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Abstract— This paper studies and analyzes fundamental
trade-offs between positioning resolution, tracking bandwidth
and robustness to modeling uncertainties in two-degree-of-
freedom (2DOF) control designs for nanopositioning systems.
The analysis of these systems is done in optimal control setting
with various architectural constraints imposed on the 2DOF
framework. In terms of these trade-offs, our analysis shows
that the primary role of feedback is providing robustness
to the closed-loop device whereas the feedforward compo-
nent is mainly effective in overcoming fundamental algebraic
constraints that limit the feedback-only designs. This paper
presents (1) an optimal prefilter model matching design for a
system with an existing feedback controller and (2) a simulta-
neous feedforward and feedback control design in an optimal
H∞ mixed sensitivity framework. The experimental results on
applying these controllers show a significant improvement, as
high as 330% increase in bandwidth for similar robustness
and resolution level over optimal feedback-only designs. Other
performance objectives are similarly improved. We demonstrate
that the 2DOF freedom design achieves performance specifi-
cations that are analytically impossible for the feedback-only
design.

I. INTRODUCTION

One of the pivotal requirements of nanotechnology is

nanopositioning. Nanoscientific studies as well as applica-

tions, such as in scanning probe microscopy (SPM), demand

positioning systems with atomic scale resolutions. There is

an added impetus on design of nanopositioning systems since

they form the bottleneck in terms of speed and accuracy of

most devices for nano-investigation, especially in SPMs. For

instance in atomic force microscopy (AFMs), the positioning

resolution and tracking bandwidth of positioning systems is

typically few orders less than the imaging resolution and

bandwidth that microcantilever probe provides. Besides high

precision positioning, most nanoscientific studies and appli-

cations impose severe demands on the tracking bandwidth

and reliability in terms of repeatability of experiments. High

tracking bandwidth is required as many studies, especially

in biology and material science, require assaying matter with

nanoscale precision over areas with characteristic lengths that

are typically three orders or more. Repeatability of experi-

ments is essential for validation of the underlying studies

and this requirement translates to robustness of positioning

systems to modeling uncertainties and operating conditions.

Devices that are insensitive to (robust to) diverse operating

conditions give repeatable measurements, and are hence

reliable. The main challenges to design of robust broadband
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nanopositioning systems come from flexure-stage dynamics

that limit the bandwidth of the positioning stage, difficult

to model nonlinear effects due to piezoactuators such as

hysteresis and creep, and sensor noise management issues

in control feedback that can potentially hamper the tracking-

resolution of the device.

There have been many efforts to counter these chal-

lenges which include design changes in the open-loop im-

plementation such as: using ‘harder’ piezoceramics which

have smaller nonlinear effects at the cost of travel range

[1]; replacing voltage control by charge control [2] which

achieves lower hysteresis but leads to more creep, lesser

travel and lower positioning bandwidth; and compensat-

ing for the adverse nonlinear effects by a careful model-

ing of the nonlinearities, especially hysteresis, as in [3],

[4], [5]. Recent work with feedback control designs have

demonstrated that make positioning resolution practically

independent of piezoelectric nonlinearities, where nonlinear

effects become negligible compared to measurement noise.

A feedback control framework presented in [6] determines

and quantifies trade-offs between performance objectives,

assesses if desired specifications are feasible and provides

a way to design controllers to achieve specifications when

possible. They have achieved substantial improvements in

performance objectives of bandwidth, resolution as well as

robustness to operating conditions and unmodeled dynamics

[6], [7], [8]. More recently, 2DOF design schemes are being

demonstrated for further improvements in nanopositioning

systems. In [9], a 2DOF design is presented where the regular

feedback control is appended with a feedforward scheme that

exploits the information from previous scan line to improve

scanning performance for imaging the current scan line. In

[5], an optimal feedforward control design scheme that is

integrated with the feedback design is discussed. In [10],

[11], iterative learning schemes are used along with the

feedback control to get improvements on the feedback-only

design.

