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Abstract— We study the problem of finding a finite bisim-
ilar abstraction for a class of reactive untimed infinite-state
systems, modeled as input-output extended finite automata
(I/O-EFA). We identify a lower bound abstraction (that is
coarser than any finite bisimilar abstraction), and present an
iterative refinement algorithm whose termination guarantees
the existence of a finite bisimilar abstraction. The termination
condition is weaker than the one given in [15] for the existence
of a finite bisimilar quotient, and thus, the paper identifies a
larger class of I/O-EFAs possessing a finite bisimilar abstraction
(than that given in [15]).
Keywords: Extended automata, symbolic transition systems,
formal verification, bisimulation equivalence, software model-
ing, software abstraction, software verification.

I. INTRODUCTION

Verification methods such as model-checking have been

invented for the analysis of finite state systems. An important

technique for verifying an infinite state system is its reduction

to an equivalent finite state system through abstraction [17],

[14], [1]. Another approach is to directly analyze an infinite

state system by symbolically encoding the states and the

transitions as formulas of a suitable logic, see for example

[7], [3]. [9], [5], [17], [4] employed predicate abstraction

technique for extracting finite state models from infinite state

systems. Given a concrete infinite state system and a set of

abstraction predicates, a conservative finite state abstraction

is generated. An abstraction is exact when the abstracted

system is bisimulation equivalent to the original system.

Approaches to obtain exact finite abstractions have been

pursued for timed systems [1], [6], for linear and nonlinear

systems [20], [19], and for hybrid systems [2].

Some discrete event systems such as software are typically

infinite state systems and symbolic models, such as symbolic

transition graph (STG) [10] and its extension STGA (STG

with assignment) [16], and extended finite state machines

(EFSMs) [8], are proposed so that untimed infinite state

systems can be represented as a finite graph. In this paper,

we consider a model for reactive untimed infinite state

systems, called input-output extended finite automaton (I/O-

EFA), which is an automaton extended with discrete variables
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such as inputs, outputs, and data. An I/O-EFA possibly has

infinitely many states and its set of reachable states can

also be infinite. In order to be able to apply existing finite

state system verification methods to a system modeled as an

I/O-EFA, it is desirable that its underlying transition system

possesses a finite bisimilar abstraction (also called quotient).

Much attention has been given to the identification of

classes of decidable hybrid automata that admit finite bisimi-

lar quotient [1], [6], [2], [13]. Although I/O-EFA is a special

type of a hybrid automaton [12] with no continuous dynamics

(i.e., flow rate of each variable is zero), it deserves a separate

attention since (i) it represents a large class of untimed infi-

nite state systems such as embedded software and (ii), owing

to the non-existence of continuous dynamics in I/O-EFAs,

restrictions on guards, data update and assignment functions

needed for the existence of a finite bisimilar quotient can

be more relaxed than those needed for the decidability of a

hybrid automaton (see our work [15] for example).

For an I/O-EFA to admit a finite bisimilar quotient, its data

space should possess a finite partition over which the data

update and assignment functions are bisimilar. For I/O-EFAs,

besides the usual notion of bisimilarity, one can define a

stronger notion, namely that of “late”-bisimilarity [10], [16].

(In [10], [16], the term “early-bisimilarity” is used for what

one would define to be bisimilarity; we avoid using “early-

bisimilarity” as that can cause confusion.) According to the

usual notion of bisimilarity, a system can use its knowledge

about the current input in choosing a transition to bisimulate

a transition of another system, whereas in the setting of late-

bisimulation the input is read only after choosing a transition

for bisimulating a transition of another system.

