
A Neural-Fuzzy Sliding Mode Observer for Robust Fault Diagnosis

Qing Wu and Mehrdad Saif

Abstract— A robust fault diagnosis (FD) scheme using
Takagi-Sugeno (T-S) neural-fuzzy model and sliding mode
technique is presented for a class of nonlinear systems that can
be described by T-S fuzzy models. A neural-fuzzy observer and
neural-fuzzy sliding mode observer are constructed respectively.
A modified back-propagation (BP) algorithm is used to update
the parameters of the two observers. Stability of the observers
are analyzed as well. Finally, the proposed FD scheme using
these observers is applied to a point mass satellite orbital control
system example. Numerical simulation results show that this
robust fault diagnosis strategy is effective for the considered
class of nonlinear systems.

I. INTRODUCTION

In the last three decades, mathematical model-based fault

diagnosis (FD) schemes have received a great deal of inves-

tigations, e.g., see [1], [2], [3] and [4]. This is to some extent

due to the increasing complexity of modern engineering

systems and increased attention to safety, reliability, and

economics factors. However, model-based fault detection,

isolation, and estimation for nonlinear systems in presence

of uncertainties is still a challenging task.

A number of researchers have recently explored the fault

diagnosis for nonlinear systems using learning methodolo-

gies, where they use various online approximation techniques

to estimate the deviation of system dynamics caused by

faults. These online estimation techniques include adaptive

observers [5], [6], neural networks [7], [8], [9], neural

adaptive observers [10], [11] and iterative learning observers

(ILO) [12], [13], etc. In spite of these advances, several

issues still need further research. Among these are: i) The

FD algorithm should be easily implementable to alleviate

computational tasks. ii) The FD scheme should be able to

specify the fault as precisely and quickly as possible to

provide helpful information for a fault tolerant strategy.

Fuzzy logic/model-based state observation and fault di-

agnosis have been subject of several studies as well, e.g.,

[14], [15], [16], etc. One class of methods is to build a

group of local linear models using Takagi-Sugeno (T-S)

fuzzy models to describe the original nonlinear systems. As

a result, the fault diagnosis schemes for linear systems are

extended to nonlinear systems [14]. The second class of

methods treats the fuzzy model in the same way as neural

networks, since both of them possess the same approximation

capability of nonlinear functions in a compact set. The third

class of approaches apply fuzzy logic/reasoning to the fault

evaluation and classification [17].
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Some learning methods use dead-zone operators to update

parameters in robust fault diagnosis [8]. However, the draw-

back in doing so is that fault estimation accuracy may also be

affected by the dead-zone operator. Additionally, a projection

operator is needed to avoid parameter drift during the update

process and the design of the projection operator is not

straightforward. Due to the inherent robustness of sliding

mode, sliding mode observer-based robust FD methods were

proposed by several researchers, e.g., [18], [19], [20]. One

class of FD method based on sliding mode maintains the

sliding motion even in the presence of fault. The fault is then

reconstructed by manipulating the equivalent output injection

signal. Another approach designs the observer in such a way

that the sliding motion is destroyed in the presence of fault

[21]. Then, other online estimators are needed to approximate

the fault.

This research is motivated by extending previous work

on T-S fuzzy observer, neural network, and sliding mode

observer to fault diagnosis for a class of nonlinear systems.

In this work, a neural-fuzzy observer (NFO) and a neural-

fuzzy sliding mode observer (NFSMO) are proposed for the

purpose of fault detection, isolation and estimation for a

class of nonlinear systems that can be represented by T-S

fuzzy models. When no fault is present, a fuzzy controller

and a fuzzy observer are used to stabilize the system and

estimate its states, respectively. Then, a three-layer neural

network is used to isolate and estimate fault its occurrence. In

order to achieve robust fault diagnosis, a sliding mode term

is utilized to deal with the effect of modeling uncertainties

and approximation error. A modified back-propagation (BP)

algorithm is used to update the parameters of the observer so

that the stability of the proposed observer-based system can

be analyzed by Lyapunov’s direct method. In the simulation

example, we apply the proposed FD scheme to a satellite

orbital control system to demonstrate its performance.