This paper presents 2DOF control design for nanoposi-

tioning systems in optimal control framework. The main

contributions of this paper are threefold. First, it charac-

terizes fundamental limitations on the space of achievable

performance specifications as well as quantifies and ana-

lyzes the trade-offs between positioning-resolution, tracking

bandwidth and robustness to modeling uncertainties in the

2DOF design scheme. More specifically, it discusses the

extent of increase in the space of feasible performance

specifications in the 2DOF design scheme when compared

to the feedback-only design. Second, it poses optimization
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problems for determining simultaneously both the feedback

and feedforward control laws to achieve design specifica-

tions, that are within the fundamental constraints. It presents

the optimal 2DOF control design as well as its implemen-

tation for practical scenarios - when the feedback design

is given a priori, and when neither feedback design is

given nor the responsibilities-sharing given a priori. Third,

it presents analysis and comparison of roles of feedforward

and feedback components of 2DOF design, and studies the

extent of improvements over the feedback-only designs and

what limits them. Theoretical assertions are substantiated by

experimental data. In particular, experimental results are pro-

vided that prove that 2DOF designs do achieve performance

specifications which no feedback-only design can achieve.

II. PERFORMANCE OBJECTIVES AND LIMITATIONS

A typical nanopositioning system used in SPM is com-

prised of a flexure stage, actuators (typically piezoelectric)

and/or sensors along with the feedback system. A schematic

of a nanopositioning system is shown in Figure 1. Here, G
represents the scanner that includes the actuators, flexure

stage and sensors, r represents the tracking-reference signal,

d represents the mechanical noise- the effects of unmodeled

dynamics, n represents the sensor noise, ym = y + n
represents the noisy measurement signal and K represents

the control transfer function. The main objective for the

design of the controller K is to make the tracking error

small, that is to make the difference r-y between the desired

and actual motions small. In open-loop positioning systems,
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Fig. 1. A schematic of a nanopositioning system. The transfer function
G represents the flexure stage along with the actuator and the sensor.
The measured signal ym represents the deflection y of the flexure stage
along with the measurement (electronic) noise n. The signal d represents
the mechanical noise (resulting due to unmodeled dynamics and operating
conditions). The controller K is designed to make the signal y track the
reference r.

the performance is severely limited by mechanical noise.

The mechanical noise mainly consists of the slowly varying

drift and creep, which are therefore prominent in slow scans,

and the inertial lag at high frequencies, which is prominent

in high speed scans. Hysteresis affects the systems at all

frequencies and is particularly prominent in repetitive raster

scanning. These nonlinear effects are sensitive to changes in

operating conditions such as ambient temperature, residual

polarization in piezoactuators, and most importantly the

operating point, the reference value on the nonlinear input-

output (input voltage versus stage displacement) graph about

which stage motions are calibrated. Feedback based schemes

(Figure 1) have demonstrated effective compensation for the

creep, drift, hysteresis, and inertial lag problems without

requiring their precise models [6]. They compensate for the

mechanical noise but at the cost of feeding back the relatively

smaller sensor noise. In this paper, we do not consider open-

loop systems and analyze systems that have feedback along

with feedforward components. We first present objectives

and limitations in feedback-only designs and then present

the 2DOF framework.

A. Performance Characterization and Control Objectives

The performance of a nanopositioning system is charac-

terized by its positioning resolution, tracking bandwidth, and

robustness to modeling uncertainties. For a given controller

K, the tracking error in this configuration is given by

e = r − y = S(r − d) + Tn, (1)

where S = (1 + GK)−1 and T = 1 − S = (1 +
GK)−1GK. Thus, low tracking error can be achieved by

