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Abstract— A primary concern for nonlinear model predictive
control (NMPC) strategies is the evaluation of their control
performance, especially robustness. Many researchers show the
existence of robustness as a byproduct of stability which is
achieved by monotonicity of the cost function. However the
design of a control architecture within the MPC frame and
the analysis of its robustness to additive uncertainties are far
from well solved together as a complete topic. The robust
analysis is even more difficult when more than one control
values from the optimal control sequence are applied to real
systems. In this paper, a general stability condition is proposed
to design a NMPC control strategy for a constrained discrete
time system. Furthermore, a robustness analysis is also provided
for the designed MPC control architecture. Under the proposed
stability condition, an admissible invariant set for the nominal
system and a terminal constraint set are defined for the MPC
regulator. These compact sets make it possible to analyze the
bound for additive uncertainties so that the closed-loop system
is input-to-state stable with relation to additive uncertainties
under this given bound.

I. INTRODUCTION

Model predictive control or receding horizon control

(RHC) is a kind of control algorithm suitable for the case

in which pre-computation of a control law is not feasible.

In this control strategy, at each sampling instant, the current

control law is obtained by solving a finite horizon open-

loop optimal control problem. An optimal control sequence

is achieved and only the first value in this sequence is

applied to the real system. With the current state as the

initial state, this on-line optimal control problem will be

solved repeatedly. As a process control paradigm, MPC is

considered for solving regulation problem of the proposed

vehicle dynamic system. This can be attributed to several

factors. First, MPC technology considers the vehicle dynam-

ics over a future time horizon and introduces feedforward

control so that the measurable disturbances can be anticipated

and compensated. Secondly, the vehicle kinematic model

used here is a standard nonholonomic system. It could not

be asymptotically stabilized by a time invariant feedback

control law [1]. Discrete time nonlinear MPC strategy can

solve this problem by designing a time-varying controller.

Thirdly, MPC can consider input and state constraints in

such a simple way by including them in the controller

design when solving the optimal control problem. Finally,

the improvement of computation speed and the mature of all

kinds of numerical optimization algorithms make it possible
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to apply this control strategy to fast dynamic system like

vehicles, robots and so on [2], [3].

Though with the above priorities, MPC have some prac-

tically relevant problems such as stability and robustness

performance whenever plant-model mismatch, parametric

uncertainties or additive disturbance inputs are considered. In

MPC robustness analysis, special difficulties result from the

open loop nature of the optimal control problem combined

with the implicit feedback provided by MPC policy. To tackle

the point at stake, extensive research work has been done and

many of existing literatures resort to min-max formulations

in order to derive an H∞ MPC controller which accounts

for the worst-case disturbance [4], [5]. It is worth to mention

that LMI-based MPC is a hot spot since much of existing

robust control theory could be recast in LMI framework.

Reference [6] is a master piece in summarizing LMI related

control problems. Much works appear later in this field such

as [7], [8], and so on.

Actually, MPC robustness can be a byproduct of stability

ensured by the cost monotonicity condition. That is to say,

to satisfy monotonicity condition, MPC controller usually

is designed as a conservative solution with some stability

margin so that if the disturbance is not very large, stability

can be preserved in a certain region. Reference [9] is such a

good example where input-to-state stability (ISS) is achieved

under uncertainties with a given bound. Nominal predictions

are used and parameters of MPC controller are designed to

achieve robust feasibility of the closed-loop system. Along

the same line, reference [10] established regional ISS for

constrained nonlinear systems and provided a good result

for robustness analysis of MPC algorithms. A fairly complete

discussion of nominal MPC could be found in [11], where

design techniques are based on a nominal objective function

and plant model uncertainties are compensated to some

extent by state measurement feedback at every next sampling

time.

A clear analysis on control performance could be found

in reference [9] where several assumptions are made to

assure the existence of robustness coming from stability

margin. However, it doesn’t tell us how to design a control

strategy so that these assumptions can be satisfied. That

is to say, the results are derived assuming monotonicity

condition has been satisfied. Our work in this paper focuses

on robust analysis for a control architecture we designed

according to a general stability condition which we proposed

for discrete time nonlinear systems. Based on [9], our

research could find the bound of uncertainties under which

the optimal problem is feasible. Based on the ISS theorem,
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Fig. 1. Coordinate frames for the kinematic model

robustness of the proposed controller is analyzed and stability

of disturbed closed-loop system is proved with respect to

additive uncertainties. The results hold not only for a general

nonlinear regulator but also for the cases where more than

one control values from the optimal control sequence are

applied to real systems. Since the computation speed of

NMPC is always a hindrance for its application, undoubtedly

it is meaningful to explore the control performance when

increased the length of the applied control inputs in every

iteration.

