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Abstract— This paper focuses on the dynamics and control
of a vapor recompression distillation column. A dynamic mod-
eling framework is presented and the presence of multi-time-
scale behavior is documented. Using singular perturbations,
a model reduction procedure is outlined to arrive at reduced
order models capturing the dynamics in each time-scale. A
hierarchical control scheme is proposed based on the multi-
scale nature of the system. The theoretical results are illustrated
via a simulation case study on a propane-propylene system.

I. INTRODUCTION

Distillation is one of the most energy consuming units in

a chemical plant, motivating the need for energy integration.

Vapor recompression distillation (VRD) is one such en-

ergy integrated distillation configuration, wherein the vapor

coming from the top of the distillation column is used to

provide energy for the vaporization of the bottoms stream [1].

Vapor recompression distillation is favored for separations

involving close-boiling liquids. Such separations result into

large reflux ratios and a small compressor duty is needed to

facilitate the heat transfer in a combined reboiler-condenser.

Most research on vapor recompression distillation has

emphasized steady state economics (e.g. [2], [3]), focusing

on capital costs, operating costs and optimal steady state

operating conditions. In a vapor recompression distillation

column, there is a significant amount of energy recycle

through the combined reboiler-condenser, which introduces

strong interactions between different units in this system.

Furthermore, there is also a large amount of material recycle

owing to the large reflux flows. The tight material and

energy integration in vapor recompression distillation shows

a potential for intricate dynamics. However, very few papers

have focused on the dynamics and control of these columns

(e.g. [3], [4]).

In this paper, we propose a comprehensive modeling,

analysis and control framework for such columns. We doc-

ument that the discrepancies in material and energy flows

in this system lead to a multi-time-scale behavior. Through

a nested application of singular perturbations, reduced order

non-stiff models valid in each time-scale are obtained. We

then propose a hierarchical control scheme exploiting this

time-scale multiplicity. The theoretical results are illustrated

via a simulation case study on a propane-propylene system.

II. DYNAMIC ANALYSIS

Figure 1 shows a typical configuration for a direct (column

fluid itself being used as a refrigerant) vapor recompression

distillation system. The vapor coming out from the top of the

Fig. 1. Vapor recompression distillation (1 - Column, 2 - Compressor, 3 -
Reboiler-condenser, 4 - Trim condenser, 5 - Reflux drum and 6 - Auxiliary
cooler

distillation column is compressed in the compressor so as to

facilitate the heat transfer to the bottoms stream. A major part

of the compressed vapor condenses in the reboiler-condenser

and this in turn boils the bottoms stream, generating the

vapor entering the stripping section of the column. A trim

condenser is used to condense the residual vapor. An auxil-

iary cooler is used to bring the temperature of the reflux back

to the required value. For simplicity, we assume constant

specific heats (cp,l, cp,v), constant relative volatility (α) and

constant molar holdup on each tray (Mi). The pressure drop

in the column is assumed to be negligible. We further assume

that the liquid flow rate in the rectifying section is constant

from plate to plate, which is usually a good assumption for

a mixture of close-boiling components. Further, we assume

that the kinetic and potential energy contributions to energy

are negligible. To simplify the analysis, let us also assume:

• The liquid in the reboiler in thermal equilibrium with

the vapor.

• Fast (instantaneous) heat transfer in the reboiler-

condenser.

• No subcooling in the condensers.
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Based on these assumptions, the material and energy balance

equations of the system can be written as:

Distillation column (n trays)
1 ≤ i < nf

dxi

dt
=

1

Mi

[V (yi+1 − yi) + R(xi−1 − xi)]

dTi

dt
=

1

Micp,l

h

V (h̃v(Ti+1) − h̃v(Ti)) + R(h̃l(Ti−1) − h̃l(Ti))
i

dxnf

dt
=

1

Mnf

ˆ

V (ynf+1 − ynf ) + R(xnf−1 − xnf )

