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Abstract— In this paper we propose a methodology to solve
the constrained consensus problem, i.e., the consensus problem
for multi-agent systems with constrained dynamics. We propose
a decentralized one-step horizon optimization problem to be
solved iteratively by the agents to achieve rendezvous at the
centroid of the network while ensuring the connectivity of the
network and the feasibility of the agents motion respect to
their constrained kinematics. We also provide simulations of
the algorithm behavior.

I. INTRODUCTION

The consensus problem, i.e., the problem of having a

collection of agents’ states reach a common value in the

presence of network and information sharing constraints, has

recently received considerable attention. For a representative

sample, see [1], [2], [4], [6], [9], [8], [11], [16]. A common

approach to this problem is to use a linear, nearest neighbor

control strategy, resulting in a linear dynamic system driven

by the graph Laplacian associated with the underlying

network topology.

In [14] was proposed a method to probe a network of

agents executing a Laplacian-based control strategy with an

application to fault detection. Furthermore a decentralized al-

gorithm was proposed to recover the initial network centroid

for a network of agents after a failure detection dragged the

network away from the desired location.

In this paper we propose a framework to address the

Constrained Consensus Problem, i.e., the consensus problem

with constrained agents’ trajectories and constrained mission

objectives, based on the results of [14].

The proposed methodology follows decentralized model

predictive control applied to multi-agent systems [12], [13].

Our approach differs form the ones in the literature in that it

allows to perform consensus on the average in the presence of

constraints. In particular we show that the iterative solution

of a one step-horizon optimization problem, involving only

information locally available by the agents without any

communication, can efficiently solve complex constrained

consensus problem. We focus on the application of our

algorithm to rendezvous in multi-agent systems assuming

single integrator agents with bounded speed. Such assump-

tion is taken to decouple the motion coordination problem

from the low level control of the single agent. The motion

coordination algorithm basically specifies the set point that

the low level controller need to track within a specified

time horizon. The constraints that we consider are kinematic

constraints of the agents, network constraints such as net-

work connectivity preservation and mission constraints such

rendezvous at the initial network centroid while ensuring all

the other constraints along their motion.

II. NETWORK MODEL

We will be considering networks of agents, whose nominal

state evolution is governed by a discrete time consensus

equation that can be written quite generally as

x(k + 1) = Px(k), (1)

where P is a stochastic, indecomposable, aperiodic matrix,

as discussed in [7]. Moreover, x ∈ R
n is an aggregated state

vector, with each component xi representing a scalar state

associated with agent i = 1, . . . , n.

We model the network as an undirected graph G = V ×E,

with V being a set of vertices V = {1, . . . , n} that represent

the agents, and where the edge set E ⊆ V × V encodes the

network topology in that (i, j) ∈ E if and only if agents

i and j can share information. The graph can be encoded

through its adjacency matrix A , i.e., a n × n matrix such

that ai,j = 1 if and only if (i, j) ∈ E and is 0 elsewhere.

Let Ni ⊂ V be the set of vertices adjacent to vertex i, and

let |Ni| denote its cardinality. We can then define the degree

matrix ∆ as the diagonal matrix whose diagonal entries are

∆i,i = |Ni|. Using these matrices, a standard, discrete time

model of consensus networks is the one defined by x(k +
1) = (I−ǫL)x(k), where I is the identity matrix, L = ∆−A
is the graph Laplacian of the graph G, and ǫ > 0 the sampling

time. Under this dynamics, the matrix P in Equation (1)

becomes

P = I − ǫL. (2)

Following the notation in [7], we will refer to P as a Perron

matrix, and this is the particular choice of P -matrix that will

be used throughout the paper.

For the developments in this paper, we will not necessarily

assume that the network is static, i.e. edges may be removed

or added, thus resulting in a change in network topology.

As such, we will in fact let the network be represented

by a time varying, undirected graph G(t) = (V, E(t)),
where the edge set is time dependent. This could be caused

by communication failures, or by the movements of the
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individual agents as they enter and leave each others’ sensory

ranges.