In general, the problem of finding a finite bisimilar quo-

tient is undecidable. [13] studied a class of systems called,

symbolic transition systems (STSs), and reported a semi-

algorithm to compute a finite-index bisimulation relation

by recursively performing a partition refinement. The semi-

algorithm terminates if and only if the STS possesses a finite

bisimilar quotient. Note in [13] there is no notion of initial

states, and any state is treated an initial state and so all states

are reachable. We do have a notion of initial states, and so not

all states may be reachable. Then the unreachable states do

not have to satisfy any condition for the existence of a finite

bisimilar quotient. This situation does not arise in [13] since

there the set of unreachable states is empty. In our earlier
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work [15], we presented a sufficient condition under which

an I/O-EFA admits a finite bisimilar quotient ([15, Theorem

1]) and identified a class of I/O-EFAs for which a finite

bisimilar partition satisfying our sufficient condition can be

constructed by inspecting the structure of the given I/O-EFA

([15, Theorem 2]). In this paper, we present an algorithm

that identifies a larger class of I/O-EFAs that satisfies the

sufficient condition.

There exist other works related to the topic of the paper.

The problem of bisimulation-checking between infinite-state

systems modeled as STGAs has been studied in [10], [16].

[16] computes a set of predicate equations whose largest

solution produces the condition under which the two STGAs

are bisimilar. However, such largest solutions are not auto-

matically computable in general. [18], [11] proposed proof

systems for model-checking value passing processes, which

again are not decidable in general.

II. NOTATION AND PRELIMINARIES

In this section, we introduce the I/O-EFA model, and

the notions of bisimilarity and quotient systems. We present

a sufficient condition under which an I/O-EFA admits a finite

bisimilar quotient that is equivalent to the result of [15,

Theorem 1]. (The equivalent form is found easier to use for

a later analysis.)

An input/output extended finite automaton or state ma-

chine (I/O-EFA or I/O-EFSM) is a symbolic description

of reactive untimed infinite state systems in form of an

automaton extended with discrete variables such as inputs,

outputs, and data. Using I/O-EFA as a model many value-

passing processes can be represented by finite graphs.

Definition 1: An input/output extended finite automaton

(I/O-EFA) is an eight-tuple P = (L, D, U, Y,Σ, E, L0, D0),
where L is the set of locations, D = D1 × . . . × Dp is the

set of p-dimensional data, U = U1 × . . . × Uq is the set

of q-dimensional input, Y = Y1 × . . . × Yr is the set of r-

dimensional output, Σ ∪ {ǫ} is the set of transition labels,

E is the set of edges, and each e ∈ E is a 6-tuple, e =
(oe, te, σe, Ge, fe, he), where oe ∈ L is the origin location,

te ∈ L is the terminal location, σe ∈ Σ∪{ǫ} is the transition

label, Ge ⊆ D × U is the enabling guard, fe : D × U → D

is the data update function, he : D × U → Y is the output

assignment function. Finally, L0 is the set of initial location,

and D0 = D10 × . . . × Dp0 is the set of initial data values.

All variables range over countable sets and can be taken to

be the set of integers. We use ~u, ~y, and ~d to denote an input,

an output, and a data respectively. We use d(i) to denote the

ith component of ~d, i.e., ~d = (d(1), ..., d(p)), where p is the

number of data variables. ~d1 = ~d2 means component-wise

equality, i.e., (d1(i) = d2(i), ∀i ∈ {1, . . . , p}).
The semantics of an input-output automaton P can be

understood as follows. P starts with an initial location l ∈ L0

and an initial data value ~d ∈ D0. While at a certain state

(l, ~d) ∈ L × D, if P receives an input ~u, a transition e ∈ E

such that oe = l is enabled if the guard Ge(~d, ~u) holds.

An enabled transition can be executed. The execution of an

enabled transition e at the state (l, ~d) causes P to transit to

the location te, the data value is updated to fe(~d, ~u), and the

output ~y = he(~d, ~u) is produced.

Note that there is no requirement that data update and

output assignment occur in the same transition (i.e., one or

both functions can be identity), and so the model is power-

ful enough to capture both synchronous and asynchronous

systems.

We assume, without loss of generality, that none of the

transitions are labeled by ǫ. In order to define bisimilarity

over states of an I/O-EFA P , we introduce the following

notations.