+F (xf − xnf )
˜

dTnf

dt
=

1

Mnf cp,l

h

V (h̃v(Tnf+1) − h̃v(Tnf ))+

R(h̃l(Tnf−1) − h̃l(Tnf )) + F (h̃l(Tf ) − h̃l(Tnf ))
i

nf < i ≤ n

dxi

dt
=

1

Mi

[V (yi+1 − yi) + (R + F )(xi−1 − xi)]

dTi

dt
=

1

Micp,l

h

V (h̃v(Ti+1) − h̃v(Ti))+

(R + F )(h̃l(Ti−1) − h̃l(Ti))
i

Compressor

dTc

dt
=

1

Mccv

h

V (h̃v(T1) − h̃v(Tc)) + ηW
i

dPc

dt
= (V − V1 − Vtc)

RTc

Vc

Reboiler-condenser

dMB

dt
= R + F − V − B

dxB

dt
=

1

MB

[(R + F )(xn − xB) − V (yB − xB)]

0 = V1(h̃v(Tc) − h̃l(Th)) − Q

0 = (R + F )(h̃l(Tn) − h̃l(TB)) −

V (h̃v(TB) − h̃l(TB)) + Q

Trim condenser

dTo

dt
=

1

Mtcp,l

h

Vtc(h̃v(Tc) − h̃l(To)) − Qc1

i

Reflux drum

dMD

dt
= V − R − D

dxD

dt
=

1

MD

[V (y1 − xD)]

dTD

dt
=

1

MDcp,l

h

V1(h̃l(Th) − h̃l(TD))+

Vtc(h̃l(To) − h̃l(TD))
i

Auxiliary cooler

dTm

dt
=

1

Macp,l

h

R(h̃l(TD) − h̃l(Tm)) − Qc2

i

where D, B and F are the distillate, bottoms and the feed

molar flow rates and xF is the feed composition. V and R
are the vapor and reflux flows, Vtc is the flow through the

trim condenser and V1 is the condenser section inlet flow for

the reboiler-condenser. h̃ represents partial molar enthalpy

with subscripts v and l denoting the vapor and liquid stream

respectively. Q is the heat duty of the reboiler-condenser.

Qc1 and Qc2 are the duties for the trim condenser and the

auxiliary cooler respectively. W is the compressor power and

η is the compressor efficiency.

For this vapor recompression distillation, we make the

following assumptions regarding the magnitude of various

material and energy flows.

1) VRD favors separation of species with close-boiling

points. Such a difficult separation requires a large

operating reflux ratio (R/D). At steady state, we thus

define a small parameter Ds/Rs = ε1 << 1.

2) The contribution of latent heat to the enthalpy is much

larger than that of the sensible heat. So at steady state,

we define another small parameter h̃l(Tf )/h̃v(Tf ) =
ε2 << 1.

3) The material flows V and V1 are comparable in mag-

nitude to R and the material flows F , Vtc and B are

comparable in magnitude to D.

4) The energy flows W and Qc2 are O(1/ε1) and

Qc1 is O(1/ε2). At steady state, we define

Ws/Fsh̃l(Tf ) = kw/ε1, Qc2,s/Fsh̃l(Tf ) = kqc2/ε1

and Qc1,s/Fsh̃l(Tf ) = kqc1/ε2.

5) The energy transfer rate across the reboiler-condenser

is O(1/ε1ε2) and thus we define Qs/Fsh̃l(Tf ) =
kq/ε1ε2.

Based in these, we define the O(1) steady state

ratios Bs/Ds = kB , Fs/Ds = kF , Vtc,s/Ds = ktc,

V1,s/Rs = kV 1, Vs/Rs = kV , the scaled material

flows B/Bs = uB , F/Fs = uF , Vtc/Vtc,s = utc,

V1/V1,s = uV 1, V/Vs = uV , R/Rs = uR and

D/Ds = uD, and the scaled energy flows W/Ws = uw,

Qc1/Qc1,s = uqc1, Qc2/Qc2,s = uqc2 and Q/Qs = uq.