The remainder of this paper is organized as follows. In

Section II, the proposed control architecture and terminal

controller are introduced and stability condition is given. Sec-

tion III presents some preliminary results which are useful for

robust analysis. In Section IV, input-to-state stability of the

closed-loop system is analyzed with consideration of additive

uncertainties in the model. Simulation results are provided

in Section V and conclusions are drawn in Section VI.

II. PROPOSED CONTROL ARCHITECTURE

A. Problem Formulation

The kinematic car-like vehicle model (1) is used in this

paper as shown in Fig. 1. The state is represented by

χ = [x, y, θ]′ ∈ C = R
2 × S , where C denotes the con-

figuration space including vehicle position and orientation.

S := (−π, π]. (x, y, θ) are the Cartesian coordinates of

the vehicle and its orientation with respect to an inertial

coordinate frame {O, X, Y }. u = [v ω]′ is the control input,

i.e., the linear and the angular velocities, respectively.






ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
| v
ω
| ≥ Rmin

(1)

This model assumed that there is a pure rolling contact

between the wheels and the ground. Then the vehicle moves

without slipping on a plane, that is to say, the vehicle is

subject to a nonholonomic constraint (2).

ẋ sin θ − ẏ cos θ = 0 (2)

For this model, the closed-loop control relates to the de-

termination of steering inputs assuring the states of the

plant asymptotically converge to the origin (parking target).

According to the well known work of [1], Cartesian state

space representations of car model is among a class of

systems which could not be asymptotically stabilized by a

time invariant feedback control law. In addition, the input

v and ω have saturations, u and u, resulted from physical

limitations of the actuators. The minimum turning radius of

a vehicle determined the relation between v and ω, that is,

| v
ω
| ≥ Rmin. (3)

Without loss of generality, we can consider autonomous

parking as a regulation problem in which the desired op-

erating point is the origin, that is, reference state χr = 0.

Since autonomous vehicle is usually driven by control signals

from computer, it is necessary to discretize the system model.

Considering a step size T , using Euler’s approximation, error

state system is defined in (4)






xe(k + 1) = xe(k) − v(k) cos θe(k)T
ye(k + 1) = ye(k) − v(k) sin θe(k)T
θe(k + 1) = θe(k) − ω(k)T

(4)

where χe(k) = [xe(k), ye(k), θe(k)]′ = χr(k) − χ(k) =
−χ(k). Or denote it as (5)

χe(k + 1) = f(χe(k), u(k))
χe(k) ∈ X
u(k) ∈ U

(5)

where X is a closed set and U is a compact set. Then,

the regulation (“parking”) problem can be reformulated as

finding a control sequence u(k) so that the current state

χe(k) will converge to the origin when k → ∞. The cost

function we used in this paper is as follows (6).

J(k, uM ) = χe(k + M)′χe(k + M)+
M−1∑

i=0

[χe(k + i)′Qχe(k + i) + u(k + i)′Ru(k + i)]
(6)

Subject to:

χe(k + i) = f(χe(k + i − 1), u(k + i − 1))
for i = 0, · · · ,M

u ≤ u(k + i) ≤ u
for i = 0, · · · ,M − 1

χe(k + M) ∈ Ω

(7)

where χe(k + M)′χe(k + M) is the terminal penalty term.

Q and R are positive definite weighting matrices. Denote

M as the control horizon and P as the prediction horizon.

M ≤ P . uk+i = 0 when i = M, M + 1, · · · , P . Here, we

choose M = P . uM = (uk, · · · , uk+M−1) is the control

sequence corresponding to each prediction horizon. The first

m (m ≤ M ) inputs (uk,uk+1, · · · ,uk+m−1) will be applied

to the plant at each time instant. And Ω is the terminal state

constraint set.

B. Control Strategy Design and Stability Condition

The control structure is designed within finite prediction

horizon MPC frame considering the speed requirement of

real time systems. To clearly describe the predictive control

process, the similar notation as that appeared in [12] is

adopted here. The evolution of the system will be over time

index of the form tjk := t0 + (j + km)T , with j varying in
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the interval j = 0, . . . ,M − 1, while k is kept constant at

k = 0, 1, 2 . . .. Here, we choose t0 = 0 and the time index

will be as follows.

