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Abstract—This paper presents a solution to maneuvering
networked airborne sensors with both time and motion con-
straints to benefit sensing. Decentralized maneuver design is
shown to enhance the network tolerance to loss of sensors,
in addition to reducing the complexity in computation and
communications. Sensing accuracy and speed are achieved by
a high-level aggregation of the sensor outputs and a time-
coordinated bang-bang control of the sensor carrying vehicles to
their best sensing states. The solution is demonstrated through
a network of airborne location sensors, where the sensors are
paired to acquire time difference of arrival and frequency
difference of arrival of microwave signals for localization of
their emitters to a required accuracy in minimum time. Network
resilience to localizing emitters in the face of vehicle loss is
shown via simulations of a six-sensor network with respect to
a range of vehicle loss probabilities.

Keywords: tolerance to sensor loss, source localization,
maneuver design, airborne sensors, decentralization

I. INTRODUCTION

Passive localization of microwave emitters is a mature
technology [11]. With networks of unmanned aerial vehicles
(UAVs) replacing stationary sensor networks and manned
vehicles, however, significant improvements can be expected
in both speed and accuracy of sensing through tasking,
guidance, and control of the cooperative sensors. Networking
in a hostile environment, however, poses additional chal-
lenges. Data exchange inherent to a networked operation
and prolonged mission time due to poor data quality expose
the otherwise passive location sensors, thus increase the
likelihood of the vehicles being destroyed.

Fault-tolerant tasking and guidance of networked airborne
location sensors have been considered by the first author
and coworkers recently [17], where sensors are paired to
localize microwave emitters by intercepting and processing
time difference of arrival and frequency difference of arrival
of their signals. Two measures have been taken there to
enhance the network availability in the face of loss of sensors
which effectively changes the network architecture and thus
degrades the sensing performance. The first measure amounts
to solving a Markov decision problem [2] that allocates
sensors to randomly emerging emitters to minimize the effect
of sensor loss. The second measure is taken based on that
sensor states (positions, velocities) at which emitter signals
are acquired can have significant effect on the data quality
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[16], and that sensors allocated to a target must continue to
adjust their trajectories until the target is deemed localized
by a stopping criterion. A weighted sum of volumes of con-
centration ellipsoids [13] formed by the predicted localization
errors is used in [17] as a guidance criterion for maneuvering
the vehicles, where the weights draw on the knowledge of
vehicle loss probability.

This paper tackles two issues that remain unresolved
in the aforementioned work. First, the complexity of the
algorithm in [17] for generating sensor trajectories prohibits
its real-time exercise as the number of participating sensors
increases, undermining the benefits afforded by the large
number of mobile sensors. Moreover, vehicle maneuver
schemes are yet to be developed to steer the sensors along
their desired trajectories in a time coordinated manner.

The complexity issue encountered in [17] is resolved in
this paper by decentralization: emitter location estimation
and sensor trajectory generation are both carried out between
individual pairs of sensors independently, disregarding the
presence of the rest of the sensors. An aggregation scheme
with significantly reduced data exchange [4] is then applied
to best recover the location accuracy afforded by a cen-
tralized scheme. The term decentralized sensing is to be
used throughout the paper with the understanding that it
implies decentralization in sensing, processing, as well as
sensor trajectory generation. It is the decentralized sensor
trajectory generation that offers the most significant reduction
in complexity and enhancement in fault-tolerance.

The vehicle control issue is resolved in this paper under a
far-field and small-update-interval condition [9] that upholds
the dominance of sensor velocities over sensor positions in
affecting the accuracy of emitter localization. Under this
condition, convex velocity reachable sets can be efficiently
computed, based on which a 4-variable sensor state opti-
mization can be solved between two paired sensors. Vehicle
control using the bang-bang strategy can be implemented for
all vehicles to arrive simultaneously at their respective des-
tination velocities, which mark the onset of a new round of
target signal acquisition. Time-coordination is necessary for
localizing non-stationary emitters, in addition to minimizing
operation delays. Time-coordination is also recognized as an
important design constraint in a number of other applications
involving the control of unmanned aerial vehicles [1].