We also define the following O(1) ratios of specific

enthalpies h̃l(Ti)/h̃l(Tf ) = ki,l, h̃v(Ti)/h̃v(Tf ) = ki,v ,

h̃l(Th)/h̃l(Tf ) = kh, h̃l(TB)/h̃l(Tf ) = kb,

h̃l(To)/h̃l(Tf ) = ko, h̃l(TD)/h̃l(Tf ) = kd,

h̃l(Tm)/h̃l(Tf ) = km, h̃v(Tc)/h̃v(Tf ) = kc and

h̃v(TB)/h̃v(Tf ) = kbv . The material and energy balance

dynamics now take the form:

Distillation column
1 ≤ i < nf

dxi

dt
=

Ds

Miε1

[kV uV (yi+1 − yi) + uR(xi−1 − xi)]

dTi

dt
=

Dsh̃l(Tf )

Micp,lε1

»

kV uV

„

ki+1,v − ki,v

ε2

«

+ uR(ki−1,l − ki,l)

–

dxnf

dt
=

Ds

Mnf

»

kV uV

ε1

(ynf+1 − ynf ) +
uR

ε1

(xnf−1 − xnf )

+kF uF (xf − xnf )
˜

dTnf

dt
=

Ddh̃l(Tf )

Mnf cp,l

»

kV uV

ε1

„

knf+1,v − knf,v

ε2

«

+

uR

ε1

(knf−1,l − knf,l) + kF uF (1 − knf,l)

–
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nf < i ≤ n

dxi

dt
=

Ds

Mi

»

kV uV

ε1

(yi+1 − yi) +

„

uR

ε1

+ kF uF

«

(xi−1 − xi)

–

dTi

dt
=

Dsh̃l(Tf )

Micp,l

»

kV uV

ε1

„

ki+1,v − ki,v

ε2

«

+

„

uR

ε1

+ kF uF

«

(ki−1,l − ki,l)

–

Compressor

dTc

dt
=

Dsh̃l(Tf )

Mccvε1

»

kV uV

„

k1,v − kc

ε2

«

+ ηkF kwuW

–

dPc

dt
=

DsRTc

Vc

»

kV uV

ε1

−

kV 1uV 1

ε1

− ktcutc

–

Reboiler-condenser

dMB

dt
= Ds

»

uR

ε1

+ kF uF −

kV uV

ε1

− kBuB

–

dxB

dt
=

Ds

MB

»„

uR

ε1

+ kF uF

«

(xn − xB)

−

kV uV

ε1

(yB − xB)

–

0 =
Dsh̃l(Tf )

Mhcp,l

»

kV 1uV 1

ε1

„

kc

ε2

− kh

«

−

kF kquq

ε1ε2

–

0 =
Dsh̃l(Tf )

MBcp,l

»„

uR

ε1

+ kF uF

«

(kn,l − kb)−

kV uV

ε1

„

kbv

ε2

− kb

«

+
kF kquq

ε1ε2

–

Trim condenser

dTo

dt
=

Dsh̃l(Tf )

Mtcp,l

»

ktcutc

„

kc

ε2

− ko

«

−

kF kqc1uqc1

ε2

–

Reflux drum

dMD

dt
= Ds

»

kV uV − uR

ε1

− uD

–

dxD

dt
=

Ds

MDε1

[kV uV (y1 − xD)]

dTD

dt
=

Dsh̃l(Tf )

MDcp,l

»

kV 1uV 1

ε1

(kh − kd) + ktcutc(ko − kd)

–

Auxiliary cooler

dTm

dt
=

Dsh̃l(Tf )

Macp,lε1

[uR(kd − km) − kF kqc2uqc2] (1)

The presence of the small parameters ε1 and ε2 make

this model stiff. For simplicity, let us assume that ε1 and

ε2 are comparable (ε2 = kε1, where k is O(1)). Let us

also define another small parameter ε3 = ε1ε2 so that

ε3 << ε1, ε2 << 1. We note that the dynamic system

(1) involves terms which are O(1), O(1/ε1) and O(1/ε3),
showing a potential for the evolution of the state variables

over three time-scales. The control problem for such a multi-

time-scale system can be addressed by obtaining reduced

order models valid in each time-scale and using them to

derive controllers in the respective time-scales. Such a model

reduction can be done through a successive application of

singular perturbation techniques to model (1) [5].

