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Abstract— Input shaping is a command generation method
that creates commands that result in low levels of residual
vibration. This paper introduces new methods to design input
shapers for multi-input systems. To justify the new methods,
the multi-input vector diagram is used. Multi-input shaping
design procedures are introduced that result in shapers that use
secondary actuators to reduce vibration and increase robustness
to modeling errors. Simulations of a nonlinear mobile tower
crane model are used to illustrate the proposed method.

I. INTRODUCTION

Input shaping reduces vibration by intelligently shaping
the reference signals such that the vibratory modes are not
excited [1], [2]. To implement this method, the reference
signals are convolved with a sequence of impulses, called
an input shaper. The timing and amplitudes of the impulses
are determined using estimates of the system frequencies and
damping. This process is demonstrated with a step command
and a two-impulse Zero Vibration (ZV) input shaper in
Fig. 1.

Although applying input shaping to multi-input systems
can be straightforward, a few researchers have attempted to
optimize the extension of input shaping to the multi-input
domain. Some of the first published methods for optimized
multi-input shaping relied on a zero-placement method to
solve for multiple impulse sequences that are used with each
input [3], [4]. Later works presented improvements on this
initial algorithm [5], [6]. The original method, and the sub-
sequent improvements, need somewhat accurate information
about the influence of each input on the vibratory modes of
the system.

The first improvement to this algorithm removed the
impulse amplitude constraints from the original solution pro-
cedure, then scaled the resulting solution according to rigid
body constraints [6]. This method generated marginally faster
shapers than the original approach. An alternative improve-
ment included additional robustness constraints, mentioned
in the original work, but not implemented [5]. This work
also proposed an adaptive multi-input shaping routine to
account for situations when one or more inputs become
zero. Limitations of this approach included possible actuator
saturation and the ability to find a solution that meets both
vibration and impulse amplitude requirements.

Other researchers have approached the problem by refor-
mulating the problem as a quasi-convex optimization [7]–
[9]. In each of these cases, the problem is transferred to
the digital domain. Once in the digital domain, constraints
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Fig 1. The Input Shaping Process

on vibration and impulse amplitudes are created to form the
optimization problem. Additional constraints can be added to
the formulation to increase robustness and/or satisfy transient
response requirements [9]. Only two previous papers have
presented experimental results [9], [10].

The methods published thus far present several difficulties
for practical implementation. The first is that the majority of
the methods do not account for situations where one or more
of the inputs is not used; the solutions require all actuators to
be acting at all times. A second limitation is the requirement
that each input shaper utilize an equal number of impulses,
spaced equally in time. This limits the solution space. Finally,
there is no explicit consideration of actuator limits in the
methods published to date. In addition to these limitations,
the solution procedures are typically much less intuitive than
those for single input shapers.

This paper presents multi-input shaping methods that use
multiple inputs to achieve performance that is not possible
with a single input. Multi-input shapers are generated using
a multi-input vector diagram, an extension of the vector
diagram design technique used for single input systems [11].
These graphical design methods are discussed in Sections II
and III. This paper will examine several classes of multi-
input shapers. The first case uses secondary, compensating
inputs to overcome the structural limitations of one primary
input. Section IV outlines the design of such shapers using a
multi-input vector diagram. The second class of multi-input
shapers, introduced in Section V, use additional actuators to
improve the robustness of the control system.

A mobile crane is used as the primary application example
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Fig 2. Representing Impulses on a Vector Diagram
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Fig 3. Resultant Vibration Vector from Adding Impulses

of multi-input shaping in this paper. However, the methods
can be applied to other multi-input systems and are partic-
ularly well suited to overactuated systems, such as multi-
stage positioning systems or hard disk drives. However, the
methods presented in this paper assume a linear (or near
linear) system. Extensions of the methods to systems that
are highly nonlinear or non-stationary may require additional
modifications.

II. VECTOR DIAGRAMS

Due to the nonlinear nature of the constraints used to form
input shapers, finding a solution to a complex formulation
can be difficult. One tool that seeks to simplify the task is
the vector diagram [11]. The vector diagram represents the
vibration caused by an impulse as a vector. The vibration
induced by an impulse sequence is represented by the sum
of the sequence’s representative vectors. The vector diagram
can serve as both an input shaper analysis tool, as well as
an input shaper design tool.

The process of representing an impulse sequence on a
vector diagram is illustrated in Figure 2. Each impulse is
plotted on the vector diagram in polar coordinates. The
magnitude of each vector on the plot is simply the impulse
magnitude. The angle of the ith vector is:

θi = ωti (1)

where ω is the vibration frequency, and ti is the time of the
ith impulse. The time of the first impulse is always zero,
so the resulting angle is zero as well. To plot a negative
impulse, the vector simply points inward to the origin instead
of outward. The angle is plotted in a manner just like positive
impulses. Negative impulses are typically indicated with
dashed lines.