This paper is organized as follows. Section II reviews the
centralized emitter localization problem. This part of the pre-
sentation draws heavily from [17] to explain the background,
describe the problem, and highlight the challenges that have
not been addressed previously. Section III delineates the
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new decentralized solution to emitter localization, including
aspects of aggregation of estimates, assessment of location
accuracy, generation of sensor trajectories, control of vehicles
to reach the projected sensor states, and finally a numerical
example through a 6-sensor network to verify the network
fault-tolerance. Section IV concludes the paper by analyzing
the benefit and the cost of the decentralized solution.

II. PROBLEM DESCRIPTION

Much of the material in the first two subsections in this
section is drawn from [17]. Overall, the purpose of this
section is to help explain the background, formulate a basic
maneuver design problem, and state new development to be
made in the subsequence sections.

A. Measurement models

Figure 1 depicts an emitter localization mission in a
simplified setting, where the motion of two vehicles and an
emitter lie within a plane. If the two vehicles are equipped
to acquire both the time difference of arrival (TDOA) and
the frequency difference of arrival (FDOA) of the emitter’s
signal based on the following error-free signal models, the
emitter can be immediately localized.

sT =
1
c
[
√

(x2 − xe)2 +(y2 − ye)2−
√

(x1 − xe)2 +(y1 − ye)2],
(1)

and

sF =
fe
c

[
(x2− xe)u2 +(y2 − ye)v2√

(x2− xe)2 +(y2 − ye)2
− (x1− xe)u1 +(y1− ye)v1√

(x1 − xe)2 +(y1 − ye)2
],

(2)
where (xe,ye) is the emitter location to be estimated, (x1,y1)
and (x2,y2) are the positions of the two vehicles, respectively,
(u1,v1) and (u2,v2) are the velocities of the vehicles, fe is the
carrier frequency of the emitted signal, and c is the speed of
light. The sensors mounted on the vehicles are passive nodes
when acquiring data from the target, but become active when
exchanging data between them in order to provide a location
estimate.

Typically several thousand signal samples acquired in a
fraction of a second by the two sensors are cross-correlated to
obtain the maximum likelihood estimates of time difference
of arrival and frequency difference of arrival [14]. With a
large number of signal samples, the estimates on the time
difference of arrival and frequency difference of arrival can
assume to have a Gaussian additive error whose covariance
achieves the Cramer-Rao lower bound [10].

Consider a set of 2N measurements collected by a network
of N pairs of sensors in the presence of additive errors

r = g(pe;z)+n =

⎡
⎢⎢⎢⎢⎢⎣

s1
T (pe;z1,z2)

s1
F (pe;z1,z2)

...
sN
T (pe;z2N−1,z2N)

sN
F (pe;z2N−1,z2N)

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

n1
T

n1
F
...

nN
T

nN
F

⎤
⎥⎥⎥⎥⎥⎦ , (3)

Fig. 1. Emitter location based on a TDOA measurement and an FDOA
measurement by two sensors.

where pe = (xe,ye) is the emitter location, zi ≡ (xi,yi,ui,vi)
is the state of the ith sensor, si

T and si
F are the time and

frequency measurement models defined in (1) and (2), re-
spectively. z=(z1,z2, · · · ,z2N) denotes the Cartesian product.

In case the estimate of emitter location based on one batch
of signal samples does not meet the accuracy requirement,
sensors must be given time to adjust their states to be
effective in acquiring new information that helps improve
the accuracy, or must abort the mission if a time limit has
been reached. Assume that a stopping criterion has been set
for this purpose.