II. PROBLEM FORMULATION

Consider the nominal dynamics of a class of nonlinear

systems

ẋ = f(x, u, t)

y = g(x, t) (1)

where x ∈ ℜn is the state vector, y ∈ ℜp is the output vector,

and u ∈ ℜm is the control input vector of the system. The

state function f : ℜn×ℜm×ℜ+ → ℜn and the measurement

function g : ℜn ×ℜ+ → ℜp are both smooth vector field.

In this study, we assume that (1) can be represented or

sufficiently approximated by a T-S fuzzy system. The T-S
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system consists of a set of fuzzy rules, where the ith rule is

Rule i : If z1is µi
1(z1), . . . and zr is µi

r(zr)

Then

{

ẋ = Aix + Biu

y =
∑l

i=1
hi(z)Cix

(2)

where the vector of premise variables z ∈ ℜr is a subset

of y and µi
j : ℜ → [0, 1]. The function µi

j(zj) is the jth

membership function in the ith rule which is applied to the

jth premise variable.

The global T-S fuzzy system is then written as

ẋ =

l
∑

i=1

hi(z)(Aix + Biu)

y =

l
∑

i=1

hi(z)Cix (3)

where l is the number of fuzzy rules, and

hi(z) =
ωi(z)

∑l

k=1
ωk(z)

ωk(z) =

r
∏

j=1

µi
j(zj) (4)

Thus, the nonlinear system (1) with modeling uncertainties

and process fault can be described as

ẋ =
l

∑

i=1

hi(z)(Aix + Biu) + η(t) + B(t − Tf )fa(t)

y =

l
∑

i=1

hi(z)Cix (5)

where η(t) ∈ ℜn represents the system modeling uncertain-

ties, which is assumed to be bounded by a constant, i.e.,

‖η(t)‖ < η̄. The function fa(t) ∈ ℜn denotes the process

fault in the system, which is composed of actuator fault

and/or component fault. The time function B(t − Tf ) is 1,

when t ≥ Tf ; otherwise is zero. Time Tf denotes the time

at which a fault occurs.

III. MAIN RESULT

A. Neural-Fuzzy Observer

For the faulty system (5), a neural-fuzzy Luenberger

observer is designed as

˙̂x(t) =

l
∑

i=1

hi(z)
{

Aix̂ + Biu + Li(y(t) − ŷ(t))
}

+B(t− Tn)M̂(t)

ŷ(t) =

l
∑

i=1

hi(z)Cix̂(t) (6)

where x̂ ∈ ℜn and ŷ ∈ ℜp are the state vector and output

vector of the observer, respectively. The term Li ∈ ℜn×p is

the gain for the local linear observer in the center of the ith
fuzzy region. The observer input M̂(t) ∈ ℜn is designed to

estimate the fault, and Tn is the time when this estimator

starts its function. In order to separately demonstrate the

properties of the fuzzy model and neural network-based fault

estimator, we assume that the neural network is not activated

until the observation of the state by T-S fuzzy Luenberger

observer, and Tn < Tf .

The recurrent dynamic neural network-based fault estima-

tor is of the following structure

M̂(t) = Ŵσ(V̂ x̄(t)) (7)

where x̄(t) = [ỹ(t − τ)⊤ M̂(t − τ)⊤]⊤ is the input of the

neural network, ỹ = y− ŷ is the output estimation error, and

τ is the sampling interval. The activation function is selected

to be a sigmoidal functionσ(V̂ix̄) = 1−e−2V̂ix̄

1+e−2V̂ix̄
where V̂i is

the ith row of V̂ , and σi(V̂ix̄) is the ith element of σ(V̂ x̄).
After the occurrence of a fault, the estimation error dy-

namics become

˙̃x(t) =

l
∑

i=1

l
∑

j=1

hi(z)hj(z)(Ai − LiCj)x̃

+η(t) + fa(t) − Ŵσ(V̂ x̄(t))