III. MODEL REDUCTION AND CONTROL

In order to derive the description of the dynamics in the

fast time-scale, let us define a stretched fast time-scale τ =
t/ε3. Substituting τ in the dynamic equations (1) and taking

the limit ε3 → 0, we obtain the reduced order dynamic model

valid in the fast time-scale as:

Distillation column
1 ≤ i ≤ n

dTi

dτ
=

Dsh̃l(Tf )

Micp,l

[kV uV (ki+1,v − ki,v)]

Compressor

dTc

dτ
=

Dsh̃l(Tf )

Mccv

[kV uV (k1,v − kc)]

Reboiler-condenser

0 = kV 1uV 1kc − kF kquq

0 = −kV uV kbv + kF kquq (2)

We note that all the temperatures in a loop comprising of

the column, the compressor and the reboiler-condenser (the

energy recycle loop) have a component in this fast time-scale,

while the material balance dynamics does not evolve in this

time-scale. This fast dynamics converge to a quasi-steady

state captured by the constraints:

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0
.
.
.
0
.
.
.
0
0
0
0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

= gf =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

kV uV (k2,v − k1,v)
.
.
.

kV uV (ki+1,v − ki,v)
.
.
.

kV uV (kn+1,v − kn,v)
kV uV (k1,v − kc)

kV 1uV 1kc − kF kquq

−kV uV kbv + kF kquq

kV uV − kV 1uV 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(3)

We can note that these quasi-steady state constraints are

not linearly independent (note that kn+1,v = kbv). Thus the

quasi-steady state for the fast dynamics does not specify

an isolated equilibrium point; rather it specifies a lower

dimensional equilibrium manifold. The large internal (to the

system) energy flows do not affect the total enthalpy of the

system. Only n + 3 (out of n + 4) constraints are linearly

independent and thus, there is a slower dynamics for these

temperatures in the energy recycle loop.

Let us consider the same limiting case ε3 → 0 in

the original time-scale t, to obtain the description of the

dynamics after the fast boundary layer. This takes the form:

Distillation column
1 ≤ i < nf

dxi

dt
=

Ds

Miε1

[kV uV (yi+1 − yi) + uR(xi−1 − xi)]

dTi

dt
=

Dsh̃l(Tf )

Micp,l

»

zi +
uR(ki−1,l − ki,l)

ε1

–

dxnf

dt
=

Ds

Mnf

»

kV uV (ynf+1 − ynf ) + uR(xnf−1 − xnf )

ε1

+kF uF (xf − xnf )
˜
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dTnf

dt
=

Ddh̃l(Tf )

Mnf cp,l

»

znf +
uR

ε1

(knf−1,l − knf,l)

+kF uF (1 − knf,l)
˜

nf < i ≤ n

dxi

dt
=

Ds

Mi

»

kV uV

ε1

(yi+1 − yi) +

„

uR

ε1

+ kF uF

«

(xi−1 − xi)

–

dTi

dt
=

Dsh̃l(Tf )

Micp,l

»

zi +

„

uR

ε1

+ kF uF

«

(ki−1,l − ki,l)

–

Compressor

dTc

dt
=

Dsh̃l(Tf )