Based on initial estimate p̂e, and measurement error co-
variance C, which can be evaluated from signal samples [8],
an emitter localization problem can be cast as an extended
Kalman filtering problem 1 that updates the current estimate
at time t to p̂+

e at time t+ based on the following state and
measurement models,

p+
e = pe +w, w ∼ N(0,Q), (4)

r = g(pe;z)+n, n ∼ N(0,C) (5)

in the case of a stationary target, which lead to the following
estimator, where Q is a design parameter for adjusting the

1The use of recursive formulation of the estimation problem is a de-
parture from [17]. (Extended) Kalman filters have been widely applied in
many fields, including mapping algorithms used in synthetic aperture radar
(SAR) [7] and simultaneous localization and mapping (SLAM) [6], where
uncertainties in sensor states present a significant technical challenge. Sensor
state uncertainties have also been discussed in the localization problem
of microwave emitter [16]. This paper, however, applies extended Kalman
filtering algorithms to serve two different purposes alternately: to estimate
emitter location with the exact knowledge of the sensor states, and to
calculate the next sensor state with the approximate knowledge of the emitter
location. The main interest of the paper is in the latter, which will be
discussed in greater detail.
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convergence property [18].

p̂+
e = p̂e +K[r+ −g(p̂e;z)], (6)

P+ = [P−1 +GT (p̂e;z)C−1G(p̂e;z)]−1, (7)

K = [P+Q]GT [G(P+Q)GT +C]−1, (8)

where

G(p̂e;z) ≡ ∂g(pe;z)
∂pe

|p=p̂e . (9)

The velocity of a moving target of a constant velocity can be
calculated from target positions evaluated at two consecutive
acquisition cycles assuming that product of the target speed
and each acquisition duration is well within the tolerable
localization error.

B. Criterion for sensor maneuver

For a given κ > 0,

Rκ ≡ {p|[p−E(p)]TP−1[p−E(p)] ≤ κ} (10)

defines an ellipsoid with semi-axis
√
κλi, where λi is the

ith largest eigenvalue of P. Rκ is called a concentration
error ellipsoid, and is often used to indicate the accuracy
of an estimate for a specified value of probability [13] when
P is regarded as the covariance of a Gaussian distribution
associated with unbiased estimate. In the two-dimensional
setting of Fig.1, for example, area(Rκ ) = πκ

√
det(P), and

Pr[p ∈ Rln4] = 0.5.
Denote by Ai(τ) for sensor i the set of states reachable

by the airborne sensor within a specified amount of time
τ from its current state zi under some speed and curvature
constraints.

Assuming Ai(τ) available, a criterion is sought in [17] un-
der which the states zi, i = 1, · · · ,2N of all sensors allocated
to a detected emitter are to be adjusted within τ seconds
to z+

i ∈ Ai(τ) to best improve emitter location estimate,
referenced at the current location estimate. Since

√
det(P)

is proportional to the volume of the ellipsoid Rκ defined by
P [3], define projected covariance

P(p̂e,z+) ≡ [P−1(p̂e,z)+GT (p̂e;z+)C−1G(p̂e;z+)]−1, (11)

at t+, from which z+ is calculated by

min
z+
i ∈Ai, ∀i

V (p̂e,z+) = min
z+
i ∈Ai, ∀i

√
detP(p̂e,z+). (12)

V is used to denote the objective function for optimizing the
sensor state at the most recent location estimate. The sensors
are then thrust to the projected states, from which new target
data are acquired to update location estimate to p̂+

e based on
(6)–(8).

Suppose during the course of reaching z+, the probability
of loss of any sensor pair is p, and this probability remains
the same in subsequent intervals of sensor state update. For
a given number m of remaining sensor pairs in the network,
m = 1, · · · ,N , a distinct expression of guidance criterion can
be written for each of the 2m−1 viable outcomes of Bernoulli

trials. Let the probability mass function be pi for the ith
viable outcome, i = 0, · · · ,2m−1.