designing the feedback law K such that S and T are small

in those frequency ranges where the frequency contents

of r and n, respectively, are large. The resolution of the

nanopositioning system is specified in terms of the stan-

dard deviation σ of the sensor output when there is no

actuation of the positioning stage. The measurement noise

typically exhibits a zero-mean Gaussian distribution. Thus,

3σ-resolution defined by the measurement noise gives over

99.7% confidence in any signal value that is greater than

the resolution. The resolution of the closed-loop positioning

system is determined by the term Tn and therefore lower

values of T over larger ranges of frequencies guarantee better

resolutions. More specifically, the standard deviation σ of

the zero-mean position signal when reference signal is 0,

which determines the resolution of the positioning system, is

given by σ =
∫
∞

0
|T (jω)|2Pn(ω)dω, where Pn(ω) denotes

the power spectral density of the noise signal n. Thus

smaller the bandwidth of T , which is characterized by the

roll-off frequency ωT (Figure 2(a)), smaller the standard

deviation σ, and hence better the resolution of the closed-

loop device. The tracking bandwidth is characterized by the
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Fig. 2. Objectives of feedback control. The objectives of the control design
is to achieve high positioning resolution (by achieving low values ωT , high
roll-off rates in (a) and small error at reference frequencies e(ωr) in (b)),
high tracking bandwidth (by designing for large ωBW ) and robustness (by
achieving ‖S‖∞ close to 1).

corner frequency ωBW as shown in Figure 2(b). We use the

peak value of the magnitude of sensitivity function, ‖S‖∞
to characterize the robustness of the system to modeling

uncertainties and operating conditions (Figure 2(b)). Thus,

the performance specifications translate to control design

objectives of achieving high values of ωBW for high tracking

bandwidth, high roll-off rates of T and small values of ωT

for better positioning resolution, and low values of ‖S‖∞
for better robustness to modeling uncertainties.
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B. Limitations

These objectives have to be achieved under some prac-

tical and fundamental limitations. For instance, closed-loop

bandwidth is limited by the sampling frequency allowed by

the hardware and the feedback law is constrained such that

the actuation signal should be within saturation limits of the

hardware. The algebraic limitation S +T = 1 prevents error

e = Sr − Sd + Tn from becoming small in all frequencies

since S and T can not be made small simultaneously. Also,

for scanner G with phase margin less than 90 deg which is

true for most practical systems, the bandwidth ωBW cannot

be larger than ωT [12]. This limitation prevents the feedback

control to achieve noise attenuation over target reference

frequency range. Another fundamental limitation that im-

poses a trade-off between the bandwidth, the resolution and

the robustness requirements can be explained in terms of

the Bode integral law
∫
∞

0
log |S(jω)|dω = 0 for stable

system G with relative degrees of KG ≥ 2. This shows a

trade-off between the bandwidth and robustness to modeling

uncertainties [12], [13].

Remark 1: The condition on the relative degree is typically

satisfied for typical nanopositioning systems. Since T needs

a sufficiently fast roll off rate at high frequencies for noise

attenuation (and therefore better resolution), the open-loop

transfer function K(s)G(s) is designed such that it has

greater than or equal to relative degree of order 2. Also

when discrete system (or hybrid system-discrete control with

analog system) is used, this relative degree condition is

inherently satisfied [14].

C. Two Degree of Freedom Control

Among various equivalent architectures for 2DOF control,

we consider the scheme in Figure 3(a). The feedback-
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Fig. 3. (a) 2DOF control architectures. (b)Model matching prefilter problem

only control scheme is indeed a special case(Kff = 0)

of the 2DOF scheme. In this paper, we explore to what

extent the performance becomes better. In 2DOF scheme,

the robustness to modeling uncertainties as well as resolution

of the device are determined only be the feedback part of

the controller, that is the transfer function from d to y that

characterizes robustness to modeling uncertainties is still

determined by the sensitivity function S, and the transfer

function from n to y that characterizes resolution is still

determined by the complementary sensitivity function T .

The main difference and advantage in 2DOF control design

compared to the feedback-only design stems from the fact

that the transfer functions from r to y and from n to y
are different. This difference gives greater independence in

designing for better trade-offs between different performance

objectives. We use Try and Ser to denote the transfer

function from r to y and from r to e, respectively, that

is Ser = S(1 − GKff ), Tyr = SG(Kff + Kfb). In this

notation, the closed-loop transfer functions are given by

y = Tyrr − Tn + Sd, e = Serr + Tn − Sd, (2)

u = S(Kff + Kfb)r − SKfbn − SKfbd.