∀l, l′ ∈ L, ~d, ~d′ ∈ D, e ∈ E, σ ∈ Σ, ~u ∈ U, ~y ∈ Y :

[l
e

−→ l′] ⇔ [oe = l] ∧ [te = l′],

[(l, ~d)
σ,~u,~y
−→ (l′, ~d′)] ⇔ [∃e = (l, l′, σ, G, f, h) ∈ E |

G(~d, ~u), ~d′ = f(~d, ~u),

~y = h(~d, ~u)].

Definition 2: Given an I/O-EFA P , a simulation relation

over its states is a binary relation Φ ⊆ (L × D) × (L × D)
such that ((l1, ~d1), (l2, ~d2)) ∈ Φ implies

∀e1, ∀~u, ∃e2 : σe2
= σe1

:= σ, and

[(l1, ~d1)
σ,~u,~y
−→ (l′1,

~d′1), l1
e1−→ l′1] ⇒

∃[(l2, ~d2)
σ,~u,~y
−→ (l′2,

~d′2), l2
e2−→ l′2] s.t.

((l′1,
~d′1), (l

′
2,

~d′2)) ∈ Φ.

On the other hand, a late-simulation relation over states of

P is a binary relation Φ ⊆ (L × D) × (L × D) such that

((l1, ~d1), (l2, ~d2)) ∈ Φ implies

∀e1, ∃e2 : σe2
= σe1

:= σ, and

∀~u, [(l1, ~d1)
σ,~u,~y
−→ (l′1,

~d′1), l1
e1−→ l′1] ⇒

∃[(l2, ~d2)
σ,~u,~y
−→ (l′2,

~d′2), l2
e2−→ l′2] s.t.

((l′1,
~d′1), (l

′
2,

~d′2)) ∈ Φ.

A symmetric simulation (resp., late-simulation) rela-

tion is called bisimulation (resp., late-bisimulation) rela-

tion. Two states (l1, ~d1), (l2, ~d2) ∈ L × D are bisimilar

(resp., late-bisimilar), denoted (l1, ~d1) ≃ (l2, ~d2) (resp.,

(l1, ~d1) ≃l (l2, ~d2)), if there exists a bisimulation (resp., late-

bisimulation) relation Φ such that ((l1, ~d1), (l2, ~d2)) ∈ Φ.

Two systems P1 and P2 are said to be bisimilar (resp.,

late-bisimilar) if there exists a bisimulation (resp., late-

bisimulation) relation Φ such that for each (l10, ~d10) ∈
L10 × D10 there exists (l20, ~d20) ∈ L20 × D20 such that

((l10, ~d10), (l20, ~d20)) ∈ Φ.

The notion of late-bisimulation is strictly stronger than

bisimulation [10], [16]. It follows that if a system possesses

a finite late-bisimilar quotient, it also possesses a finite

bisimilar quotient. For this reason we concentrate mainly on

the late-bisimulation relation.

The next two definitions define underlying transition sys-

tems and quotient systems.

Definition 3: Given an I/O-EFA P =
(L, D, U, Y,Σ, E, L0, D0), its underlying transition system
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P is a 6-tuple P = (S, U, Y, Σ, E , S0), where S := L × D

is its states, E := {((l1, ~d1), σ, ~u, ~y, (l2, ~d2)) | (l1, ~d1)
σ,~u,~y
−→

(l2, ~d2)} is its set of edges (transitions), S0 := L0 × D0 is

its initial states, and the remaining components in the tuple

are the same as those in P .

Recall that a partition of a set S is a set C ⊆ 2S of non-

empty subsets of S such that all members of C are disjoint

and C covers S. Also recall that an equivalence induces a

partition. Given a partition of the set of states, one can obtain

a quotient system as follows.

Definition 4: Given an I/O-EFA P and a partition Π
of the state set L × D, the quotient system of P with

respect to the partition Π is the transition system PΠ =
(Π, U, Y, Σ, EΠ, Π0), where

EΠ = {(π1, σ, ~u, ~y, π2) | ∃(li, ~di) ∈ πi ∈ Π, i = 1, 2, s.t.