ỹ(t) =

l
∑

i=1

hi(z)Cix̃(t) (8)

Since Li is designed to guarantee the stability of the estima-

tion error dynamics without a fault, the input of the neural

network is zero at Tn. Thus, M̂(t) will remain zero during

the time interval t ∈ [Tn, Tf ). When t ≥ Tf , the fault fa(t)
breaks the stability of the estimation error dynamics and the

neural network is triggered to approximate the fault.

B. Parameter Update Law

A learning strategy is established to update the observer’s

parameters. The parameter update law is defined in such a

way that the stability of the observer can be guaranteed.

Defining a cost function J = 1

2
ỹ2, we design a similar

parameter update law as [22]

˙̂
Wi,j = −ρ1

∂J

∂Ŵi,j

− ρ2‖ỹ‖Ŵi,j (9)

˙̂
Vi,j = −ρ3

∂J

∂V̂i,j

− ρ4‖ỹ‖V̂i,j (10)

where Ŵi,j and V̂i,j are the (i, j)th element of Ŵ and V̂ ,

ρ1, ρ3 > 0 are the learning rates, and ρ2 and ρ4 are small

positive numbers.

Based on chain rules of derivative, the cost function, and

(8), we obtain

∂J

∂Ŵi,j

= (ỹ⊤C̃dxM )1×i · σj (11)

∂J

∂V̂i,j

= (ỹ⊤C̃dxV )1×i · x̄j (12)

where C̃ =
∑l

i=1
hi(z)Ci, and

dxM =
∂x̃

∂M̂
dxV =

∂x̃

∂net
V̂

(13)

where net
V̂

= V̂ x̄.
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Using (11)-(13), we re-formulate the update laws as

˙̂
W = −ρ1(ỹ

⊤C̃dxM )⊤(σ(V̂ x̄))⊤ − ρ2‖ỹ‖Ŵ (14)

˙̂
V = −ρ3(ỹ

⊤C̃dxV )⊤x̄⊤ − ρ4‖ỹ‖V̂ (15)

Instead of using the static approximation of the gradients

(13) in [22], dxM and dxV can be derived based on (8) as

ḋxM = ÃdxM − I (16)

ḋxV = ÃdxV − Ŵ (I − Λ(V̂ x̄)) (17)

where Ã =
∑l

i=1

∑l

j=1
hi(z)hj(z)(Ai − LiCj), and

Λ(V̂ x̄) = diag{σ2
i (V̂ix̄)}.

During the updating process of the neural network para-

meters, we first initialize dxM and dxV to be zero matrices,

and then dynamically update dxM and dxV using equations

(16) and (17). After that, we substitute their values into (14)

and (15) to compute the parameters Ŵ and V̂ .

C. Stability of NFO-based Systems

The fault fa(t) can be treated as a nonlinear function of

the state estimation error x̃ and time t, therefore, there exist

parameters W and V such that any continuous fault function

on the compact set can be represented as

fa(t) = Wσ(V x̄) + ǫ1(x̃) (18)

where ǫ1(x̃) is the bounded neural network approximation

error. We assume that the upper bounds on the fixed ideal

parameters W and V satisfy

‖W‖F ≤ WM (19)

‖V ‖F ≤ VM (20)

where ‖ · ‖F is the Frobenius norm of a matrix.

Substituting (18) into (8), we get

˙̃x(t) = Ãx̃ + W̃σ(V̂ x̄) + ǫ2(t) + η(t) (21)

ỹ(t) = C̃x̃(t) (22)

where W̃ = W−Ŵ , and ǫ2(t) = W [σ(V x̄)−σ(V̂ x̄)]+ǫ1(t)
is a bounded disturbance term, i.e., ‖ǫ2(t)‖ ≤ ǭ2, due to the

boundedness of W , the boundedness of sigmoidal function,

and the boundedness of uncertainty and approximation error.