The control objectives translate to small roll-off frequency

as well as high roll-off rates for T to have good resolution,

long range of frequencies for which Ser is small to achieve

large bandwidth and low (near 1) values of the peak in

the magnitude plot of S(jω) for robustness to modeling

uncertainties. Even though the 2DOF control design has

greater flexibility than the feedback-only design, the main

challenges to design still arise from practical and algebraic

(albeit fewer) limitations. In the following, we show that

the feasible space of performance specifications, which are

constrained by the limitations described above in feedback-

only configuration, can be extended by using a 2DOF design

scheme.

III. 2DOF CONTROL-DESIGN METHODS

A. Optimal Prefilter Model Matching Design

In some positioning systems, there is a pre-designed feed-

back component Kfb which cannot be replaced or changed

(for instance, some commercial scanners come with feed-

back components designed to accomplish specific tasks such

as raster scanning). However, typically, there are no such

restrictions on the feedforward control design since it can

be easily implemented as a prefilter on the reference signal.

In the design presented here, the feedforward component

Kpre is so chosen that the closed-loop positioning system

mimics a target transfer function Tref (Figure 3(b)), which

satisfies desired performance objectives. An advantage of

using such model matching schemes is that desired tran-

sient characteristics (such as settling times and overshoots)

can be incorporated by choosing appropriate model Tref .

After noting that the closed-loop device transfer function

from r to y is given by TKpre, the feedforward compo-

nent Kpre is chosen by solving an optimization problem

such that the H∞-norm of the mismatch transfer function

E = Tref − TKpre is minimized. Small values of ‖E‖∞
guarantees small values for mismatch error signal given by

e = Trefr − y = (Tref − TKpre)r. To ensure practical

implementation, it is assumed that Tref and T are stable

proper transfer functions. This optimization problem is trivial

if T is a minimum phase transfer function, that is if it

has only stable zeros. In this case, T−1 is stable and the

solution Kpre can be easily obtained as T−1Tref . However,

typical nanopositioning systems are flexure-based with non-

collocated actuators and sensors, which typically manifest

as non-minimum phase zeros of T . In this case, the optimal

solution can be found by applying Nevanlinna-Pick theory

[15] as follows.

The model-matching problem is equivalent to finding

minimum γ such that ‖Tref − TKpre‖∞ ≤ γ, where the

1666



minimum γ = γopt is achieved for some stable Kpre. If we

define Eγ = 1
γ
(Tref − TKpre) for γ > 0, then our problem

can be restated as finding a stable Kpre which requires

‖Eγ‖∞ ≤ 1. Note that, for stable Kpre, Eγ satisfies the

interpolating conditions Eγ(zi) = 1
γ
Tref (zi) for every non-

minimum phase zero zi of the closed-loop T . Therefore,

we can cast this as a Nevanlinna-Pick (NP) problem - of

finding a function Eγ in the space of stable, complex-rational

functions such that it satisfies ‖Eγ‖∞ ≤ 1 and Eγ(zi) =
1
γ
Tref (zi) (i = 1, ..., n). Moreover, it can be shown that

γopt is equal to the square root of the largest eigenvalue of

the matrix A−
1

2 BA−
1

2 where A = [ 1
zi+z̄j

] and B = [
bib̄j

zi+z̄j
]

[15]. The prefilter is given by Kpre = T−1(Tref − γoptEγ).

B. 2DOF Mixed Sensitivity Synthesis

In this control synthesis scheme, the regulated outputs

were chosen to be the weighted tracking error zs = Wse,

the weighted system output, zt = Wty, and the weighted

control input, z = Wuu to reflect the performance objectives

and physical constraints (Figure 4).

R
T

R
R

R
R

Fig. 4. Mixed sensitivity problem for 2DOF control design. The signals
zs, zt, and zu represent tracking error, the noise component in the
position signal, and the control signal. The weights Ws, Wt and Wu are
chosen to reflect the design specifications of tracking bandwidth, positioning
resolution, and saturation limits on the control signal. To achieve these
objectives, a control design K = [Kff Kfb] which minimizes the H∞-
norm of the transfer function from w = [r n] to z = [zs zt zu] is sought
through the optimal control problem.