((l1, ~d1), σ, ~u, ~y, (l2, ~d2)) ∈ E}
and Π0 = {π ∈ Π | π∩(L0×D0) 6= ∅}. The quotient system

of P with respect to the partition induced by an equivalence

“eq” over L × D is denoted Peq .

Remark 1: Given an I/O-EFA P =
(L, D, U, Y,Σ, E, L0, D0), we can modify P to absorb the

initial condition D0 according to Figure 1. Then without

0 l 1
0D

l 1

G’, f’, h’’,σG’, f’, h’’,σ
l

σ, G, f, h

0

0D

l

σ, G, f, h

Fig. 1. I/O-EFA P (left) and P ′ that absorbs initial condition D0 of P
(right)

loss of generality, we assume that D0 is same as True.

A partition satisfying the condition of the theorem given

below guarantees that it induces a finite late-bisimilar quo-

tient. For a predicate π over the data variables, the notation

π(fe(~d, ~u)), where fe : D × U → D is the update function

associated with a certain edge e ∈ E, denotes the predicate

π with the variable ~d substituted with fe(~d, ~u). π(fe(~d, ~u))
is the predecessor of π along the edge e under the input ~u.

Theorem 1: Given an I/O-EFA P , it admits a finite late-

bisimilar quotient if there exists a partition Π of its data

space such that

∀π ∈ Π, e ∈ E, ~u ∈ U :

π ⇒ [¬Ge(~d, ~u) ∨ [Ge(~d, ~u) ∧ ∃π′ ∈ Π, ~y ∈ Y :

π′(fe(~d, ~u)) ∧ [he(~d, ~u) = ~y]]].
Theorem 1 states that exists a partition Π such that for

each class π ∈ Π, each edge e ∈ E, and input ~u ∈ U , either

π is stronger than ¬Ge(~d, ~u) (so e is enabled no where in

{oe} × π), or π is stronger than Ge(~d, ~u) (so e is enabled

every where in {oe} × π) and at the same time exists an

equivalence class π′ ∈ Π and output ~y ∈ Y such that along

edge e and under input ~u successors of π are contained in π′,

while the same output ~y is produced everywhere in π. The

above result can be shown to be equivalent to [15, Theorem

1]. (The equivalent form is found easier to use for a later

analysis.)

The following example illustrates Theorem 1.

Example 1: Consider the I/O-EFA P shown in Figure 2

with edges e1 (between locations A and B), e2 (between

locations B and C), and e3 (between locations C and A).

There exists a partition Π = ∪6
i=1πi (shown in Figure 2),

where

π1 = [d(1) ≥ 1] ∧ [2d(1) + d(2) ≥ 2],

π2 = [d(1) = 0] ∧ [2d(1) + d(2) ≥ 2],

π3 = [d(1) < 0] ∧ [2d(1) + d(2) ≥ 2],

π4 = [d(1) < 0] ∧ [2d(1) + d(2) < 2],

π5 = [d(1) = 0] ∧ [2d(1) + d(2) < 2],

π6 = [d(1) ≥ 1] ∧ [2d(1) + d(2) < 2],

such that the following holds for all u:
πi Ge1 ∃π′

i, ~y : π′
i(fe1) ∧ [he1 = ~y]