Now, as the adjacency and degree matrices are time depen-

dent, the Laplacian will depend on time as well and rather

than explicitly computing L(t), we assume that we have an

enumeration of all possible graphs over n agents. Relative

to this enumeration, we can define T as the index set of all

connected graphs T = {i | Gi = (V, Ei) is connected}.
In fact, we will assume that the graph that is currently

encoding the network topology is connected, i.e., its index

belongs to T , and the linear consensus dynamics that we will

employ can thus be given for k ≥ 0 by x(k+1) = Pi(k)x(k)
with x(0) = x0, i(k) ∈ T , where x0 is the initial state of

the system.

Finally, note that this can be generalized to

Pi(k) = I − ǫDLi(k), (3)

where D is a positive definite, diagonal matrix representing

the speed (or gain) of each agent. The introduction of gains

does not change anything significant in that Pi in Equation

(3) is still a stochastic, indecomposable, aperiodic matrix

for any sufficiently small, positive ǫ. In fact, any 0 ≤ ǫ <
minj 1/(dj(n − 1)), where dj is the jth diagonal entry of

D, is a valid choice.

III. INVARIANT MOTIONS

The consensus equation has been successfully applied in

a number of applications where networked agents have to

agree on some state value. Notable examples of this include

the rendezvous problem, in which a collection of mobile

agents are to meet at a common location, and the distributed

average problem in sensor networks. However, in a number

of situations, the motion that the agents can execute may

be constrained, rendering a pure consensus-based control

law infeasible. In this paper, we address this problem by

endowing the agents with additional freedom in that their

controllers need not necessarily be pure consensus-based.

This additional control freedom must not, however, interfere

with the global objective, which in this paper is taken to

mean to reach agreement.

In order to ensure that agreement is still achieved, it is

necessary that the new control signals are chosen in such a

way that, after the execution, they do not corrupt the infor-

mation needed to solve the original agreement problem. In

this section, we will make these rather informal observations

concrete by proposing a class of such control signals that we

will refer to as Invariant Motions.

To study the evolution of such systems we need to point

out the connection between this formulation of the consensus

dynamics and that of discrete time Markov chains. In fact,

one can think of Pi as being the transition matrix in a Markov

chain, with a corresponding, unique stationary distribution

πi such that limk→∞ P k
i = 1πT

i , where 1 is the vector with

ones in each entry.

The following result can then be directly obtained:

Lemma 1: [14] The stationary distribution of

P(t) =
t−1
∏

k=0

Pi(k),

for any t ≥ 1, where Pi(k) = I − ǫDLi(k), i(k) ∈ T , is

π = D−1
1α,

with α being a normalizing scalar such that
∑n

j=1 πj = 1.

In order to allow for the agents to exert a control action

different from the consensus-based maneuver, we assume

that the network behavior can be described by:

x(k + 1) = Pi(k)x(k) + Bu(k) x(0) = x0, i(k) ∈ T.
(4)

Here B is an n × n matrix (typically the identity matrix),

u ∈ R
n is a vector of inputs whose ith component ui is the

scalar input exerted by agent i.
Lemma 2: [14] Given the network dynamics in Equation

(4). If
∑t−1

k=0 u(k) = 0, then πT x(t) = πT x(0), where π is

the stationary distribution in Lemma 1.1

The previous lemma can be understood in the context

of the partial difference equation analogy with the heat

equation [17]. Any agent applying an input can be seen as an

agent that is "warming up" or "cooling down" the network,

depending on the sign of the input. Since the system is

conservative (no heat can flow away), in order to recover

the initial thermal equilibrium point the only information

needed is how much heat has flown in or out from the

network. This quantity corresponds to the integral of the

applied input. Hence, if the integral is zero, the total heat

present in the network has been preserved, and the initial,

thermal equilibrium point will be reached under the regular

evolution of the heat equation.

IV. CONSTRAINTS AND MOTION FEASIBILITY

We have now seen that the definition of an invariant

motion is one in which the sum over all the inputs (as

a function of time) is zero. An alternative way in which

one can think about this is through a storage state variable

zi, i = 1, . . . , n, given by zi(t + 1) = zi(t) − ui(t) with

zi(0) = 0. Clearly zi(t) = −∑t−1
k=0 ui(k).

The introduction of storage state variables implies that for

a control strategy to correspond to an invariant motion, it

has to drive z to the origin. (Here z = (z1, . . . , zn)T .) The

overall dynamics now becomes














x(t + 1) = Px(t) + u(t),

z(t + 1) = z(t) − u(t),

x(0) = x0, z(0) = 0.