{. . . , t0k, t1k, . . . , tmk = t0k+1, t
1
k+1, . . . , t

m
k+1 = t0k+2, . . .}

∀k ∈ Z
+

As shown in Fig. 2, there are several sets of time duration

in which the corresponding optimal problem will be solved.

Using the iteration in Fig. 2 as an example, we can get an

optimal control sequence u0
k+1, u

1
k+1, . . . , u

M−1
k+1 . The first

M − m control inputs are called local optimal control,

denoted by uop and the rest m control inputs are called ter-

minal control, denoted by uT . The corresponding time index

t0k+1, . . . , t
M−m−1
k+1 and tM−m

k+1 , . . . , tM−1
k+1 are called local op-

timal control duration and terminal control duration respec-

tively. Only the first m control inputs, u0
k+1, u

1
k+1, . . . , u

m−1
k+1

will be the future control action applied to vehicle steering

system.

The control architecture is shown in Fig. 3 where the

initial state is a current vehicle position and the set point is

a goal parking position. Future control actions are decided

by MPC module. Motivated by the continuous MPC for

tracking control in [13], discrete time MPC is used here

for a regulation problem. The main focus will be on con-

trol strategy configuration, terminal controller design, and

parameters setup so that nonlinear MPC parking controller

is stable. Besides, the generated trajectory should meet the

minimum curvature requirement from a specific vehicle. The

detail control process is as follows.

Step 1. Get the current error state χe(t
0
k).

Step 2. Solve the following optimal control problem on time

index t0k, t1k, . . . , tM−1
k .

minuM J(tjk, uM )

= χe(t
M
k )′χe(t

M
k ) +

M−1∑

j=0

[χe(t
j
k)′Qχe(t

j
k)

+u(tjk)′Ru(tjk)]

(8)

Subject to:

χe(t
j+1
k ) = f(χe(t

j
k),u(tjk))

for j = 0, · · · ,M − 1

u ≤ u(tjk) ≤ u
χe(t

M
k ) ∈ Ω.

(9)

Get the optimal control sequence û = (u0
k, u1

k, . . . ,uM−1
k )

and apply u0
k, u1

k, . . . ,um−1
k to the error state system.

Step 3. Use χe(t
0
k+1) as the initial state and the first M −

m local optimal control inputs u0
k+1,u

1
k+1, . . . ,u

M−m−1
k+1 ,

which are equal to um
k , um+1

k , . . . ,uM−1
k in Step 2, and m

terminal control inputs together as (10) will be the new initial

solution for the optimal control problem.

ũ = (

local optimal control
︷ ︸︸ ︷

u0
k+1, . . . , u

M−m−1
k+1 ,

terminal control
︷ ︸︸ ︷

uM−m
k+1 , . . . ,uM−1

k+1 ) (10)

where

uj
k+1 = [vj

k+1 ωj
k+1]

′

= [η
√

(xe(t
j
k+1))

2 + (ye(t
j
k+1))

2 ξθe(t
j
k+1)]

′

for j = M − m, . . . ,M − 1.
(11)

and η, ξ are output feedback gains. This choice of the

initial solution is a necessary condition for achieving NMPC

stability. The detail proof could be found in [14].

Step 4. Solve (8) and (9) once more. The first m control

inputs among the solution sequence will be applied to error

state system.

Step 5. k + 1 → k and continue this procedure until the

parking error is small enough.

As shown in (9), actuator saturations and minimum curva-

ture requirements are considered as constraints in the optimal

problem. Denote L = χ′
eQχe+u′Ru and L̃ = χ̃′

eQχ̃e+ũ′Rũ
where χ̃e be the error state by applying the control sequence

ũ. To achieve stability of the proposed nonlinear MPC

architecture, the condition in Theorem 2.1 should be satisfied

and it also serves as the criteria for setting up all design

parameters of this controller.

Theorem 2.1: (Stability) The system (4) is asymptotic

stable, if terminal control inputs exist so that the following

relation holds:

m−1∑

j=0

[χ̃e(t
M
k + (j + 1)T )′χ̃e(t

M
k + (j + 1)T )

−χ̃e(t
M
k + jT )′χ̃e(t

M
k + jT ) + L̃(tMk + jT )] ≤ 0.