π1 π1 ⇒ Ge1 π1, u

π2 π2 ⇒ Ge1 π1, u

π3 π3 ⇒ ¬Ge1 N/A

π4 π4 ⇒ ¬Ge1 N/A

π5 π5 ⇒ Ge1 π1, u

π6 π6 ⇒ Ge1 π1, u

πi Ge2 ∃π′
i, ~y : π′

i(fe2) ∧ [he2 = ~y]
π1 π1 ⇒ Ge2 π1, 2u

π2 π2 ⇒ Ge2 π5, 2u

π3 π3 ⇒ Ge2 π4, 2u

π4 π4 ⇒ ¬Ge2 N/A

π5 π5 ⇒ ¬Ge2 N/A

π6 π6 ⇒ ¬Ge2 N/A

πi Ge3 ∃π′
i, ~y : π′

i(fe3) ∧ [he3 = ~y]
π1 π1 ⇒ Ge3 π1, 3u

π2 π2 ⇒ ¬Ge3 N/A

π3 π3 ⇒ ¬Ge3 N/A

π4 π4 ⇒ ¬Ge3 N/A

π5 π5 ⇒ ¬Ge3 N/A

π6 π6 ⇒ Ge3 π1, 3u
Thus, P admits a finite late-bisimilar quotient.

The condition of Theorem 1 is existential as it relies on the

existence of a certain partition. In [15], we identified a class

of I/O-EFAs for which a partition satisfying the sufficient

condition of Theorem 1 can be constructed by inspecting

the structure of a given I/O-EFA of the class (included as

Theorem 3 in the Appendix). Two conditions were imposed

on the class of I/O-EFAs. The first condition restricts the

manner in which the transition guards are formed, whereas

the second condition restricts the data update functions and

output assignment functions.

III. ALGORITHM FOR COMPUTING LATE-BISIMILAR

QUOTIENT

In this section, we present an algorithm that upon

termination yields a finite late-bisimilar quotient. Starting

from the coarsest partition candidate that may satisfy the

condition of Theorem 1, the algorithm iteratively computes

a finer partition guided by the condition of Theorem 1 until

the partition converges, and in which case the given I/O-EFA

admits a finite late-bisimilar quotient.
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π

14

BA

C

2d(1)+d(2) >= 2
d(2) := 0

σ1

d(1) >= 0

y := u

d(1) := d(1)+1, d(2) := d(1)+2

y := 2u
σ2

d(1) >= 1

d(1) := d(1)+1

d(2) := d(1) + 1

y := 3u

σ3

π π

π5

π6
d(1) = 1d(1) = 0 2d(1)+d(2) = 2

π 23

Fig. 2. An I/O-EFA P (left) and a partition of data space of P (right)

We first show that any partition Π that satisfies the condi-

tion of Theorem 1 must be finer than the one induced by the

set of data predicates appearing as the guard and assignment

conditions of an I/O-EFA, where a partition induced by a set

of predicates is defined as follows.

Definition 5: Given a set of data predicates Θ defined over

a data space D, the partition of the data space induced by

Θ, denoted ΠΘ, is defined by

ΠΘ := {
∧

θ∈Θ̂

θ
∧

θ′∈Θ−Θ̂

¬θ′ | Θ̂ ⊆ Θ}.

It can be easily verified that ΠΘ is a partition, i.e., (i)

π, π′ ∈ ΠΘ and π 6= π′ imply that π ∧ π′ = False, and

ii)
∨

Θ̂⊆Θ [
∧

θ∈Θ̂ θ
∧

θ′∈Θ−Θ̂ ¬θ′] = D.

Proposition 1: Consider an I/O-EFA P =
(L, D, U, Y,Σ, E, L0, D0) with a set of data

predicates of the guards and the assignments:

Θ :=
⋃

e∈E,~u∈U,~y∈Y {Ge(~d, ~u) ∧ [he(~d, ~u) = ~y]}. If a

partition Π satisfies the condition of Theorem 1, then Π is

finer than ΠΘ.

Proof: Pick π ∈ Π. We need to show that exists π ∈ ΠΘ

such that π ⇒ π. Since π ∈ Π for each e ∈ E, ~u ∈ U ,

either π ⇒ ¬Ge(~d, ~u) or exist π′ ∈ Π, ~y ∈ Y such that

π ⇒ Ge(~d, ~u) ∧ π′(fe(~d, ~u)) ∧ [he(~d, ~u) = ~y]. If former, we

can choose π = ¬Ge(~d, ~u) and if latter, we can choose π =
Ge(~d, ~u)∧ [he(~d, ~u) = ~y]. Since Ge(~d, ~u)∧ [he(~d, ~u) = ~y] ∈
Θ, and ¬Ge(~d, ~u) = ¬[∨~y∈Y [Ge(~d, ~u) ∧ [he(~d, ~u) = ~y]]], it

follows that in either case π ∈ ΠΘ, as desired.