To calculate the residual vibration caused by a sequence of
impulses, the representative vectors are summed, as shown
in Figure 3. The magnitude of the resultant vector, AR, is

1A1 = 1.0

2A1 = -0.52A2 = 0.5

Fig 4. Multi-Input Vector Diagram

proportional to the magnitude of the residual vibration caused
by the impulse sequence. The angle of the resultant, θR, is
equivalent to the phase shift of the residual vibration relative
to vibration from a single impulse applied at time zero.

The vector diagram can also be used as an input shaper
design tool. For example, a third vector can be added to the
two shown in Figure 3 to produce zero vibration. This third
vector is placed opposite of AR. When it is placed this way,
the three vectors will sum to zero, indicating the impulse
sequence will excite zero vibration at the design frequency.

III. MULTI-INPUT VECTOR DIAGRAMS

This section presents an extension of the vector diagram
to the multi-input domain. For clarity on multi-input vector
diagrams, vectors must not only be designated according to
their place in the impulse sequence, but also according to
the input they are used to shape. Vectors are labeled kAi,
where k represents the input they apply to and i represents
their place in the impulse sequence for that input.

Figure 4 shows an example vector diagram for a multi-
input shaper. The first input is applied to the system without
any modification. This can be represented on the vector
diagram as a unity magnitude vector at time zero, labeled
1A1. To form an input shaper that results in zero vibration,
vectors 2A1 and 2A2 are added to the diagram. Vector 2A1

is located at time zero and has an amplitude of −0.5(1A1).
Vector 2A2 is located at time ωt2 = π and has an amplitude
of 0.5(1A1). The sum of vectors 1A1, 2A1, and 2A2 is a
resultant vector of zero length, indicating that the sum of
these two impulse sequences will result in zero vibration.
The vectors in Fig. 4 were chosen to mimic the effect of a
ZV shaper.

Any input shaper utilizing multiple actuators will be qual-
ified with MI to indicate it is a multi-input shaped command.
The shaped command created from the sum of inputs will be
included after the MI designation. For example, if multiple
actuators are combined to create a ZV shaped command, as
in Fig. 4, it will be labeled MI-ZV.

Just as with a single-input vector diagram, there are an
infinite number of choices to create impulse sequences that
result in low levels of vibration. Fig. 5 shows another such
choice. In this case, the vectors were all chosen to be unity
magnitude (UM), and the sequence was chosen to match a
UM-ZV shaper [12], [13].

Due to the large number of possible solutions conceived
using vector diagrams, it makes an excellent tool to develop
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Fig 5. Multi-Input Vector Diagram – Unity Magnitude
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Fig 6. Simple Multi-Input Multi-Output Model

multi-input shapers. It provides a graphical representation of
the ability to change impulse amplitudes and time locations
to match physical system requirements.

It should be noted that multi-input vector diagram example
above assumed that each impulse sequence was shaping a
command that equally affected the vibratory mode. Proper
scaling of the vector solutions and/or the inclusion of addi-
tional vectors allows the diagram to represent impulses ap-
plied to multiple inputs with unequal excitation effects. Also,
the examples in this paper assume zero damping. Damping
can be incorporated into multi-input vectors diagrams using
the same methods as single-input vector diagrams [11].

IV. DESIGN USING MULTI-INPUT VECTOR DIAGRAMS

This section presents design methods utilizing the multi-
input vector diagram that can develop multi-input shapers
for a wide variety of applications. The methods also pro-
vide the necessary tools to create shapers that are able to
account for varying contributions between inputs and result
in low vibration commands. A two-input, single-vibratory-
mode system will be used first to demonstrate the use of the
multi-input vector diagram. Examples from a full, nonlinear
mobile tower crane model are then presented.

A. Compensating Inputs
One category of multi-input shapers is the class of shapers

where the primary input driving the system cannot be prop-
erly shaped to eliminate vibration. However, a secondary in-
put exists and can be properly shaped to cancel the vibration
induced by the primary input. This method is particularly
applicable to systems that are redundantly actuated, such as
mobile cranes. For example, one primary actuator may be
used to position the base of the system, while the secondary
input(s) compensate for the vibration caused by the base
motion.