Further, denote by Πiz the projection of the stacked up
sensor state resulting from the ith viable outcome upon
loss of a specific set of sensor pairs. A weighted sum of
all possible viable outcomes by their respective likelihood
of occurrences is established as a fault-tolerant guidance
criterion.

min
z+
i , ∀ i

L(p̂e,z+), L(p̂e,z+) =
2m−1

∑
i=0

V (p̂e,Πiz+)pi. (13)

Each volume is associated with a network of a specific
configuration.

C. Difficulties in solving for z+

Both the computation and the representation of reachable
set Ai(τ) that forms the explicit domain for optimizing the
projected state at t+ are too processing and memory intensive
to implement in real time. In addition, objective function (13)
is seen to be highly complex and non-convex with respect to
z+, even in its unweighted form (12).

Furthermore, from expressions (6)–(8) for location esti-
mation, and expressions (11)–(12) for projected sensor state
calculation, processing demand is seen to grow with the size
of the network, and the need for significant data exchange
among sensors can result in severe time delays and exposure
of the sensors to adversaries.

Decentralization of network operation is proposed to over-
come the above difficulties, which grants autonomous to each
pair of sensors; furthermore, sensor positions are abandoned
and only sensor velocities are retained as the optimization
variables in solving (13). Together they reduce the number
of optimization variables from 8N to 4, and limit the need
for data exchange to mostly between the two sensors in a
pair.

The abandonment of sensor positions must be conditioned
on the dominance of sensor velocities over sensor positions,
which requires that all vehicles are sufficiently far from both
the emitter location and its estimate, and that the update
interval of a vehicle state is sufficiently small, resulting in
a small position change relative to the range with respect to
the emitter. These will be referred to as the far-field small-
update-interval condition.

Fig.2 helps clarify the rather complicated localization
process by showing the sequence of events and typical inter-
event times. This timing diagram will be revisited in the next
section.

III. ACHIEVING FAULT-TOLERANCE THROUGH

DECENTRALIZATION

This section presents a complete solution to decentralized
localization under the far-field small-update-interval condi-
tion. The presentation follows the order of the occurrence of
the event sequence depicted in the timing diagram in Fig.2.
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Fig. 2. Sequence of events and approximate time span of each event within
a sensor state update period.

A. Decentralized location estimation

Suppose the first event in Fig.2 has occurred: an initial esti-
mate or initial guess of the location of an emitter is obtained,
along with an initial error covariance, initial states of the
participating pre-paired sensors. This subsection describes
how the first event leads to the second event upon which
a newly aggregated estimate of emitter location is obtained
with an aggregated error covariance. Let

g j(pe;z2 j−1,z2 j) = (s j
T (pe;z2 j−1,z2 j), s

j
F(pe;z2 j−1,z2 j)),

and
n j = (n j

T ,n j
F), C j = E[(n j)(n j)T ].

Rewriting the measurement model of the jth sensor pair

r j = g j(pe;z2 j−1,z2 j)+n j, n j ∼ N(0,C j), (14)

for which a decentralized estimator is

(p̂ j
e)+ = p̂e +K j[(r j)+ −g j(p̂e;z2 j−1,z2 j)]

(Pj)+ = [P−1 +Gj(p̂e;z2 j−1,z2 j)T (C j)−1Gj(p̂e;z2 j−1,z2 j)]−1

K j = [P+Q](Gj)T [(Gj)(P+Q)(Gj)T +C j]−1
,

(15)
where

Gj(p̂e;z2 j−1,z2 j) ≡ ∂g j(pe;z2 j−1,z2 j)
∂pe

|p=p̂e . (16)

It is seen that the complexity of the centralized estimator is
dominated by (8), which requires about 8N3 + 40N2flops.
The computational saving by decentralization up to this
point has been attained through the reduction of a 2N-
dimensional TDOA/FDOA measurement space to N 2-
dimensional TDOA/FDOA measurement spaces. More sig-
nificant is the reduction of exchange of raw data among
sensors in the network, which now occurs only between the
two paired sensors.