Remark 2.1: The stability condition has requirements on

each term within terminal control duration in ũ which is
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defined in (10). That is to say, the stability condition can be

turned into terminal control constraints.

Remark 2.2: The weight matrices Q and R are both

diagonal with Q=diag{q11, q22, q33} and R=diag{r11, r22}.

After substituting (4) in the stability condition, the following

terminal control constraints can be derived.

( x̃e√
x̃2

e+ỹ2
e

cos θ̃e + ỹe√
x̃2

e+ỹ2
e

sin θ̃e)

≥ (η2T 2+max{q11,q22}+r11η2)
2ηT

(12)

2ξT ≥ ξ2T 2 + q33 + r22ξ
2 (13)

III. PRELIMINARY ANALYSIS

With predictions from nominal system, the designed MPC

architecture did not consider any uncertainties or exter-

nal disturbances such as model mismatch, measurement

noise. Stability might be lost under these conditions. Here,

the NMPC stability is achieved by enforcing a quasi-

monotonicity condition, that is, choose a proper terminal cost

and terminal constraints so as to achieve the monotonicity of

cost function. There is some margin for satisfying stability

requirements. Consider an uncertain nonlinear discrete time

system given by

χk+1 = f(χk,uk) + wk (14)

where wk ∈ C = R
2 × S is the additive uncertainty and it

belongs to a compact set W that contains the origin. Consider

that the admissible set of uncertainties W is bounded by γ in

s-norm. If γ is not too large compared to the margin, stability

can be preserved in a suitable region for uncertain systems.

Therefore, the analysis of robust stability for the proposed

MPC is a feasible and interesting problem. The following

observations exist for the designed control architecture. For

simplicity, we use χ1, χ2 to denote error states at any two

different instants and omit the time index and only use k to

denote any instant if there is no confusion.

Lemma 3.1: The nominal model (5) is such that origin is

a steady state and f(χe(k),uk) is locally Lipschitz with a

Lipschitz constant 0 < Lf < ∞ so that

‖f(χ1, u) − f(χ2, u)‖s ≤ Lf‖χ1 − χ2‖s

∀χ1, χ2 ∈ X and u ∈ U

where s-norm could be any norm and it will influence the

value of Lipschitz constant.

The proof for Lemma 3.1 is obvious.

Lemma 3.2: L(χe(k), uk) is such that L(0, 0) = 0 and

there exist a constant a > 0 and σ ≥ 1 so that

L(χe(k), uk) ≥ a · ‖(χe(k), uk)‖σ
s .

L(χe(k), uk) is Lipschitz with a Lipschitz constant 0 <
Lc < ∞ so that

|L(χ1, u) − L(χ2,u)| ≤ Lc‖χ1 − χ2‖s

∀χ1, χ2 ∈ X and u ∈ U.
Proof: First, L(χe(k), uk) = χe(k)′Qχe(k) + u′

kRuk.

Obviously, L(0, 0) = 0. Using ∞-norm, we have

L(χe(k),uk) = (q11x
2 + q22y

2 + q33θ
2 + r11v

2 + r22ω
2)

≥ min{q11, q22, q33, r11, r22}‖(χe(k),uk)‖2
∞

Secondly, for |L(χ1, u) − L(χ2,u)|, we have

|L(χ1,u) − L(χ2, u)|
= |χ′

1Qχ1 − χ′
2Qχ2|

= |χ′
1Qχ1 − χ′

1Qχ2 + χ′
1Qχ2 − χ′

2Qχ2|
≤ |χ′

1Q(χ1 − χ2)| + |(χ′
1 − χ′

2)Qχ2|
≤ ‖χ1‖sλ

M
Q ‖χ1 − χ2‖s + ‖χ1 − χ2‖sλ

M
Q ‖χ2‖s

≤ (‖χ1‖s + ‖χ2‖s)λ
M
Q ‖χ1 − χ2‖s

where λM
Q is the maximum eigenvalue of matrix Q. Also,

since the algorithm is asymptotically stable [14], by defini-

tion, there exists an upper bound B = B(χ0, γ) for χ(t) such

that ‖χ(t)‖s ≤ B for all t ≥ 0. Here, B is a positive number

and its value depends on initial condition χ0 and the bound

of uncertainties γ. Thus, we have

|L(χ1, u)−L(χ2,u)| ≤ 2BλM
Q ‖χ1−χ2‖s = Lc‖χ1−χ2‖s.