By using the proposed modified back-propagation algo-

rithm to update its parameters, the stability of the neural-

fuzzy observer is guaranteed in the following theorem.

Theorem 1: Consider the T-S fuzzy system (3) and its

neural-fuzzy observer (6). If the parameters of the neural

network model are updated according to (14)-(17), then the

state estimation error x̃, parameter estimation error W̃ , Ṽ ,

and output estimation error ỹ are all bounded.

Proof: let’s first prove the boundedness of x̃ and W̃ .

Consider a positive definite Lyapunov function candidate:

Vs =
1

2
x̃⊤P1x̃ +

1

2
tr(W̃⊤W̃ ) (23)

where P1 is a symmetric positive definite matrix satisfying

Ã⊤P1 + P1Ã = −Q

in which Q is a positive definite matrix, and W̃ can be further

written as

˙̃W = ρ1(ỹ
⊤C̃dxM )⊤(σ(V̂ x̄))⊤ + ρ2‖ỹ‖Ŵ (24)

Since Ã is designed to be Hurwitz using the LMI method,

according to (16), dxM is stable and converges to Ã−1.

Based on (21) and (24), the time derivative of Vs is

V̇s =
1

2
˙̃x⊤P1x̃ +

1

2
x̃⊤P1

˙̃x + tr(W̃⊤ ˙̃W )

= −
1

2
x̃⊤Qx̃ + x̃⊤P1(W̃σ(V̂ x̄) + ǫ2 + η)

+tr[W̃⊤l1x̃σ(V̂ x̄)⊤ + W̃⊤ρ2‖C̃x̃‖(W − W̃ )](25)

where l1 = ρ1d
⊤

xM C̃⊤C̃.

Using the properties of matrix trace and sigmoidal function

in [22], we have

tr[W̃⊤l1x̃σ⊤] ≤ ‖W̃‖‖l1‖‖x̃‖σm (26)

tr[W̃⊤ρ2‖C̃x̃‖Ŵ ] ≤ (WM‖W̃‖ − ‖W̃‖2)ρ2‖C̃‖‖x̃‖(27)

where σm is defined such that ‖σ⊤‖ ≤ σm.

Therefore, (25) can be further written as

V̇s ≤ −
1

2
λmin(Q)‖x̃‖2 + ‖x̃‖‖P1‖(‖W̃‖σm + ǭ2 + η̄)

+σm‖W̃‖‖l1‖‖x̃‖ + (WM‖W̃‖ − ‖W̃‖2)ρ2‖C̃‖‖x̃‖

= −
1

2
λmin(Q)‖x̃‖2 − β1‖x̃‖‖W̃‖2

+β2‖x̃‖‖W̃‖ + β3‖x̃‖

≤ −
1

2
λmin(Q)‖x̃‖2 + (

β2
2

4β1

+ β3)‖x̃‖ (28)

where

β1 = ρ2‖C̃‖ (29)

β2 = σm(‖P1‖ + ‖l1‖) + ρ2WM‖C̃‖ (30)

β3 = ‖P1‖(ǭ2 + η̄) (31)

Thus, from (28), we can see that when

‖x̃‖ >
β2

2 + 4β1β3

2λmin(Q)β1

= b1 (32)

V̇s < 0, which means V̇s is negative definite outside the

ball with radius b1 described as χ1 = {x̃ | ‖x̃‖ > b1}.

When x̃ is increased outside of the ball χ1, the negative of

V̇s results in reducing Vs and x̃. This analysis shows the

ultimate boundedness of x̃.