(5)

1If the n agents are moving in a m−dimensional space, the extension to
R

n×m requires the presence of a relative inertial reference for each agent.

This means that the assumption that
P

t−1

k=0
u(k) = 0 needs to hold for

u ∈ R
n×m.
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Theorem 3: A system governed by the dynamics in Equa-

tion (5) evolves on the hyperplane

{(x, z) ∈ R
2n | πT x + πT z = πT x(0)}.

Proof:

Applying lemma 1, at time t the system (5) evolves from

x(0) = x0 and z(0) = 0 to

{

x(t) =
∏t−1

k=0 Pi(k)x(0) +
∑t−1

k=0

∏k

j=0 Pi(j)u(k)

z(t) = −∑t−1
k=0 u(k).

Multiplying by πT on both sides of the above equation and

observing that π is the stationary distribution of Pi ∀i ∈ T ,

we get πT x(t) = πT x(0) + πT
∑t−1

k=0 u(k). Hence

πT x(t) + πT z(t) = πT x(0)

As a consequence of Theorem 3, we can in fact think

of the average of z(k) as specifying how far from the

initial average, the average of x has drifted in k steps. As

such, one could for instance be interested in the problem

of first selecting u in such a way that a particular task is

executed, and then driving z back to 0 to preserve the initial

centroid of the system. The reason why this strategy might

be of importance is, for example, if additional constraints are

imposed on the system dynamics, such as preserving network

connectivity.

To address this type of problem formulation, we classify

the possible constraints into three types. The structure of

these constraints is decentralized, they involve only a sets of

neighbors directly connected to each other:

1) Kinematic constraints: Each agent being a dynamical

system has several constraint such as finite maximum accel-

eration, maximum speed and so on. In our simplified model

for the agents dynamics we give an example of kinematic

constraints by requiring that the maximum displacement in

one time step for any agent i is limited, i.e.

‖xi(k + 1) − xi(k)‖ ≤ β. (6)

This bounds the speed of the agents.

2) Network constraints: These constraints can be thought

as constraints involving the graph representing the network.

We give an example of network constraints by asking the

network to stay always connected. To ensure such property

we apply a stronger constraint by requiring that no couple

of agents sharing an edge may lose connection by increasing

their distance above a certain threshold, i.e

‖xi(k + 1) − xj(k + 1)‖ ≤ α

where α is the sensing radius.

Here we stated a constraint that requires information about

the future state of the neighbors. Such constraint can be

ensured in a more conservative way asking that:

‖xi(k + 1) − xj(k)‖ ≤ ‖xi(k) − xj(k)‖
‖xi(k) − xj(k + 1)‖ ≤ ‖xi(k) − xj(k)‖, (7)

In other words, if both agents do not move in directions

that may increase their relative distance regarding the neigh-

bor as standing still then we ensure that at the next step

their distance will surely be less than the threshold. This

constraint does not need to be always active, in the case

study of the next section we will design a rule that will

render this constraint active only when strictly necessary.

3) Mission constraints: Mission constraints are the more

various and hard to model since are most of the times

qualitative in nature. Simple examples of mission constraints

are:

1) Rendezvous at the network centroid.

2) Move the centroid of the network to a pre-specified

location.

3) Surveillance over an area while preserving connectivity

of the network and the initial centroid.

4) Avoid moving obstacles while preserving network

properties as connectivity and initial centroid.

All of these mission constraints can be addressed within

our framework of constrained invariant motions. In partic-

ular since our system evolves on the hyperplane πT x(t) +
πT z(t) = πT x(0), we can put constraints on the increased

state space to achieve for instance that the centroid at a

particular instant of time is equal to the initial centroid by

requiring that πT z(t) = 0.

Following this, we will set up a general constrained opti-

mization problem that will take the form of a decentralized

one step-horizon optimization. The purpose of such control

scheme is to keep the best features of the Laplacian feedback

such as its average preserving property or its robustness

to network topology changes while being able to address

kinematic limitations of the agents and network constraints

such as connectivity. In particular, if the particular decen-

tralized model predictive control algorithm used ensures that

the dynamics of the storage variables z(k) is asymptotically

stable, then we ensure the average preserving property of the

Laplacian feedback regardless of the constraints.

