and 5. (21)

As shown in Fig.7, the complete film SOR and the

substrate temperature evolve similarly as in Fig.5. However,

with the cost function including penalty on the variance of

the partial film SOR, the optimal temperature is higher than

the one in Fig.5, since a higher substrate temperature is in

favor of decreasing run-to-run fluctuations. Fig.8 shows a

comparison of the variance of the partial film SOR between

the two model predictive controllers with qvar,i = 0 and

qvar,i = 10, i = 1,2,3,4, and 5. It can be seen that the

variance of the partial film SOR is lowered with penalty

on this variable included into the cost function of the MPC

formulation. Snapshots of the film microstructure at different

times, t = 100 s, 400 s, 700 s and 1000 s, of the closed-loop

simulation are shown in Fig.9.

VI. CONCLUSIONS

In this work, a model predictive controller was developed

to regulate film porosity and minimize its fluctuation in
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Fig. 7. Closed-loop profiles of the complete film SOR (solid line) and
of the expected value of the complete film SOR (dotted line) under the
controller of Eq.19. The profile of the substrate temperature is also included
(dash-dotted line).
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thin film deposition modeled via a triangular lattice-based

kMC simulator. Appropriate definitions of film SOR and

its fluctuation were introduced to describe film porosity.

Deterministic and stochastic ODE models were derived that

describe the time evolution of film SOR and its fluctuation.

The developed ODE models were used as the basis for the

design of MPC algorithms that include penalty on the film

SOR and its variance to regulate the expected value of film

SOR at a desired level and reduce run-to-run fluctuations.
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