Then, we consider the boundedness of the weight error

W̃ , which can be rewritten as

˙̃W = ρ1(ỹ
⊤C̃dxM )⊤(σ(V̂ x̄))⊤ + ρ2‖ỹ‖W − ρ2‖ỹ‖W̃

= −ρ2‖ỹ‖W̃ + ρ2‖ỹ‖W + κ1(x̃1, V̂ ) (33)

where

κ1(x̃1, V̂ ) = ρ1(ỹ
⊤C̃dxM )⊤(σ(V̂ x̄))⊤ (34)

We can see that κ1(·) is bounded since x̃, σ(·) and C̃
are all bounded, and dxM is bounded, because Ã is a stable

matrix. Given the ideal weight W is fixed, (33) can be treated
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as a linear system with bounded input ρ2‖ỹ‖W +κ1(x̃1, V̂ ).
(33) is stable since ρ2 is positive and input is bounded.

Therefore, the boundedness of W̃ is guaranteed.

The boundedness of W̃ implies the boundedness of Ŵ .

From (17), we can see that dxV is also bounded since σ2
i (·)

is a bounded function, and Ã is a stable matrix.

The dynamic equation of Ṽ is

˙̃V = ρ3(ỹ
⊤C̃dxV )⊤x̄⊤ + ρ4‖ỹ‖V̂

= −ρ4‖ỹ‖Ṽ + ρ3(ỹ
⊤C̃dxV )⊤x̄⊤ + ρ4‖ỹ‖V (35)

The second and third terms on the right hand side of

above equation are both finite, since x̃, Ŵ , σ(·), C̃, dxV are

all bounded, and ρ3 and ρ4 are both positive finite values.

Consequently, we can conclude that the boundedness of Ṽ
is also ensured.

D. Neural-Fuzzy Sliding Mode Observer

From above stability analysis, we see that the fault esti-

mation accuracy might be affected by the system modeling

uncertainty, neural network approximation error, etc. There-

fore, we modify the neural-fuzzy observer (6) by adding a

signum function

˙̂x(t) =
l

∑

i=1

hi(z)
{

Aix̂ + Biu + Li(y(t) − ŷ(t))
}

+B(t− Tn)M̂(t) + γsign(F ỹ)

ŷ(t) = Cix̂(t) (36)

where the sliding mode gain γ ≥ η̄, and P⊤
1 = FC̃ .

Then, the estimation error dynamics become

˙̃x(t) = Ãx̃ + W̃σ(V̂ x̄) + ǫ2(t) + η(t) − γsign(F ỹ) (37)

ỹ(t) = C̃x̃(t) (38)

Regarding the stability of above dynamics, we have the

following theorem.

Theorem 2: Consider the T-S fuzzy system (3) and the

neural-fuzzy sliding mode observer (36). If the parameters of

the neural network model are updated according to (14)-(17),

then x̃, W̃ , Ṽ , and ỹ are all bounded, and x̃ can converge

to a small bound.

Proof: The proof procedure is similar to that in theorem

1. We again use the Lyapunov function (23), and its time

derivative is rewritten as

V̇s =
1

2
˙̃x⊤P1x̃ +

1

2
x̃⊤P1

˙̃x + tr(W̃⊤ ˙̃W )

= −
1

2
x̃⊤Qx̃ + x̃⊤P1(W̃σ(V̂ x̄) + ǫ2)

+x̃⊤P1η − x̃⊤P1γsign(FC̃x̃)

+tr[W̃⊤l1x̃σ(V̂ x̄)⊤ + W̃⊤ρ2‖C̃x̃‖(W − W̃ )](39)

Still using the inequalities (26) and (27), we have

V̇s ≤ −
1

2
λmin(Q)‖x̃‖2 + ‖x̃‖‖P1‖(‖W̃‖σm + ǭ2)

+(η̄ − γ)‖x̃⊤P1‖ + σm‖l1‖‖W̃‖‖x̃‖

+(WM‖W̃‖ − ‖W̃‖2)ρ2‖C̃‖‖x̃‖

≤ −
1

2
λmin(Q)‖x̃‖2 − β1‖x̃‖‖W̃‖2

+β2‖x̃‖‖W̃‖ + β′

3‖x̃‖

≤ −
1

2
λmin(Q)‖x̃‖2 + (

β2
2

4β1

+ β′

3)‖x̃‖ (40)

where β1 and β2 are still (29) and (30), β′
3 = ‖P1‖ǭ2 < β3.