V. CONSTRAINED CONSENSUS

We present here an algorithm for connectivity preserving

rendezvous of a network of agents with centroid preserving

motions and kinematic constraints. Our working assumptions

are:

(A1) Each agent can sense all the neighboring agents up to a

distance kr, i.e., if the distance between an agent i and

an agent j is less than or equal to kr, there exists an

edge in the associated proximity graph;

(A2) Proximity graph representing the network is connected

at time t = 0;

(A3) All agents have the same speed, i.e., in equation (3)

we assume D = I . This implies that the stationary

distribution in Lemma 1 is π = 1, where 1 is a vector

of ones.
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In our model the agents know the following parameters:

• ǫ - the sampling time.

• β - the agents’ maximum displacement allowed in one

time step.

• γ - a bound on |ui(k)|, in our simulations we choose

γ = β
2 .

• kr - the sensing radius.

• α - the maximum distance at which a neighbor is

considered “sufficiently close” such that no connectivity

preserving constraint is applied. α is constrained to be

at least α ≤ kr − 2β.

• B = β
√

n

4ǫ(n−1) , the dimensions of a ball where the agents’

are considered sufficiently close.

Algorithm 1 (Constrained Consensus Algorithm):

1) Let t = 0.

2) Until all agents performed rendezvous somewhere

(within a certain ball B), do:

Each agent solves the following optimization problem:

min ‖ui(t)‖2
2

s.t.

(a) xi(t + 1) = P [i, ·](t) · x(t) + ui(t)
(b) zi(t + 1) = z(t) − ui(t)
(c) ‖xi(t + 1) − xi(t)‖2 ≤ β

if P (i, j) 6= 0 and ‖xi(t) − xj(t)‖2 ≤ α
(d) ‖xi(t + 1) − xj(t)‖2 ≤ α

elseif P (i, j) 6= 0 and ‖xi(t) − xj(t)‖2 ≥ α
(e) ‖xi(t + 1) − xj(t)‖2 ≤ ‖xi(t) − xj(t)‖2

(8)

Let t = t + 1.

3) Each agent solves the following optimization problem:

min ‖zi(t + 1)‖2
2

s.t.

(a) xi(t + 1) = P [i, ·](t) · x(t) + ui(t)
(b) zi(t + 1) = z(t) − ui(t)
(c) ‖ui(t)‖ ≤ γ.

(9)

Let t = t + 1.

To solve this application we proposed an optimization

problem solved by each agent using only local information

(the distances between it and the neighbors) without the use

of any kind of communication. The proposed optimization

problem first minimizes the control input ui(k) such that

the motions are feasible (Step 2 of algorithm 1), once all

the constraints are no longer active it minimizes the 2-norm

of the corresponding zi variable trying to bring it to zero

(Step 3 of algorithm 1). According to Theorem 3 if all

z′s are null then network centroid is equal to the initial

centroid. Therefore, we chose as performance index of the

optimization problem to solve at Step 3

min ‖zi(t + 1)‖2
2

Regarding the constraints, using the classification in pre-

vious section we have:

1) Kinematic constraints: constraint (8.c). The motion

distance of the agents in one step is bounded, this

is ensured by (6). Without loosing of generality, we

assume the same β for all agents.

2) Network constraints: constraints (8.d), (8.e). The graph

should remain connected, consequently some con-

straints (7) are be imposed for each agent. The number

of such constraints depends on the number of neigh-

bors and on the relative distance between them. We

identify two types of neighbors: (a) agents with a

relative distance less than α, where α < kr and, (b)

agents with the relative distance between α and kr. We

say that the agents (b) are in the critical region and the

relative distance cannot be increased at the next step to

avoid the losing of connectivity. Using a constraint of

type (7) we ensure that this distance is not increased.

For agents of type (a) such a constrained is not active

because α is chosen such that any input we apply to

both agents, at the next step the connection between

them is not loosed, i.e., the relative distance will be

less than kr.

3) Mission constraints:. We want to rendezvous at the

initial network centroid.

We now prove that algorithm 1 solves the Constrained

Consensus Problem.