Lemma 3.3: Denote VT = χ′
eχe, the terminal control

duration as uT . There exists a set Φ which is defined as

Φ = {χe ∈ X : VT (χe) ≤ α} satisfying Φ ⊆ A = {χe ∈
X : uT (χe) ∈ U}. And






VT (f(χe(k), uT (χe(k)))) − VT (χe(k))
≤ −L(χe(k), uT (χe(k)))

∀χe(k) ∈ Φ
(15)

where k denotes any time instant of tMk + (j + 1)T , for

j = 0, . . . ,m − 1.
{

|VT (χ1) − VT (χ2)| ≤ Lv‖χ1 − χ2‖s

∀χ1, χ2 ∈ Φ
(16)

Proof: The local controller (11) in the designed MPC

frame is used as terminal control inputs in each iteration. And

stability condition in Theorem 2.1 is also the requirement on

terminal control inputs. Then, for each item from the terminal

control duration uT , we have

uT (k) = [v(k) ω(k)]′

= [η
√

(xe((k)))2 + (ye(k))2 ξθe(k)]′
(17)

and

χe(k + 1)′χe(k + 1) − χe(k)′χe(k) + L(k) ≤ 0. (18)

Recall that u ≤ u(k) ≤ u and in our case |u| = |u|. Choose

α = min{v2

η2
,
ω2

ξ2
},

then we have

VT (χe) = x2
e + y2

e + θ2
e ≤ α.

Thus, again for each item in terminal control duration uT ,

omitting time index, we have

uT (k) = h(χe(k)) = [v(k) ω(k)]′

= [η
√

xe(k)2 + ye(k)2 ξθe(k)]′,

|v(k)| = |η
√

xe(k)2 + ye(k)2| ≤ |η
√

min{v2

η2
,
ω2

ξ2
}| ≤ |v|,
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|ω(k)| = |ξθe(k)| =
√

ξ2θe(k)2 ≤ |ξ
√

min{v2

η2
,
ω2

ξ2
}| ≤ |ω|.

Thus, Φ ⊆ A = {χe ∈ X : uT (k) ∈ U} and (15) is an

immediate consequence of (18). The proof for (16) is the

same as the second step in Lemma 3.2.

Lemma 3.4: The terminal constraint set Ω is given

by Ω = {χe ∈ X : VT (χe) ≤ αv} so that

∀χe ∈ Φ, f(χe, uT (χe)) ∈ Ω.

Proof: For system (4), we have the following relations.

VT (f(χe, uT (χe)))

= (xe − ηT cos θe

√

x2
e + y2

e)2

+(ye − ηT sin θe

√

x2
e + y2

e)2 + (θe − ξθeT )2

= x2
e + y2

e + θ2
e + T 2η2(x2

e + y2
e) + T 2ξ2θ2

e − 2ξθ2
eT

−2Tηxe cos θe

√

x2
e + y2

e − 2Tηye sin θe

√

x2
e + y2

e

From terminal constraints (12), we have

2Txe cos θe

√

x2
e + y2

e + 2Tye sin θe

√

x2
e + y2

e

≥ (ηT 2 + q11/η + r11η)(x2
e + y2

e).

Thus,

VT (f(χe, uT (χe)))
≤ (1 + T 2 max{η2, ξ2})(x2

e + y2
e + θ2

e)
−(ηT 2 + q11/η + r11η)(x2

e + y2
e) − 2ξTθ2

e

≤ (1 + T 2 max{η2, ξ2}
−max{(ηT 2 + q11/η + r11η), 2ξT})(x2

e + y2
e + θ2

e)

where

c = (1 + T 2 max{η2, ξ2}
−max{(ηT 2 + q11/η + r11η), 2ξT}) < 1.

(19)

Choose αv = cα, then ∀χe ∈ Φ, f(χe, uT (χe)) ∈ Ω. This

condition ensures at the end of each iteration the states enter

the terminal region set.

Corollary 3.5: Since Lemma 3.1 ∼ 3.4 exist for system 5,

by Theorem 1 in [9], we can define a set of states of

the system, DN , where the MPC optimization problem

is feasible. And the closed loop is stable in DN if the

uncertainties are bounded by:

γ ≤ α − αv

Lv − LM−1
f

.

Corollary 4.2 provides a theoretical estimation of disturbance

bound under which stability can be achieved. In the following

section, we will proof of ISS for MPC algorithm under this

bounded uncertainties.