Thus, when

‖x̃‖ >
β2

2 + 4β1β
′
3

2λmin(Q)β1

= b2 < b1 (41)

V̇s < 0, x̃ is ultimately bounded by a ball with a smaller

radius b2, i.e., χ2 = {x̃ | ‖x̃‖ ≤ b2}.

When the sliding mode term just counteracts the effect

of modeling uncertainty, it results in the convergence of

‖x̃‖ to a smaller bound which implies a more accurate

fault estimation. If the sliding mode gain γ is sufficiently

large, the sliding mode may eliminate the effect of fault and

uncertainties which are both treated as an unknown input.

Therefore, it is concluded that γ should be carefully selected.

According to above analysis, the tight bound of the modeling

uncertainty would be a preferable choice for γ.

E. Robust Fault Diagnosis Scheme

In this work, after the T-S fuzzy model observes all the

states, we use the output error or output estimation error to

detect the fault, i.e.
{

No fault occurs if ‖ey(t)‖ < ǫf

Fault occurs, and M̂(t) works if ‖ey(t)‖ ≥ ǫf

(42)

or
{

No fault occurs if ‖ỹ(t)‖ < ǫ′f
Fault occurs, and M̂(t) works if ‖ỹ(t)‖ ≥ ǫ′f

(43)

where ey(t) = yd − y is the output error, yd is the reference

trajectory, and ǫf and ǫ′f are thresholds for robust fault

detection. The choice of ǫf and ǫ′f replies on the system

characteristics and the diagnosis scheme in use. In this work,

the output of the neural network M̂(t) is selected for the

process fault isolation and fault estimation.

IV. SIMULATION EXAMPLE

In this section, we apply the proposed neural-fuzzy ob-

server and neural-fuzzy sliding mode observer to a point

mass satellite dynamic system [23].

The fourth-order satellite model is considered in [23] as

ṙ = v r(0) = r0

v̇ = rw2 −
k

mr2
+

u1

m
v(0) = 0

φ̇ = w φ(0) = 0

ω̇ = −
2vω

r
+

u2

mr
ω(0) = ω0

(44)
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where m = 200kg is the mass of the satellite, (r, φ) are

the polar coordinates of the satellite, v is the radial speed,

and ω is the angular speed. Control inputs u1 and u2 are

the radial and tangential thrust forces, respectively. Since the

control purpose is to track the output r and ω to their constant

reference trajectory rr and ωr, the equation φ̇ = ω is omitted.

When we choose x = [x1 x2 x3]
⊤ = [r v ω]⊤, and

y = [r ω]⊤, the reduced-order system is written as

ẋ1 = x2 x1(0) = r0

ẋ2 = x1x
2
3 −

k

mx2
1

+
u1

m
x2(0) = 0

ẋ3 = −
2x2x3

x1

+
u2

mx1

x3(0) = ω0

(45)

The parameter k = KEm, where KE = 3.986 ×
105km3/s2 is derived from the parameters of the earth

(ME = 5.974 × 1024kg, RE = 6.378 × 103km). The

satellite is first observed in perigee 375 km above the

surface of the earth r0 = RE + 375km. The initial an-

gular speed ω0 is computed using the orbital mechanics

ω0 =
√

(eorbit + 1)KE/r3
0 , where eorbit = 0.162 is the

eccentricity.

In the design of fuzzy control and observer, we define the

nonlinear terms as z1(x1, x3) = x2
3−

k
mx3

1

, x2(x1, x3) = x3

x1

,

and z3(x1, x3) = 1

x1

.