Mccv

»

zc +
ηkF kwuW

ε1

–

dPc

dt
=

DsRTc

Vc

»

kV uV − kV 1uV 1

ε1

− ktcutc

–

Reboiler-condenser

dMB

dt
= Ds

»

uR − kV uV

ε1

+ kF uF − kBuB

–

dxB

dt
=

Ds

MB

»„

uR

ε1

+ kF uF

«

(xn − xB) −
kV uV

ε1

(yB − xB)

–

0 =
Dsh̃l(Tf )

Mhcp,l

»

zh −

kV 1uV 1kh

ε1

–

0 =
Dsh̃l(Tf )

MBcp,l

»„

uR

ε1

+ kF uF

«

(kn,l − kb)+

kV uV kb

ε1

−

 

n
X

i=1

zi + zc + zh

!#

Trim condenser

dTo

dt
=

Dsh̃l(Tf )

Mtcp,l

»

ktcutc

„

kc

kε1

− ko

«

−

kF kqc1uqc1

kε1

–

Reflux drum

dMD

dt
= Ds

»

kV uV − uR

ε1

− uD

–

dxD

dt
=

Ds

MDε1

[kV uV (y1 − xD)]

dTD

dt
=

Dsh̃l(Tf )

MDcp,l

»

kV 1uV 1

ε1

(kh − kd) + ktcutc(ko − kd)

–

Auxiliary cooler

dTm

dt
=

Dsh̃l(Tf )

Macp,lε1

[uR(kd − km) − kF kqc2uqc2] (4)

along with the constraints gf = 0. The algebraic variables

z denote the limiting terms corresponding to the difference

between large energy flows (in the energy recycle loop)

which are indeterminate, but finite. We can note that the

model (4) after the fast boundary layer is also stiff, owing

to the presence of the small parameter ε1 (equivalently the

large term 1/ε1). This indicates the presence of intermediate

and slow dynamics.

Remark III.1 There are two approaches to proceed with

the model reduction at this point. We can obtain an ODE

(ordinary differential equation) representation of model (4),

through substitution of the algebraic variables z, which

can be obtained from the differentiation of the constraints.

The resulting ODE model will be stiff and using singular

perturbations, we can further decompose this model to an

intermediate and a slow dynamic component. On the other

hand, we can also directly apply singular perturbations to the

differential algebraic equation (DAE) system (4) to resolve

the dynamics in the intermediate time-scale in DAE form,

which can subsequently be converted into an equivalent ODE

form. It can be shown that the two approaches lead to the

same ODE representations. We will use the latter approach

which allows for a more concise derivation.

To this end, let us define the intermediate time-scale θ =
t/ε1. Substituting θ in (4) and taking the limit ε1 → 0, we

have:

Distillation column
1 ≤ i < nf

dxi

dθ
=

Ds

Mi

[kV uV (yi+1 − yi) + uR(xi−1 − xi)]

dTi

dθ
=

Dsh̃l(Tf )

Micp,l

ˆ

z̃i + uR(ki−1,l − ki,l)
˜

dxnf

dθ
=

Ds

Mnf

ˆ

kV uV (ynf+1 − ynf ) + uR(xnf−1 − xnf )
˜

dTnf

dθ
=

Ddh̃l(Tf )

Mnf cp,l

ˆ

z̃nf + uR(knf−1,l − knf,l)
˜

nf < i ≤ n

dxi

dθ
=

Ds

Mi

[kV uV (yi+1 − yi) + uR(xi−1 − xi)]

dTi

dθ
=

Dsh̃l(Tf )

Micp,l

ˆ

z̃i + uR(ki−1,l − ki,l)
˜

Compressor

dTc

dθ
=

Dsh̃l(Tf )

Mccv

[z̃c + ηkF kwuW ]

dPc

dθ
=

DsRTc

Vc

[kV uV − kV 1uV 1]

Reboiler-condenser

dMB

dθ
= Ds [uR − kV uV ]

dxB

dθ
=

Ds

MB

[uR(xn − xB) − kV uV (yB − xB)]

0 =
Dsh̃l(Tf )

Mhcp,l

[z̃h − kV 1uV 1kh]