B. Suboptimal aggregation of decentralized estimates

Each of the decentralized estimate p̂ j
e is now viewed as a

measurement of an unknown quantity pe, in the presence of
a random, independent, and unbiased additive measurement
error of covariance Pj . The goal is to find an estimate of the
form

p̂e =
N

∑
j=1

k jp̂ j
e

that minimizes variance E{‖pe− p̂e‖2}. The solution is easily
shown to be the combined decentralized estimates given by
[4]

p̂e ≡ P

[
N

∑
j=1

(Pj)−1p̂ j
e

]
, P−1 ≡

N

∑
j=1

(Pj)−1. (17)

Though the estimate in (17) has been given the minimum
variance interpretation, the above combined estimate is not
equivalent to the optimal estimate from a centralized estima-
tor in (6) because of the common quantity to be estimated.
The coupling among the estimates can be observed from (8).
However, an upper bound of the mean square error of the
aggregated estimation can be explicitly calculated based only
on the decentralized covariances as follows [15]

E{‖pe− p̂e‖2} ≤
N

∑
j=1

κ∗
j trace [P(Pj)−1P] (18)

where

κ∗
j =

∑N
l=1

√
ζ T

l Plζl√
ζ T

j P jζ j

, j = 1,2, · · · ,N. (19)

and vector ζl 
= 0, ∀l. In particular, κ∗
j = N can always be

used, which yields the following (generally conservative)
covariance bound

Cov{pe− p̂e} ≤ NP, (20)

though one may find the minimizing κ∗ using semidefinite
programming [15] to tighten the bound.

The aggregation process requires that each sensor pair
sends its decentralized estimate p̂ j

e = (x̂ j
e, ŷ

j
e) and its 2× 2

error covariance Pj to a common node, where a simple
operation dictated by (17) is performed. If the aggregated
estimation error falls within the tolerance set by a stopping
criterion, the localization mission is complete. Otherwise, the
aggregated estimate p̂e and covariance P are fed back to
the sensors for use in (15) to continue into the next round
of acquisition and estimation. Such a feedback of highly
compressed data has been named federation in [4].

An immediate benefit of the decentralized sensing scheme
together with the use of the above aggregation scheme is an
enhanced sensor system ability to tolerate loss of vehicles.
In case of the loss of sensor pair j, Pj is infinitely large and
thus the contribution of the sensor pair is removed according
to (17). Network tolerance also applies to data loss. If data
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are lost from sensor pair j, pair j makes no contribution to
the aggregated estimate; if data are lost on the way to sensor
pair j, the next estimate from sensor pair j is discounted.

C. Velocity reachable sets

Suppose the stopping criterion is not met upon obtaining
an emitter location estimate. Another round of sensing and
estimation starts immediately, unless a pre-set mission time
limit has been reached. This subsection describes the prelude
to the third event in Fig.2. It is only necessary to consider
a single vehicle at a time to determine what is the set of
possible velocities reachable by the vehicle for a given set
of time, speed, thrust constraints, and an initial velocity.

The vehicle dynamics is described as a point mass in level
flight

u̇i = Ti cosψi, v̇i = Ti sinψi, (21)

where ψi is the heading angle under the assumption of zero
side-slip angle, and Ti is the thrust for which vector thrusting
is assumed (ψi ∈ [0,2π]).

To improve a new estimate of the emitter location by the
same pair of sensors, it is necessary to allow the sensors
sufficient time to change their velocities. On the other hand,
to uphold the velocity dominance, sensor state update interval
must be confined to a small value. Taking into all practical
considerations in this application, the update interval is
chosen in the range of a few seconds to a few tens of a
second. With the addition of a time constraint, a reachable
set from any initial velocity (ui,vi) at τ = 0 is now fully
defined

Ai(τ) = {(u+
i ,v+

i )|
√

(u+
i )2 +(v+

i )2 ≤ Smax,Ti ≤ Tmax, t ≤ τ},
(22)

where τ, Tmax, and Smax represent time, thrust magnitude,
and speed upper bounds, respectively. Note that a lower
speed limit is not imposed to retain the convexity of the
velocity reachable set. There are several types of UAVs that
can in fact hover [12], though a very low speed has never
been encountered in our simulation study with thousands of
replications.