However, 2 weight functions Ws and Wt are not enough
to shape Ser, Try , S and T , thus we have included the
weights Wr and Wn to reflect their frequency content as well
as obtain greater independence in specifying trade-offs to
the optimization problem. Using (2), the closed-loop matrix
transfer function from w to z is given by
[

zs

zt

zu

]

=

[
WsSerWr −WsSWn

WtTyrWr −WtTWn

WuS(Kff + Kfb)Wr −WuSKfbWn

]

︸ ︷︷ ︸

=Φ(K)

[

r

n

]

.

Accordingly, the H∞ optimal control problem that we

pose is minK ‖Φ(K)‖∞. The minimization of zs reflects

the tracking-bandwidth requirement. If we design Ws to be

large in a frequency range of [0 ωBW ] and ensure that zs

is small over the entire frequency range (through the above

optimization problem) then the tracking-error e will be small

in the frequency range [0 ωBW ]; that is the closed-loop

positioning device has a bandwidth of ωBW . Alternatively,

note that the transfer function from r to zs is WsSerWr.

The optimization problem along with our choice of Ws and

Wr will ensure that the transfer function Ser is small in the

frequency range [0 ωBW ]. Similarly, the transfer function

from n to zt is the weighted complementary sensitivity func-

tion WtTWn, whose minimization ensures better resolution

as it forces low control gains at high frequencies, and the

transfer function from r to zu is WuS(Kff + Kfb)Wr,

which measures the control effort. Its minimization reflects

in imposing the practical limitation of the control signals to

be within saturation limits.

IV. EXPERIMENTAL IMPLEMENTATION AND

DEMONSTRATION OF CONTROL DESIGNS

This section demonstrates the optimal-control framework

presented above on a two-dimensional flexure scanner of

molecular force probe (MFP-3D) from Asylum Research

Inc., Santa Barbara, CA.

A. Device Description

A schematic of the nanopositioning system (the scanner)

is shown in Figure 5(a). It has two flexure components with

component “X” stacked over the “Y” where the sample-

holder is carried by the “X”-component. Each stage, by

virtue of the serpentine spring design, deforms under the

application of force, providing motion. These forces are

generated by stack-piezos. The motion of each flexure com-

ponent is measured by the corresponding nanopositioning

sensors which is modified from linear variable differential

transformer (LVDT) and the associated demodulation circuit.

The piezoactuators yield a travel range of 90µm in close-

loop in both directions. The sensors have noise less than

0.6nm (deviation) over 0.1 to 1kHz bandwidth. The control

law is discretized and implemented on a Texas instrument

TMS320C6713 digital signal processor(DSP) with 16bits

A/D and 16bits D/A channels.

B. Identification

Physical modeling of the device is difficult due to its

complicated structural design and poorly understood piezoac-

tuation phenomena. Therefore, identification techniques were

used to derive linear models about an operating point, where

the sensor output gave a ’zero’ reading corresponding to

’zero’ input to the piezoactuators. The device is viewed

as a two-input two-output system in which the low-voltage

signals to the X and Y amplifiers are the inputs and the mo-

tion of X and Y flexure-stages components measured by the

corresponding sensors, are the outputs. This results in four

input-output transfer functions Gij , i, j in {x, y} (from input

j to output i). The frequency-response based identification

was done where a sine-sweep over a bandwidth from 1Hz-

2kHz with amplitude 10mV was given to each axis using an

HP 35670A signal analyzer. From the identification results,

X and Y crosstalk represented by Gxy and Gyx are seen to

be relatively small (‖Gxy(jω)‖∞ and ‖Gxy(jω)‖∞ are less

than −17.76dB), which is expected since, by design, X and

Y flexure components are decoupled and are orthogonal to

each other. Therefore, the nanopositioning system is modeled

by two independent single input single output (SISO) units.