The above proposition suggests that it may be possible to

refine the partition induced by the set of predicates appearing

as guard and assignment conditions to obtain a partition

satisfying Theorem 1. The algorithm we present in the

following performs such a refinement. A possible way to

achieve refinement is to introduce additional data predicates

as suggested by the following lemma.

Lemma 1: Given two sets of data predicates Θ1 and Θ2

defined over a data space D such that Θ1 ⊆ Θ2, then ∀π1 ∈
ΠΘ1 , ∃π2 ∈ ΠΘ2 such that π2 ⇒ π1, where ΠΘ1 and ΠΘ2

are computed by Definition 5.

Proof: Pick π1 ∈ ΠΘ1 . Then exists Θ̂1 ⊆ Θ1

such that π1 =
∧

θ∈Θ̂1
θ
∧

θ′∈Θ1−Θ̂1
¬θ′. Define π2 =

∧

θ∈Θ̂1
θ
∧

θ′∈Θ2−Θ̂1
¬θ′. Then we have π2 ∈ ΠΘ2 and

π2 ⇒ π1.

Next we present an iterative algorithm that upon termina-

tion yields a finite late-bisimilar quotient. At each iteration

of the algorithm, a new set of predicates are introduced (so

that a partition that is finer than the one from the previous

iteration is obtained). The computation of the new set of

predicates is guided by the condition of Theorem 1, and thus,

the partition obtained in each iteration is guided “closer”

towards a partition that satisfies Theorem 1 (if one exists).

Algorithm 1: Consider an I/O-EFA P =
(L, D, U, Y,Σ, E, L0, D0).

1) Let k = 0. Θk = ∪~u∈U,~y∈Y,e∈E {Ge(~d, ~u) ∧
[he(~d, ~u) = ~y]}.

2) Θk+1 = Θk ∪
~u∈U,~y∈Y,e∈E,π′∈ΠΘk {Ge(~d, ~u) ∧

π′(fe(~d, ~u)) ∧ [he(~d, ~u) = ~y]}.
3) If ΠΘk+1

= ΠΘk

, then stop; else let k := k + 1 and

go to step 2.

Note Θk is infinite in general. There are special cases when

it is finite: (i) When input and output sets are finite, and

(ii) When guard condition is generated by the following

grammar:

G(~d, ~u) → G(~d) | G(~u) | ¬G(~d, ~u) | G1(~d, ~u) ∧ G2(~d, ~u),

and the output set is finite. Also note when there are no inputs

and outputs, Θ0 and Θk+1 are reduced to ∪e∈E{Ge(~d)} and

Θk ∪
e∈E,π′∈ΠΘk {π′(fe(~d))}, respectively.

Theorem 2: An I/O-EFA satisfies Theorem 1 if and only

if Algorithm 1 terminates.

Proof: (⇐) Suppose that the algorithm terminates in the

kth step, and suppose for contradiction that the condition

of Theorem 1 is not satisfied by ΠΘk

. Then exists π ∈
ΠΘk

, e ∈ E, ~u ∈ U such that π 6⇒ ¬Ge(~d, ~u) and for all

π′ ∈ ΠΘk

, ~y ∈ Y , it holds that π 6⇒ Ge(~d, ~u)∧π′(fe(~d, ~u))∧
[he(~d, ~u) = ~y]. Since π ∈ ΠΘk

and for each ~u ∈ U, e ∈ E,

Ge(~d, ~u) ∧ [he(~d, ~u) = ~y] ∈ Θ0 ⊆ Θk, it must be the case

that π′(fe(~d, ~u)) not in Θk for all π′ ∈ ΠΘk

, e ∈ E, ~u ∈
U, ~y ∈ Y . It follows that Θk 6= Θk+1, a contradiction.