The boundary of Ai(τ) can be solved from a bang-bang
optimal control problem. The switching time needed for
thrusting from Tmax to Ti = 0 for a fixed heading angle ψi is

ts,i =
1

Tmax
{
√

S2
max− (u2

i + v2
i )[1− cos2(ψi − tan−1 vi

ui
)]

−
√

(u2
i + v2

i )cos(ψi− tan−1 vi

ui
)}. (23)

Velocity (u+
i ,v+

i ) at final time τ is

u+
i (τ) =

{
ui + ts,iTmax cosψi, ts,i < τ
ui + τTmax cosψi, ts,i ≥ τ (24)

v+
i (τ) =

{
vi + ts,iTmax sinψi, ts,i < τ
vi + τTmax sinψi, ts,i ≥ τ (25)
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12.5

Fig. 3. Velocity reachable set for vehicle i at τ = 5 sec., 7.5 sec., 10 sec.,
and 12.5 sec., respectively, from initial velocity (80,60) m/sec. at τ = 0.

Fig.3 shows an example of nested reachable sets for τ = 5
sec., 7.5 sec., 10 sec., and 12.5 sec., respectively, from an
initial velocity at (80,60) m/sec., with Tmax = 10 m/sec./sec.
(thrust and acceleration are not distinguished for the point
mass system), and Smax = 150 m/sec.

D. Decentralized sensor trajectory generation and vehicle
maneuver

This subsection concerns the third event in Fig.2. Sensor
trajectories are generated through a sequence of sensor state
updates. A major benefit of decentralization, other than fault-
tolerance, is the significant simplification in computing the
projected sensor states in the process of creating trajectories
for the vehicles to follow. The process now involves only the
two velocities of an individual pair of sensors, thus simplifies
(12) to

min
(u+

2 j−1,v
+
2 j−1) ∈ A2 j−1(τ)

(u+
2 j,v

+
2 j) ∈ A2 j(τ)

V (p̂e, (u+
2 j−1,v

+
2 j−1), (u

+
2 j,v

+
2 j))

(26)
More specifically, from (11), the objective function to be
minimized for the jth sensor pair is

|[P−1(p̂e,z)+GT (p̂e;z+
2 j−1,z

+
2 j)(C

j)−1G(p̂e;z+
2 j−1,z

+
2 j)]

−1|,
(27)

for which explicit expressions for the entries of
G(p̂e;z+

2 j−1,z
+
2 j) can be derived from (1), (2), and (9)

[9]. Though (27) is generally not a function jointly convex
in z+

2 j−1, and z+
2 j, it is a quadratic function of only 4

variables, and therefore the optimal point can be directly
searched in the Cartesian product space containing A2 j−1(τ)
and A2 j(τ), whereas the original centralized optimization
of (13) involves 8N variables and a much more complex
objective function.
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Fig. 4. Sample trajectories of a 6 UAV location sensor network for which
the vehicles are maneuvered from their initial velocities to their optimized
velocities in six consecutive updates of τ = 10 sec. each. The axes are x
and y positions in meters.