To demonstrate the multi-input shaping principles, the
two-mass-spring-damper model in Fig. 6 is utilized. The
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Fig 7. Responses to Unshaped and MI-ZV Commands

inputs are u1 and u2 and the outputs are the positions of
M1 and M2, x1 and x2, respectively. The two masses are
connected via a spring with spring constant k and damper
with damping coefficient c. It is easy to see that the inputs
affect the outputs identically.

A bang-coast-bang input from u1, shown as a solid line in
Fig. 7(a), will excite significant vibration in the system. This
can been seen in the response of x2, as shown by a solid line
in Figure 7(b). Suppose that u1 cannot be converted from an
on-off function to a properly shaped function that produces
low vibration. This could result from actuator limitations or
limitations on the actuator force resolution. The multi-input
vector diagram can be used to properly design the shaper
for the second input, u2, that compensates for the limitations
of u1. If each input is shaped according to the multi-input
vector diagram shown in Fig. 4, then the sum of the two
inputs, u1 + u2, is a properly shaped input. Note that u1

is convolved with a single, unity magnitude impulse, which
means it is unchanged. The bang-coast-bang function is then
convolved with the impulses 2A1 and 2A2 to get the u2 input.
As seen in Fig. 7(a), the combination of u1 + u2 gives a
properly shaped command. The response shown as a dashed
line in Figure 7(b) demonstrates the effectiveness of this new
Multi-Input ZV (MI-ZV) shaped command.

B. Scaling for Input Contributions

This section presents a method to scale the multi-input
vector diagram solutions to create impulse sequences that
account for the influence of each actuator. This procedure is
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Fig 8. Simple Rotational Model

first demonstrated on an example system. Then, the general
method is outlined.

The model in Fig. 8 represents a case where inputs have
different effects on the output. It consists of a translational
input, x1, attached to a massless beam of length L. The
second input to the system is the rotation of this beam, θ. A
spring of stiffness k is attached to the end of the massless
beam. The other side of the spring is attached to a mass,
m, only capable of translational motion, x3. This model is
very similar to a mobile tower crane in which the centripetal
effects of jib rotation are ignored.

The state-space form of the linearized equations of motion
for the system is:

˙̄x = Ax̄ + Bū (2)

˙̄x =
[

0 1
− k

m 0

]
x̄ +

[
0 0
k
m − k

mL

] [
x1

θ

]
(3)

The model has two inputs, x1 and θ, that do not equally
affect the vibratory response of the system. The coefficients
of the B matrix reveal how each input affects the system.
As a result, they also provide insight into how multi-input
shaper impulse sequences should be scaled.

The design of a multi-input shaper for this system begins
with the multi-input vector diagram. One choice of impulses
was shown in Fig. 4. For this system, the two sequences of
impulses from this vector diagram are:

x1 :
[

Ai

ti

]
=

[
1
0

]
(4)

θ :
[

Ai

ti

]
=

[
−0.5 0.5

0 π√
k
m

]
(5)

If these sequences are used directly on the system, without
scaling, then the multi-input shaped commands actually ex-
cite more vibration than the unshaped, as seen in Fig. 9. This
effect occurs because the vector diagram in Fig. 4 assumed
that each input induces the same amplitude of vibration,
but, in this case, they do not. To properly account for each
input’s influence on the output, the impulse amplitudes of
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Fig 9. The Effects Multi-Input Shaping Impulse Scaling

each sequence are scaled according to the inverse of its
corresponding entry in the B matrix. When this scaling is
performed, the sequences become:

x1 :
[

Ai

ti

]
=

[
m
k
0

]
(6)

θ :
[

Ai

ti

]
=

[
0.5 m

kL −0.5 m
kL

0 π√
k
m

]
(7)

The sequences now properly account for the influence of
each input on the vibratory dynamics of the system. How-
ever, the impulse amplitudes no longer sum to one. This
means that the DC gain of the shaping process is not one. To
correct the DC gain for this case, each impulse is multiplied
by k

m , the inverse of the sum of the impulses from the two
sequences. The scaled impulse sequences become:

x1 :
[

Ai

ti

]
=

[
1
0

]
(8)

θ :
[

Ai

ti

]
=

[
0.5 1

L −0.5 1
L

0 π√
k
m

]
(9)

The response of the system, using these two impulse se-
quences is shown by the dashed line in Fig. 9. The MI-ZV
shaped response now exhibits no residual oscillation.