(⇒) Suppose exists a partition Π such that the condition

of Theorem 1 holds. We first show using induction on k that

ΠΘk

is coarser than Π. The base step (k = 0) holds from the

definition of Θ0 and Proposition 1. For the induction step,
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u mod 10 Ge ∧ π1(fe) ∧
[he = y]

Ge ∧ π2(fe) ∧
[he = y]

Ge ∧ π3(fe) ∧
[he = y]

Ge ∧ π4(fe) ∧
[he = y]

0 [d = 2], [d = 3] F F F
1 [d = 2], [d = 3] F F F
2 F [d = 2], [d = 3] F F
3 F F [d = 2], [d = 3] F
4 F F F [d = 2], [d = 3]
5 [d = 2], [d = 3] F F F
6 [d = 2], [d = 3] F F F
7 F [d = 2], [d = 3] F F
8 F F [d = 2], [d = 3] F
9 F F F [d = 2], [d = 3]

TABLE I

TABLE FOR COMPUTING Θ1

(Α, π  )

A

y := d + u mod 2

d := u mod 5

2<=d<=3

2

u mod 10 = 3, 8

u mod 10 = 0, 1, 5, 6

u mod 10 = 3, 8

u mod 10 = 4, 9

u mod 10 = 4, 9

u mod 10 = 2, 7

1 4

3

u mod 10 = 0, 1, 5, 6

(Α, π  )

(Α, π  )(Α, π  )

Fig. 3. I/O-EFA P (left) and its finite late-bisimilar quotient (right)

we suppose as part of the induction hypothesis that ΠΘk

is

coarser than Π, and pick π ∈ Π. Then we need to show that

exists π ∈ ΠΘk+1

such that π ⇒ π. Since π ∈ Π for each e ∈
E, ~u ∈ U , either π ⇒ ¬Ge(~d, ~u) or exist π′ ∈ Π, ~y ∈ Y such

that π ⇒ Ge(~d, ~u)∧π′(fe(~d, ~u))∧ [he(~d, ~u) = ~y]. If former,

we can choose π = ¬Ge(~d, ~u) and if latter, we can choose

π = Ge(~d, ~u)∧π′(fe(~d, ~u))∧[he(~d, ~u) = ~y]. Since Ge(~d, ~u)∧
π′(fe(~d, ~u)) ∧ [he(~d, ~u) = ~y] ∈ Θk+1, and ¬Ge(~d, ~u) =
¬[∨

π′∈ΠΘk
,~y∈Y

[Ge(~d, ~u)∧ π′(fe(~d, ~u))∧ [he(~d, ~u) = ~y]]], it

follows that in either case π ∈ ΠΘk+1

, as desired. Finally

we show that exists k such that ΠΘk

= ΠΘk+1

. Suppose

not true, i.e., for each k, ΠΘk+1

is strictly finer than ΠΘk

.

Then since Π is a finite partition (satisfying the condition of

Theorem 1), exists k such that |ΠΘk

| > |Π|. This contradicts

the fact that Π is finer than ΠΘk

for all k.

Since Theorem 1 applies to a larger class of I/O-EFAs as

compared to Theorem 3, Theorem 2 suggests that the set of

I/O-EFAs identified by Algorithm 1 subsumes that identified

by Theorem 3. So if the condition of Theorem 3 does not

apply, Algorithm 1 may be used. The following example

illustrates Algorithm 1.

Example 2: Consider the I/O-EFA P shown in Figure 3.

Then

Ge(~d, ~u) ∧ [he(~d, ~u) = y] =
{

∪y∈[−∞,∞][2 ≤ d ≤ 3] ∧ [1 + d = y] if u mod 2 = 1
∪y∈[−∞,∞][2 ≤ d ≤ 3] ∧ [d = y] if u mod 2 = 0

It can be verified that the condition of Theorem 3 does not

apply.