0 =
Dsh̃l(Tf )

MBcp,l

ˆ

uR(kn,l − kb) + kV uV kb

−

 

n
X

i=1

z̃i + z̃c + z̃h

!#

Trim condenser

dTo

dθ
=

Dsh̃l(Tf )

Mtcp,lk
[ktcutckc − kF kqc1uqc1]

Reflux drum

dMD

dθ
= Ds [kV uV − uR]

dxD

dθ
=

Ds

MD

[kV uV (y1 − xD)]

dTD

dθ
=

Dsh̃l(Tf )

MDcp,l

[kV 1uV 1(kh − kd)]
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Auxiliary cooler

dTm

dθ
=

Dsh̃l(Tf )

Macp,l

[uR(kd − km) − kF kqc2uqc2] (5)

along with the constraints gf = 0. The terms z̃ capture the

evolution of the variables z in the intermediate time-scale.

This intermediate dynamics converge to a quasi-steady state

captured by the constraints:
2

4

0

0

0

3

5 =

2

4

gf

gx

gθ

3

5

where gx represents the constraints arising from the material

balance dynamics and gθ represents the constraints arising

from the energy balance dynamics. Here, gx is:

gx =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

kV uV (y2 − y1) + uR(x0 − x1)
.
.
.

kV uV (yi+1 − yi) + uR(xi−1 − xi)
.
.
.

kV uV (yn+1 − yn) + uR(xn−1 − xn)
uR − kV uV

uR(xn − xB) − kV uV (yB − xB)
kV uV − uR

kV uV (y1 − xD)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We can note that the constraints gx are also not linearly

independent (note that x0 = xD). In fact, the last two

constraints can be represented in terms of the first n +
2 constraints. The deficiency in the linearly independent

constraints, in this time-scale, can be attributed to the fact

that large internal material flows do not affect the total

material holdup of the system. This gives rise to a two-

dimensional slow dynamics corresponding to the material

balance equations.
The constraints corresponding to the energy balance (gθ)

are:

gθ =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

z̃1 + uR(k0,l − k1,l)
.
.
.

z̃i + uR(ki−1,l − ki,l)
.
.
.

z̃n + uR(kn−1,l − kn,l)
z̃c + ηkF kwuW

z̃h − kV 1uV 1kh

uR(kn,l − kb) +
`

−

Pn
i=1

z̃i − z̃c − z̃h

´

+ kV uV kb

ktcutckc − kF kqc1uqc1

kV 1uV 1(kh − kd) + ktcutc(ko − kd)
uR(kd − km) − kF kqc2uqc2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

which are linearly independent. Thus the energy balance

dynamics does not have any component in the slow time

scale and the slow model is two dimensional.

Let us now derive the description of the material balance

dynamics in the slow time-scale. We take the limit ε1 → 0
in the original time-scale for the system (1) to obtain:

Distillation column
1 ≤ i < nf

dxi

dt
=

Ds

Mi

wi

dxnf

dt
=

Ds

Mnf

ˆ

wnf + kF uF (xf − xnf )
˜

Fig. 2. Hierarchical control structure

nf < i ≤ n

dxi

dt
=

Ds

Mi

[wi + kF uF (xi−1 − xi)]

Reboiler-condenser

dMB

dt
= Ds [wB + kF uF − kBuB ]

dxB

dt
=

Ds

MB

[wxb + kF uF (xn − xB)]

Reflux drum

dMD

dt
= Ds [−wB − uD]

dxD

dt
=

Ds

MD

 

−

n
X

i=1

wi − wxb − (xB − xD)wB

!

(6)

along with the constraints gx = 0. The algebraic variables

w, in this time-scale, denote the indeterminate (but finite)

limiting terms corresponding to the difference between large

material flows.

Thus what we have is a model decomposition of the orig-

inal multi-scale, stiff model (1) into three non-stiff reduced

order models (2), (5) and (6), valid in the fast, intermediate

and slow time-scale.