The mode of operation of this device is such that higher

bandwidth requirements are made on the smaller stage X ,

whereas the Y stage is made to move relatively slow. Hence,
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Fig. 5. (a) Schematic of flexure scanner: The sample is placed on the
central block of the flexure stage which is driven by the x-piezo which
in turn is driven by the y piezo. The x and y-sensors measure the current
stage position. (b) Experimental frequency responses at various operating
position. (c) Nominal frequency response(dashed) and model frequency
response(solid).

there is a greater emphasis on the control designs for the X
stage, which is presented in this paper.

This process was repeated to obtain frequency responses

of the system at different operating points (by giving various

DC offsets) spanning the range of operation of the device

(Figure 5(b)). The variation in these responses is indicative

of the modeling errors (uncertainties) in our identification

scheme. In addition, it was observed that the frequency

response at the same operating point varies when obtained

at different times. In view of these uncertainties, robustness

of the closed-loop system is a critical requirement of control

design. The nominal frequency response of the system is

obtained from averaging on 5 experiments on the nominal

operating point which is of DC offset corresponds 0V at

output. Figure 5(c) shows the bode diagram of fitted 7th

order model with nominal experimental result. This 7th order

model did not capture dynamics over 500Hz as shown in

Figure 5(c). Its use is justified since the frequency range

of interest is less than 500Hz and larger models result in

implementations of higher order control which cannot be

accommodated by the processor within short sampling time.

This modeling uncertainty from using low order model was

accounted for by imposing the requirement of making the

closed-loop system robust to it on the control design.

C. Control designs, implementation and analysis

1) Optimal prefilter model matching: For the purpose of

illustration, we designed a 9th order feedback “preexisting

controller” by a feedback-only design based on H∞ optimal

framework which achieves much better bandwidth when

compared to PI/PID designs [6]. Therefore, the improve-

ments resulting on application of our model matching shown

in this paper are even more substantial when applied to

typical scanners that typically have PI/PID based feedback

controllers. This feedback-only design yielded a bandwidth

of 49.4 Hz, the roll-off frequency of 60.1 Hz, and ‖S‖∞ of

1.15 for the closed-loop device (represented by dashed lines

in Figure 6).

The prefilter is designed in pursuit of matching T as

Tref = 1
0.0003s+1 by using the Nevanlinna-Pick (NP) solu-

tion. The control law from NP solution is improper and has

relative order of degree −2, and therefore we multiplied by

the weight function W0 = 1.25
(1×10−4s+1)2 such that it becomes

proper and has the same DC gain with Tref .

(a) (b)

Fig. 6. Comparison of experimentally obtained magnitude of S(s) and
T (s) from H∞ feedback-only control design with Ser(s) and Tyr(s) from
2DOF prefilter model matching control. The feedforward controller designed
using prefilter model matching design achieves over 330% improvement
in the tracking bandwidth of the closed-loop design. The robustness and
resolution are determined by the feedback components S and T , and
therefore remain the same for the two cases.

Figure 6 shows the experimentally obtained transfer func-

tion from reference to error i.e. S of feedback control and

Ser of 2DOF control which represent the tracking per-

formance (ωBW =49.4Hz(feedback), =214.5Hz(2DOF)) (a)

and the transfer function from reference to output i.e. T
of feedback control and Tyr of 2DOF control (b). Thus

this 2DOF design yields an improvement of over 330% in

bandwidth over the feedback-only design. Since the feedback

component of the two designs are the same and completely

determines the robustness to modeling errors (characterized

by ‖S‖∞) as well as the positioning resolution (ωT ), the

resolution and robustness remains the same for both the

devices.

2) 2DOF mixed sensitivity synthesis: As discussed in

section 3, four weight functions Wr, Wn, Ws, Wt are

chosen to shape closed transfer functions: Ser with WsWr,

S with WsWn , Tyr with WtWr, and T with WtWn. The

performance objectives of high bandwidth, high resolution

and robustness to modeling errors where reflected as follows.

High resolution requires the roll-off frequency of ωT to be

small, that is T to be small beyond ωT . This is imposed

by designing the weight function Wt = 1000s+5.961×104

s+1.885×105 to

be large at high frequencies (we chose ωt around 75 Hz).