IV. ROBUST MPC BASED ON INPUT-TO-STATE

STABILITY THEOREM

Consider the cost function (6), we have

Lemma 4.1: The cost function in the NMPC problem is

an ISS-Lyapunov candidate.

Proof: Define V and Ṽ as the cost function for applying

MPC controller and ũ respectively. Denote u∗ as the optimal

control sequence from each iteration and χ̂ as the predicted

nominal state of the system by applying the whole solution

sequence from Step 4. m is the number of applied control

TABLE I

PARAMETER VALUES

Parameters T (s) q11 q22 q33 r11 r22 η ξ

Value 0.2 0.1 0.1 0.1 0.1 0.1 1 1

inputs which is solved from the NMPC problem. Then we

have

V (tmk , χ(tmk )) − V (t0k, χ(t0k))

≤ Ṽ (tmk , χ̃(tmk )) − V (t0k, χ(t0k))

= VT (χ̃(tm+M
k )) − VT (χ̂(tMk ))

+
M−1∑

i=0

{L(χ̃(tm+i
k ), ũ(tm+i

k )) − L(χ̂(tik), u∗(tik))}

=
M−m−1∑

i=0

{L(χ̃(tm+i
k ), ũ(tm+i

k ))

−L(χ̂(tm+i
k ), u∗(tm+i

k ))}
+VT (χ̃(tm+M

k )) − VT (χ̃(tm+M−1
k ))

+VT (χ̃(tm+M−1
k )) − VT (χ̃(tm+M−2

k )) + . . .
+VT (χ̃(tMk )) − VT (χ̂(tMk ))

+L(χ̃(tm+M−1
k ), ũ(tm+M−1

k ))

+L(χ̃(tm+M−2
k ), ũ(tm+M−2

k )) + . . .
+L(χ̃(tMk ), ũ(tMk ))
−L(χ(t0k), uMPC(t0k)) − L(χ(t1k), uMPC(t1k)) − . . .
−L(χ(tm−1

k ), uMPC(tm−1
k )).

From Lemma 3.3, we have

m∑

i=1

{VT (χ̃(tM+i
k )) − VT (χ̃(tM+i−1

k ))

+ L(χ̃(tM+i−1
k ), ũ(tM+i−1

k ))} ≤ 0

VT (χ̃(tMk )) − VT (χ̂(tMk )) ≤ γLvLM−1
f .

From Lemma 3.2, we have

M−m−1∑

i=0

{L(χ̃(tm+i
k ), ũ(tm+i

k )) − L(χ̂(tm+i
k ), u∗(tm+i

k ))}

≤ γLc
L

M−m
f

−1

Lf−1

L(χ(t0k), uMPC(t0k)) ≥ a‖χ(tm−1
k )‖σ

s .

Thus,

V (tmk , χ(tmk )) − V (t0k, χ(t0k))

≤ (Lc
L

M−m
f

−1

Lf−1 + LvLM−1
f )γ − a‖χ(tm−1

k )‖σ
s .

From the definition 3.2 in [15], V is an ISS-Lyapunov

candidate.

Corollary 4.2: From the input-to-state stability theorem

for discrete time nonlinear systems in [15], the system (5) is

ISS with the proposed MPC control architecture.

V. SIMULATION RESULTS

In this section, simulation results are given to illustrate

the performance of NMPC algorithm for parking maneu-

ver under bounded additive uncertainties. To satisfy condi-

tions (12), (13) and (19), the parameters could be chosen as

in Table I as one example. In Fig. 4 the 6 different initial

postures (including position and orientation) are chosen as

follows.

3900



−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50
Parking maneuver for different initial postures

Vehicle position x(m)

V
e

h
ic

le
 p

o
si

tio
n

 y
(m

)

 

 

with additive uncertainties

nominal case

(A)

(D)

(F)

(C)

(E)

(B)

Fig. 4. Parking maneuver from different initial postures

0 5 10 15
−10

−5

0

5

10
Longitudinal velocity v

Time(s)

v(
m

/s
)

0 5 10 15
−2

−1

0

1

2

Angular velocity ω

Time(s)

ω
(ra

d/
s)

0 5 10 15
−2

−1

0

1

2
Trajectory curvature

Time(s)

k(
1/

m
)

Norminal case

Norminal case

With uncertainties

With uncertainties

With uncertainties

Norminal case

Fig. 5. Control variables and trajectory curvature

(A)[20,−50, π/4] (B)[45,−50, π/4] (C)[45, 0,−π/2]
(D)[45, 0, π/2] (E)[45, 50,−π/4] (F )[20, 50,−π/4]

For all these initial configurations, under additive uncer-

tainties of bound γ=0.2 m, the vehicle could arrive the final

parking configuration, (0, 0, π or -π), via a reasonable path.