Theorem 4: There exists a suitable choice of parameters

α, β, ǫ, γ, B, kr such that algorithm 1 makes the agents

rendezvous at the initial centroid of the network.

Proof:

The proof is constructive, i.e., we show how to determine

suitable values of the parameters that ensures convergence of

algorithm 1. We divide it into two steps: in the first step the

agents perform the first optimization problem, as a result we

prove convergence to a point inside the convex hull defined

by the initial position of the agents. At the end of this step

the storage variables z(k) have an arbitrary value function of

the trajectories adopted by the agents. In the second step we

prove that performing the second optimization problem the

agents are able to bring the value of their storage variables

to zero monotonically while being sure to follow feasible

trajectories, in such a way the centroid of the network is

brought again to the initial position. From this point on the

network will evolve as a standard consensus network, thus

asymptotically converge to its centroid.

• First step: We now show that during the first part of the

algorithm V (k) = ‖δ(k)‖∞ with

δ(k) = x(k) − 11T

n
x(k) (10)

is a monotonically decreasing function.

The agents whose δi(k) is maximum are at the border

of the polytope spanned by the agents. If an agent sees

the neighbors in a convex hull, then, given the nature of

the constraints, it will move in a direction inside such

convex hull thus reducing δi(k). In particular since at

each instant of time we have that each bordering agent

will move in a direction inside the convex hull of his

neighbors we have that

V (k + 1) = ‖δ(k + 1)‖∞ < ‖δ(k)‖∞ = V (k)
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Thus proving the statement.

• Second step: When the agents solve the second op-

timization problem, i.e., step 3 of Algorithm 1, we

prove that defining an appropriate constant γ such that

‖u(k)‖∞ < γ and a constant B, we have that if

‖δ(k)‖2 < B, then ‖δ(k + 1)‖2 < B, where δ(k)
is given in (10). In other words if the agents are

sufficiently close and their inputs are sufficiently small,

the agents are able to apply whatever input they need

to bring their storage variables to zero while staying

bounded in a region where no constraint is ever active.

We start by working out the dynamics of δ(k). We have:

δ(k + 1) = Px(k) + u(k) − 11T

n
(Px(k) + u(k))

Since P is doubly stochastic, 1T δ(k) = 0 and 11T

n

2
=

11T

n
:

δ(k + 1) = (P − 11T

n
)δ(k) + (I − 11T

n
)u(k)).

Taking the 2-norm of both arguments, for the triangular

inequality:

‖δ(k+1)‖2 ≤ ‖(P − 11T

n
)δ(k)‖2 +‖(I− 11T

n
)u(k)‖2.

The 2-norm is an induced norm, for a symmetric matrix

it is equivalent to its spectral radius, therefore:

‖(I − 11T

n
)‖2 = ρ(I − 11T

n
) = 1,

thus ‖δ(k + 1)‖2 ≤ ‖(P − 11T

n
)δ(k)‖2 + ‖u(k)‖2, and

finally

‖δ(k + 1)‖2 ≤ ρ(P − 11T

n
)‖δ(k)‖2 + ‖u(k)‖2.

The matrix A = P − 11T

n
is contractive since its spectral

radius ρ(A) < 1, [15]. Then

‖δ(k + 1)‖2 ≤ ρ(A)‖δ(k)‖2 + ‖u(k)‖2.

We can bound ‖u(k)‖2 with
√

n‖u(k)‖∞ where n is

the number of agents. Therefore:

‖δ(k + 1)‖2 ≤ ρ(A)‖δ(k)‖2 +
√

n‖u(k)‖∞,

Multiplying and dividing by ‖δ(k)‖2:

‖δ(k + 1)‖2 ≤ (ρ(A) +

√
n‖u(k)‖∞
‖δ(k)‖2

)‖δ(k)‖2.

So for ρ(A) +
√

n‖u(k)‖∞
‖δ(k)‖2

< 1,

‖u(k)‖∞ < (1 − ρ(A))
‖δ(k)‖2√

n
,

we have that ‖δ(k + 1)‖2 < ‖δ(k)‖2.
This proves that if γ is small respect to ‖δ(k)‖2 we

have a contraction of ‖δ(k)‖2.