The range of frequencies where S is small (required for

small tracking error) is restricted to small frequencies since

small T at high frequencies implies S to be near 1 at high

frequencies. Thus Ws = 0.3162s+3456
s+3.456 ensures S is small at

low frequencies and allows for its cross-over frequency to be

small enough to make designed ωT feasible. Figure 7(a,b)

shows the choice of the weight functions that reflect these

objectives. The choice of Wr and Wn is made such that at

the frequency the Wt starts increasing, Wr starts increasing

and Wn starts decreasing (in fact Wn is chosen as inverse of

Wr). Note that at the frequency where Ws stop rolls off, Wr

and Wn converge to 1. This choice of Wr and Wn ensures

that Ser is small even when S is not small. This is done by

exploiting that S is shaped by Ws while Ser is shaped by

WsWr. The choice of weight function Wu = 0.1 restricted

control signal values to be within saturation limits.

The feedforward and feedback control laws obtained

from H∞ mixed sensitivity synthesis procedure were im-

plemented. Figure 7(c,d) shows the experimentally obtained

transfer function from reference to error i.e. Ser(s) which

represents the tracking performance (ωBW = 148.2Hz) in (c)
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Fig. 7. (a,b) Choice of weight functions. (c,d) Magnitude of Ser(s) and
Tyr(s)(solid) obtained from experiment and S and T (dashed) obatined from
simulation

and the transfer function from reference to output i.e. Tyr(s)
in (d). There was in improvement of 290% in bandwidth

for same values of resolution and robustness if compared to

feedback-only design.

V. ANALYSIS AND DISCUSSION

(I) Relative roles of feedforward and feedback: Noting

that Ser = S(1 − GKff ), and S cannot be made small

over the entire bandwidth range (in order to allow for noise

attenuation), the feedforward control is ‘active’ in making

Ser small beyond the frequency where |S| is not small

(say greater than 1/
√

2). Also since S = (1 + GKfb)
−1

is completely determined by Kfb, the feedback component

is dominant in frequencies where S is small. Therefore

the main contribution of feedforward component is in the

frequency range where S is no longer small. However

this frequency range is limited. Typically nanopositioning

systems have very low gains beyond their flexure resonance

frequencies. Therefore very high control inputs are needed to

make the positioning systems practical beyond their flexure

resonances. The saturation limits on control signals form

the main constraints on attaining bandwidths beyond flexure

resonances. Thus the feedforward components provide per-

formance enhancements over feedback-only designs in the

frequency range from corner frequency of S to the flexure

resonance frequency. This perspective is further justified

from the fact that the 2DOF mixed sensitivity optimal control

designs, where the optimization problem does not discrim-

inate between feedforward and feedback components with

respect to performance objectives, exhibit this separation of

their roles.

(II) Breaking barriers of feedback-only design: The 2DOF

design is not bound by some fundamental limitations that

constrain the feedback-only designs. For instance the results

in Section IV show that in 2DOF design, the tracking

bandwidth ωBW of the closed-loop device can be made

larger than the roll off frequency ωT which determines the

resolution. The corner frequency ωBW can never be made

larger than ωT in feedback-only design, which suffers from a

stricter trade-off between the resolution and the bandwidth.

For 2DOF prefilter model matching control based on H∞

controller has ωBW of 214.5Hz and ωT of 60.1Hz while

original H∞ controller has the bandwidth of 49.4Hz and the

same roll-off frequency. This example gives a case where

2DOF design achieves specifications that are impossible to

attain with feedback-only design.

(III) Control-design extensions: The 2DOF designs pre-

sented here can be easily extended to achieve a larger class

of design specifications than presented in this paper with

trivial or no modifications to the designs presented here.

For instance, we have not exploited the frequency content

of the reference signals into our design. This can be easily

incorporated by writing the reference signal as r = H(jω)r′,
where r′ is arbitrary signal (as used in our analysis) and the

transfer function H(jω) reflects the frequency content of

the signal. Alternatively we can incorporate the frequency

content of the reference signal through the model transfer

functions Tref or through weight transfer functions.
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