The predicate [2 ≤ d ≤ 3]∧[1+d = y] is equal to [d = 2],

[d = 3], and False, when y = 3, y = 4, and y 6∈ {3, 4},

respectively. On the other hand, [2 ≤ d ≤ 3] ∧ [d = y] is

equal to [d = 2], [d = 3], and False, when y = 2, y = 3, and

y 6∈ {2, 3}, respectively. Thus Θ0 = {[d = 2], [d = 3]}. It

follows that ΠΘ0

= ∪4
i=1πi, where π1 = [d < 2], π2 = [d =

2], π3 = [d = 3], and π4 = [d > 3].
The computation of Θ1 is shown in the Table I. We have

Θ1 = Θ0, and so Algorithm 1 terminates. The finite late-

bisimilar quotient is shown in Figure 3.

IV. CONCLUSION

In this paper we presented an algorithm for computing

a finite late-bisimilar quotient for reactive untimed infinite-

state systems modeled as I/O-EFAs. We showed that any

partition that satisfies the condition of Theorem 1 must be

finer than the one induced by the set of data predicates

appearing as the guard and assignment conditions of an I/O-

EFA. We also showed that it is possible to achieve refinement

by introducing additional data predicates. Based on these

results, we presented an algorithm that performs refinement

by adding new set of predicates at each iteration of the

algorithm. The new set of predicates are obtained guided by

the condition of Theorem 1, and thus, the partition obtained

in each iteration is guided “closer” towards a partition that

satisfies Theorem 1 (if one exists). The algorithm terminates

if and only if a finite bisimilar quotient satisfying the

condition of Theorem 1 exists.
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APPENDIX

[15, Theorem 2] identified a subclass of I/O-EFAs for

which a partition satisfying the sufficient condition of The-

orem 1 can be constructed by inspecting the structure of a

given I/O-EFA of the subclass. The subclass is obtained by

imposing two conditions on the class of the I/O-EFAs. The

first condition restricts the manner in which the transition

guards are formed, and is specified by the following gram-

mar.

Condition 1: G(D, U) −→ G(U) | d(i) ≤ c | d(i) ≥ c |
¬G(D, U) | G1(D, U) ∧ G2(D, U),

where c is an integer constant.

The second condition given below imposes restriction on

the data update functions and output assignment functions.

We use fe(i)(~d, ~u) to represent the update function of the ith

data. Let d(i)max and d(i)min denote the largest and smallest

integer against which the ith data variable is compared over

all the guards. for each ~d ∈ D we define its equivalence

class, [~d] ⊆ D as in the following definition. We first define

index sets Imax(~d) and Imin(~d) containing indices i ≤ p for

which d(i) is above d(i)max and below d(i)min respectively.

We let I := {1, . . . , p} denote the set of data components.

Definition 6: Given an I/O-EFA satisfying Condition 1,

for ~d ∈ D define

Imax(~d), Imin(~d) ⊆ I = {1, . . . , p} as:

[i ∈ Imax(~d)] ⇔ [d(i) > d(i)max],

[i ∈ Imin(~d)] ⇔ [d(i) < d(i)min].

Define an equivalence class of ~d ∈ D, denoted [~d] ⊆ D, as:

[~d] :=
{

~d′ ∈ D | [Imax(~d′) = Imax(~d) := Imax]

∧[Imin(~d′) = Imin(~d) := Imin]

∧ [d′(i) = d(i), ∀i ∈ I − Imax − Imin]
}

.

Condition 2: ∀~d, ∀e, ∀~u:
[

(~d, ~u) ∈ Ge(D, U) ⇒

1. ∀i ∈ I :
(

fe(i)([~d], ~u) ≥ d(i)max
)

∨
(

fe(i)([~d], ~u) ≤ d(i)min
)

∨
(

fe(i)([~d], ~u) = {fe(i)(~d, ~u)}
)

2. he([~d], ~u) = {he(~d, ~u)}
]

.

Theorem 3: [15, Theorem 2] Given an I/O-EFA P satis-

fying Conditions 1 and 2, P admits a finite late-bisimilar

quotient.
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