We assume that the outputs satisfy x1 ∈ [rmin, rmax] and

x3 ∈ [ωmin, ωmax], where rmin = 0.9r0, rmax = 1.1r0,

ωmin = −4, and ωmax = 4 in simulation. Thus,

zmax
1 = ω2

max −
k

mr3
max

zmin
1 = −

k

mr3
min

zmax
2 =

ωmax

rmin

zmin
2 =

ωmin

rmin

zmax
3 =

1

rmin

zmin
3 =

1

rmax

(46)

The nonlinear terms z1 can be represented by

µ1
1z

max
1 + µ2

1z
min
1 = z1

µ1
1 + µ2

1 = 1 (47)

So, the membership functions µ1
1 and µ2

1 are

µ1
1 =

z1 − zmin
1

zmax
1 − zmin

1

µ2
1 =

−z1 + zmax
1

zmax
1 − zmin

1

(48)

and µ1
2, µ2

2, µ1
3, and µ2

3 can be derived in a similar way.

There are a total of eight fuzzy rules. The membership

functions for these eight fuzzy rules are computed using (4).

The output tracking controller is designed using the approach

in [24].

In this simulation, the three-layer neural network is of a

structure 5 × 5 × 3. In the parameter update law (16) and

(17), the learning rates are set to be ρ1 = ρ3 = 20, and the

damping coefficients are ρ2 = ρ4 = 0.1. The initial values of

dxM and dxV are zero vector and matrix, respectively. The

sliding mode gain γ is set to be 0.0025.

The simulation results are shown in Fig. 1 to 4. Fig.

1 illustrates the performance of output tracking and state

observation using T-S fuzzy model when there is no fault.

0 5 10 15 20

6752

6754

6756

Actual state r
1
 and observed state r

1

Time (hr)

(k
m

)

0 5 10 15 20
−2

0

2

Actual state v
2
 and observed state v

2

Time (hr)

v
 (

k
m

/h
r)

0 5 10 15 20
−0.05

0

0.05

Actual state ω
3
 and observed state ω

3

Time (hr)

(r
a

d
/h

r)

System state 1

Observer state 1

System state 2

Observer state 2

System state 3

Observer state 3

Fig. 1. Time behaviors of system states and observer states using T-S fuzzy
control and observer in the case of no fault
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Fig. 2. Time behaviors of the norm of the output estimation error

In the simulation, we assume that only an incipient fault

occurs which disturbs the second state at the 16th hour, and

the neural network is enabled in the 15th hour. Fig. 2 shows

the norm of output error and the norm of output estimation

error, which are both useful for detecting fault. After a fault

occurs, ‖ey‖ and ‖ỹ‖ both quickly exceed the thresholds.

However, in order to isolate and estimate the fault, we need

to use other signals.

Fig. 3 portrays the characteristics of the fault functions

and the three outputs of the neural network when using the

neural-fuzzy observer. When a fault occurs, only the neural

network output that corresponds to the faulty state specifies

the dynamics of the fault, and the other neural network

outputs associated with the healthy states remain close to

zero. Due to the approximation error and system modeling

uncertainties, there exists fault estimation error.

Fig. 4 exhibits the same fault functions and the three

outputs of the neural network when using the neural-fuzzy

sliding mode observer. Comparing the fault diagnosis results

with those using neural-fuzzy observer in Fig. 3, a better per-

formance is achieved in fault estimation using the NFSMO,

though the chattering caused by sliding mode might increase

as well.
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Fig. 3. Time behaviors of the output of the neural-fuzzy observer under
an incipient fault
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Fig. 4. Time behaviors of the output of the neural-fuzzy sliding mode
observer under an incipient fault

V. CONCLUSIONS

In this work, a neural-fuzzy observer and a neural-fuzzy

sliding mode observer were proposed for the purpose of

robust fault diagnosis in a class of nonlinear systems. Us-

ing the modified back-propagation algorithm to update the

observer parameters, the stability of these two observer-based

systems were rigorously analyzed. Following the theoretical

analysis, this robust fault diagnosis scheme was applied to

a point mass satellite orbital control system, and numerical

simulation demonstrates its satisfactory performance.
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