We now give an upper bound to ‖δ(k)‖2 such that if

‖δ(k)‖2 < B and ‖u(k)‖∞ < γ no constraint is active.

The first constraint that we consider is the connectivity

preserving constraint. It is straightforward to see that if

each agent is in a ball of diameter Kr

2 each agent will

be able to see each other and no connectivity constraint

will be active. The constraint that we need to take care

of is the kinematic constraint, namely:

‖xi(k + 1) − xi(k)‖2 < β,

because we assume that β << Kr. We recall the update

rule for the generic agent:

xi(k + 1) = xi(k) + ǫ
∑

j∈Ni

(xj(k) − xi(k) + ui(k),

Adding the constraint on the maximum speed of the

agents we have that

‖ǫ
∑

j∈Ni

(xj(k) − xi(k)) + ui(k)‖2 < β,

since ‖ui(k)‖∞ < γ and defining

Γ = max
j,i

‖xj − xi‖∞ ≥ 2‖δ(k)‖∞ ≥ 2‖δ(k)‖2√
n

we obtain γ < β−ǫ(n−1)Γ. Giving a reasonable bound

on Γ such that γ can be comparable with β, we choose

Γ = β
2ǫ(n−1) . In such way choosing γ = β

2 we have

that

‖δ(k)‖2 <
Γ
√

n

2
=

β
√

n

4ǫ(n− 1)
= B

So if ‖δ(k)‖2 < B also ‖δ(k + 1)‖2 < B.
In such a way the agents will apply the appropriate

‖ui(k)‖∞ < γ to bring z(k) monotonically to zero

while keeping the network bounded in a ball where no

constraint is ever active (the agents are sufficiently close

between each other). When z(k) is equal to zero the

system will evolve with u(k) = 0 as a normal consensus

network (and we proved that the consensus dynamic

will not violate any constraint) and so

lim
k→∞

x(k) =
11T

n
x(0).

�

VI. SIMULATIONS

We initialize a network of seven agents and assign them

the task of rendezvous at the initial network centroid while

ensuring connectivity of the network and satisfying the

kinematic constraints of the agents that are assumed to have a

single integrator dynamic with a finite speed. For each agent

we solve the online optimization problems of Algorithm 1

with the following parameters:

• Sampling time: 0.001 sec
• Finite speed: ‖xi(t + 1) − xi(t)‖2 ≤ β =

0.001 m (1 m/sec).
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(a) Network of seven agents performing rendezvous using
the standard consensus dynamic (1)

(b) Network of seven agents performing rendezvous using
Alg. 1 after step (3)

Fig. 1. A comparison between the basic consensus dynamic for coordination of multi-agent systems and the constraint invariant motions.

• Sensing radius: ‖xi(t + 1) − xj(t)‖2 ≤ α = 2.5 m.

• Sensing radius critical margin: kc = 0.5 m.

In Figure 1(a) is shown the evolution of the network

of seven agents denoted a1 to a7 starting from the ini-

tial positions {(3 3), (4 2), (5 1), (6.5 4.5), (5.5 2.5),
(7 6.5), (7 7)} with the standard consensus dynamic using

a proximity graph. As can be observed, the initial centroid

shown as a small circle at (5.43 3.79) is not reached. Figure

1(b) illustrates the evolution of the same network of agents,

starting from the same initial positions, but now applying

Alg. 1: in figure 1(b) it can be seen that the initial centroid

is reached after step (3) regardless of the constraints.

From the comparison between Figure 1(a) and Figure

1(b) we show how the use of invariant constraint motions

allows the network of agents to exploit the properties of the

consensus dynamic while retaining the necessary freedom to

perform real world task. It is relevant that such approach

can be used to split up in two levels the controllers needed

to perform coordination of multi-agent systems, i.e. the

high level controllers make use of the constraint invariant

motions to perform tasks while being sure to provide feasible

problems to solve to the lower level controllers.

VII. CONCLUSION

In this paper we presented a general tool, the Invariant

Motions, to deal with constrained consensus problems while

ensuring the average preserving properties of Laplacian-

based controllers. In particular we have presented an algo-

rithm for multi-agent networked systems that, using such

Invariant Motions, achieves consensus (rendezvous) on the

average of the initial states while ensuring the connectivity

of the network and feasible trajectories for the agents.
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