The last step is to determine the thrusts needed to reach
z+. Let t ′ = maxi t ′i ≤ τ, where t ′i is the minimum time for
sensor i to reach its final velocity (u+

i ,v+
i ) from its initial

velocity (ui,vi). Assume optimally projected velocities of
some of vehicles lie in the interior of their respective velocity
reachable sets. (24) or (25) can now be used to adjust Tmax

to
Tmax,i = (ts,i/t ′)Tmax ≤ Tmax

for those projected velocities that lie on the boundaries of
their respective reachable sets, such that all vehicles arrive
at their destinations

(u+
i (t ′),v+

i (t ′)) = (ui + t ′Tmax,i cosψi,vi + t ′Tmax,i sinψi)

at t ′. If all optimally projected velocities are on the bound-
aries of the corresponding velocity reachable sets with ts,i < τ
∀i, t ′ = maxi ts,i, and no adjustment on Tmax is needed;
otherwise, t ′ = τ. In fact t ′ = τ can always be used with
downward scaling of Tmax to Tmax,i for some of the i’s to
control all vehicles to arrive at there destinations in exactly
τ seconds without switching off thrust.

E. Performance analysis through an example of a 6-sensor
network

Fig.4 shows a set of sample trajectories of a 6-sensor
network for which the vehicles are maneuvered from their
initial velocities to their optimized velocities in six consecu-
tive updates of τ = 10 seconds each. Using (13), localization
accuracy is improved from initial area of a 50% concentration
ellipse (Pr[p ∈ Rln4] = 0.5) at 350 m2 to less 10 m2 after 60
seconds and 6 rounds of target signal acquisition.

In this study, signal-to-noise ratio is set at 8∼ 10 dB, maxi-
mum vehicle speed is set at 150 m/s, maximum acceleration
is set at 10 m/s2, and time interval between state update
is fixed at 10 seconds. Initial guess of emitter location is
2.5∼ 5 km away from the true location. All sensing carrying
vehicles are 50 ∼ 100 km away from the emitter location.
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Under centralized guidance criterion ignoring vehicle loss probability
Under decentralized guidance criterion ignoring vehicle loss probability

Fig. 5. Ratios of localization errors under a centralized guidance criterion
(red) and a decentralized (blue) guidance criterion, both of which ignore the
information on the probability of loss of vehicles, to that under a centralized
guidance criterion weighed by vehicle loss probabilities

The initial velocities of the vehicles are set randomly at
100 ∼ 150 m/s with a random direction, and the probability
of loss of a sensor pair within an update interval is varied
from 0%∼ 60%.

Comparison of localization errors between centralized
sensing (red), and decentralized sensing (blue) is made
through their relative errors, which are the ratios of the
calculated areas of the 50% concentration ellipses in each
case to that of the centralized sensing using the vehi-
cle loss probability-weighted guidance criterion (13) and
a centralized location estimator, respectively. Fig.5 shows
the calculated areas of the 50% concentration ellipses of
100 independent replications for a discrete set of values
of probability of loss of a pair. As the probability of loss
of a sensor pair increases, the result of aggregation moves
toward optimality. It is seen that decentralized sensing (blue)
gains better accuracy than the centralized sensing (red) as
the probability of loss of a sensor pair increases beyond 0.15
when the loss probability is disregarded in the localization
process. Fig.6 shows a snap shot of the 50% concentration
ellipses at a given probability of loss of vehicles of the three
localization schemes.

IV. DISCUSSION AND CONCLUSIONS

The previous section has discussed the most salient ad-
vantages of decentralized sensing of time/frequency-based
airborne location sensors: reduction of computation and
communication complexity and tolerance to vehicle loss.

The paper concludes with a more general qualitative
argument on the benefit of decentralization, especially with
regard to tolerance to loss of sensors. As the probability
of loss of a single pair of sensors p increases, the terms
corresponding to a single remaining pair of sensors in
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Fig. 6. Emitter location estimates and concentration ellipses of the 100
replications for decentralized sensing (blue), centralized sensing (black), and
probability-weighted centralized sensing with the probability of loss of a
sensor pair set at 0.35

the weighted criterion (13) become increasingly dominant,
approaching the decentralized criterion (12) for projected
sensor state calculations. At the same time the aggregation in
(17) for the decentralized sensing reduces to that of a single
pair network, so is the centralized sensing in (6)–(8), due
to loss of useful measurements from the remaining sensors
pairs in (3).
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