The bound for linear velocity v is set as -5 and 5 m/s
and angular velocity ω is between -1.5 and 1.5 rad/s. The

simulation is ended whenever parking error is small enough.

As shown in Fig. 5, the simulation results from initial posture

(E) for both v and ω are within the required range even under

the uncertainties. Besides, the curvature of the trajectory is

also bounded since a vehicle has minimum turning radius

(1.5 m in our case). By adding the proposed constraints

in our algorithm, the curvature k of the trajectory is small

enough. In Fig. 6, the simulation is running for a longer time
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Fig. 6. Control variables for the uncertain system

than necessary to show the stability of the proposed NMPC

strategy.

It is worth mentioning that the estimation of bound for

additive uncertainties, α−αv

Lv−L
M−1

f

, depends on α, αv , Lv and

Lf . Therefore, how to set these parameters has influence on

the estimation of this bound.

VI. CONCLUSIONS

In this paper, a model predictive control strategy is pro-

posed for solving nonholonomic vehicle regulation problem.

Based on nonlinear discrete time system model, a stable ter-

minal controller is designed for each prediction horizon. The

stability condition provides not only a guidance for parameter

setup but also a margin for rejecting additive uncertainties.

ISS of the proposed MPC module is assured by combining

terminal controller design and terminal region constraints.

Based on the ISS theorem and MPC feasibility theorem

for discrete time system, robustness of MPC regulator with

respect to bounded additive uncertainties is analyzed so that

property of the given algorithm becomes more clear.
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[4] T. Alamo, D. Muñoz de la Peña, D. Limon and E.F. Camacho, ”Con-
strained Min-Max Predictive Control: a Polynomial-Time Approach”,
Proceedings of the 42nd IEEE Conference on Decision and Control,
Maui, Hawaii, vol. 1, 2003, pp. 912-916.

[5] M.A. Rodrigues and D. Odloak, ”MPC for Stable Linear Systems with
Model Uncertainty”, Automatica, vol. 39, No. 4, 2003, pp. 569-583.

[6] S. Boyd, V. Balakrishnan, E. Feron and L. El Ghaoui, ”Control System
Analysis and Synthesis via Linear Matrix Inequalities”, Proceedings

of the 1993 American Control Conference, San Francisco, California,
1993, pp. 2147-2154.

[7] M.V. Kothare, V. Balakrishnan and M. Morari, ”Robust Constrained
Model Predictive Control Using Linear Matrix Inequalities”, Automat-

ica, vol. 32, No. 10, 1996, pp. 1361-1379.
[8] Z. Wan and M.V. Kothare, ”An Efficient Off-line Formulation of

Robust Model Predictive Control Using Linear Matrix Inequalities”,
Automatica, vol. 39, No. 5, 2003, pp. 837-846.

[9] D.L. Marruedo, T. Alamo and E.F. Camacho, ”Input-to-State Stable
MPC for Constrained Discrete–time Nonlinear Systems with Bounded
Additive Uncertainties”, Proceedings of the 41st IEEE Conference on

Decision and Control, 2002, pp. 4619-4624.
[10] L. Magni, D.M. Raimondo, R. Scattolini, ”Regional Input-to-State

Stability for Nonlinear Model Predictive Control”, IEEE Transactions

on Automatic Control, vol. 51, No. 9, 2006, pp. 1548-1553.
[11] B. Kouvaritakis and M. Cannon, Nonlinear Predictive Control Theory

and Practice, IEE Control Engineering Series 61, 2001.
[12] S.L.O. Kothare and M. Morari, ”Contractive Model Predictive Control

for Constrained Nonlinear Systems”, IEEE Transactions on Automatic

Control, vol. 45, No. 6, 2000, pp. 1053-1070.
[13] D. Gu and H. Hu, ”Receding Horizon Tracking Control of Wheeled

Mobile Robots”, IEEE Transactions on Control Systems Technology,
vol. 14, No. 4, 2006, pp. 743-749.
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