For systems with two inputs, this process is easily com-
pleted by scaling one of the impulse sequences by the ratio
of coefficients from the B matrix. For this example, the θ
impulse sequence could be scaled by:

B(2, 1)
B(2, 2)

=
k
m

−kL
m

= − 1
L

(10)

To generally apply the methods described above, the
system must be represented in block diagonal form:

˙̄x = Ax̄ + Bū (11)
ȳ = Cx̄

where,

A = blockdiag[Al] = blockdiag
[

0 1
−ω2

l −2ζωl

]
(12)

B = blockcol
[

0 0 . . . 0
bl
1 bl

2 . . . bl
k

]
, l = 1, . . . , p
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Fig 11. Multi-Input Shaping Commands for Full Tower
Model

where there are k inputs to the system, p is the number of
modes, and ωl and ζl represent the frequency and damping
ratio of the lth mode, respectively. Placing the system in this
form allows the influence of each input on each vibratory
mode to be determined. To eliminate vibration for multiple
modes of vibration, vector diagrams representing each mode
must be examined simultaneously.

Using this method, multi-input commands were generated
for a full, nonlinear mobile tower crane model, using a com-
bination of base motion and jib rotation [14]. To establish
a benchmark command and response, only base motion was
used with the jib held perpendicular to the base velocity,
as shown in Fig. 10. For the MI-ZV shaped case, the same
base command was used, but the jib was rotated to eliminate
the vibration caused by the base motion. For both cases,
the suspension cable length, l, was set to 1.245m and the
trolley position, r, at 0.8m. Both cable length and trolley
position were held constant during the simulations. The
natural frequency of oscillation is approximately 0.22Hz in
this configuration. The base and slewing (θ) commands are
shown in Fig. 11.

The unshaped and MI-ZV shaped payload responses are
shown in Fig. 12. The unshaped base motion alone causes
significant vibration in the β-direction, tangential to the jib,
as seen in Fig. 12. Because the base motion is exactly
perpendicular to the jib, no radial vibration is excited. The
MI-ZV shaped case, utilizing jib slewing, is also shown in
Fig. 12. The vibration in the β-direction, excited by the base
motion, is eliminated. However, the centripetal effects of
rotating the jib have excited a small level vibration in the
radial direction. Despite this, the total amount of vibration
is dramatically reduced.

The vector diagram is a powerful tool to visualize the vi-
bration caused by an impulse sequence. However, it presents
only one method to satisfy the vibration constraints. A more
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Fig 12. Full Tower Model Responses to Unshaped and
MI-ZV Commands

general method may do so via an optimization routine.
To summarize, the generalized algorithm for the procedure
detailed in this section is:

1) Model the system in block diagonal form
2) Simultaneously solve for impulse sequences to satisfy

vibration constraints for each vibratory mode
3) Scale resulting impulses according to the inverse of

corresponding B-matrix entries
4) Check that the impulse sequences satisfy the rigid body

constraints, and, if needed, apply uniform scaling to
satisfy

In this generalized extension, the method becomes similar to
those presented previously in the literature [3]–[9].

V. ADDING ROBUSTNESS VIA SECONDARY ACTUATION

In addition to combining inputs to create low-vibration
commands when one input cannot be properly shaped, multi-
input shapers can also be used to increase the robustness
to modeling errors. The illustration of these methods will
utilize the two-mass spring damper system shown in Fig. 6.
Suppose that the first input, u1, is only capable of the non-
robust ZV shaped command. This scenario could result from
a number of issues, namely a limited number of possible
actuation states or other actuator limitations. In this case,
the second input, u2, can be designed such that the non-
robust ZV command of u1 is augmented by the secondary
input, u2, to create a more robust command. This process is
shown in Fig. 13 for an initial ZV-shaped command that is
converted to a robust Zero Vibration and Derivative (ZVD)
[2] command, us, by the addition of a negative pulse in u2.

The vibration at the design frequency will still reach a
theoretical minimum of zero, as seen in Figure 14, but the
command signal is more robust to errors in natural frequency.
The benefit of the added robustness is shown in Figure 15,
which shows the response of x2 when there is a −20%
modeling error in the frequency. The vibration resulting from
the MI-ZVD command remains well below that of the ZV-
shaped case, illustrating that it is more robust to errors in
frequency.

VI. CONCLUSION

This paper presented methods to design multi-input
shapers that utilize design techniques similar to those for
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Fig 14. x2 Responses to Unshaped, Base ZV-Shaped,
and MI-ZVD commands

single input shapers. The multi-input vector diagram was
introduced and used to design multi-input shapers. Methods
of scaling these multi-input vector diagram solutions to
account for the influence of each input on the vibratory
dynamics were shown. In addition to creating multi-input
shaped commands, a method was introduced that uses sec-
ondary actuators to increase the robustness of a single input-
shaped command. Simulations of a nonlinear mobile tower
crane illustrated key aspects of the proposed method.
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