In this paper, we focus on the control of exit concentration

of the bottoms stream (1− xB= y1), material holdups (MD

and MB) and the pressure (Pc) in the system. The time

scale separation helps us to propose a hierarchical control

structure, as shown in Figure 2.

In the intermediate time-scale, only the scaled flows

corresponding to the internal material flows are available

for manipulation. So we can address the control of MD

and MB in the intermediate time-scale, using uR and uV 1

respectively. Pressure, which is a critical variable in the

operation of vapor recompression distillation, should be

regulated in the intermediate time-scale. The natural choice

for the manipulated variable for pressure control is Qc1. We

can use simple P controllers to address these control actions:

uR = 1 − kro(MD,set − MD)

uV 1 = 1 − kv1o(MB,set − MB)

uqc1 = 1 − kpo(Pset − P ) (7)
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Parameter Value Parameter Value

n 95 F 100 mol/min
nf 48 xf 0.5
R 608 mol/min D 50 mol/min
V 658 mol/min xD 0.95

W 7.91×105 J/min B 50 mol/min
Qc 2.77×105 J/min xB 0.05
V1 640 mol/min cp,v 72.1 J/mol/K
Tf 296.4 K cp,l 118.3 J/mol/K
T1 293.3 K M 1000 mol
Tn 300.1 K Mc 200 mol
Tc 310.0 K Mt 1000 mol
Th 302.8 K MB 1000 mol
Tm 296.2 K α 1.162
Pcol 10.13 bar Pc 14.11 bar
ε1 0.082 ε2 0.025

TABLE I

NOMINAL PROCESS PARAMETERS

The total material holdup (MD +MB : y2) also needs to be

controlled in the slow time-scale, alongwith y1, the purity

of the bottoms stream. The available manipulated inputs are

uD and uB . A model based controller can be derived to

address these control objectives using the slow model (6). To

illustrate these results, let us consider a simulation case study

of propane-propylene separation in a vapor recompression

distillation system.

IV. SIMULATION RESULTS

We consider a simulation case of propane-propylene sep-

aration in a vapor recompression distillation column shown

in Figure 1. The nominal values for various variables are

listed in table I. We used control laws (7) with kro = 0.33,

kv1o = 0.31 and kpo = 0.28, based on Ziegler-Nichols

technique. We used an input/output linearizing controller to

address the control objectives in the slow time-scale. The

slow model (6) is a differential algebraic equation (DAE)

system. In order to obtain a state-space representation of the

slow dynamics, the algebraic constraints gx = 0 are differ-

entiated, after substituting the control laws (7). This allows

to obtain expressions for the algebraic variables w. These are

substituted in (6) to obtain the state space representation of

the slow model, which is used for the controller derivation.

The relative degree for the two outputs, in this case, is 1 and

therefore we requested first order responses:

β1

dy1

dt
+ y1 = v1, β2

dy2

dt
+ y2 = v2 (8)

with β1 = β2 = 20 min using a state feedback controller.

In order to get offset free response, we added external error

feedback PI controllers, tuned following the arguments in

[6].

To test the proposed controller scheme, we applied a set

point change of +3% to y1 and the corresponding response

of the system is shown in Figure 3. We can note a smooth set

point transition demonstrating the efficacy of the proposed

control structure.
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Fig. 3. Closed loop performance for a set point chance in y1

V. CONCLUSIONS

In this paper, we considered an energy integrated distilla-

tion scheme - vapor recompression distillation. We showed

that the dynamic equations governing the material and energy

balance are stiff, giving rise to a three time-scale dynamic

behavior. We used singular perturbations to derive reduced

order non-stiff models valid in each time-scale and pro-

posed a hierarchical control strategy exploiting this time-

scale separation. A simulation case study was performed on

propane-propylene separation to illustrate the performance of

the proposed controllers. We demonstrated that the proposed

controllers exhibit excellent performance in enabling steady

state transitions.
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