
Toward a flexible control design framework

to automatically generate control code for mechatronic systems

Ö. Aydın Tekin, Robert Babuška, Tetsuo Tomiyama, and Bart De Schutter

Abstract— Software development for the control of mecha-
tronic systems in industry still suffers from the lack of integra-
tion of the domains involved, the lack of verification tools, and
the fact that the physical structure of mechatronic systems, ir-
regular situations, and service functions are often insufficiently
taken into account. To address these problems, we present a
framework and a set of tools with which a multidisciplinary
product development team can (almost) automatically generate
control software for mechatronic systems.

I. INTRODUCTION

The design of mechatronic systems comprises the follow-

ing domains: mechanics, electronics, (embedded) sys-

tems software, and control. Design approaches for mecha-

tronic systems have traditionally been sequential (see Fig. 1).

The main drawback of this approach is that possible defi-

ciencies in the mechanical design can only be detected after

physical prototyping and that it may be too expensive to

restart the design from the beginning.

System 
Specification

Mechanical 
Design

Electronics 
Design

Embedded 
Hardware 

Design

Embedded 
Software 

Design

Control 
Design

Prototype 

Validation and 
Optimization

Manufacturing 
Test Design

Manufacturing

Fig. 1. Traditional sequential design approach for mechatronic systems
(adopted from: National Instruments, http://zone.ni.com).

Besides the high costs, the traditional sequential design

approach usually does not lead to optimal overall behavior,

since the mechatronic system is characterized by an inter-

action of mechanical, electronics, and control behaviors. In

many applications, the role of the controller is considered

as a compensator for the imperfections of the mechanical

construction in the last stage of the design [1]. If the

mechanical structure is chosen well then a good performance

can be achieved with a well designed controller after the

mechanical design is completed. However, often a cheaper

All the authors are with the Faculty of Mechanical, Maritime, and
Materials Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands.

Ö. Aydın Tekin, Robert Babuška, and Bart De Schutter are with the Delft
Center for Systems and Control.

Bart De Schutter is also with the Marine & Transport Technology
department.

Tetsuo Tomiyama is with the Department of BioMechanical Engineering.

Ö. Aydın Tekin o.a.tekin@tudelft.nl

Robert Babuška r.babuska@tudelft.nl

Tetsuo Tomiyama t.tomiyama@tudelft.nl

Bart De Schutter b@deschutter.info

mechanical construction could be built with the same perfor-

mance if the control design aspects would have been taken

into account from the beginning [1]. Clearly there is a need

for a concurrent engineering approach, where mechanical

and control design parameters are simultaneously optimized

[2], [3]. This can only be achieved by considering the design

aspects of these domains in a concurrent manner.

The methodology we propose in this paper adopts a con-

current design approach where the mechanical, electronics,

and control behaviors are simultaneously optimized, taking

the embedded real-time system design concepts into account

(see Fig. 2). This saves time and money, decreases the risk

of errors in the design phase, and enables the use of new

prototyping techniques. Concurrent design methods require

a high-level framework to integrate all the separate design

domains that have their own design tools and designers

who are usually unaware of the tools and methods of the

other domains. Developing such a high-level integration

framework and integration of each design phase within this

framework are the main challenges of this methodology.

System 

Specification

Mechanical 

Design

Electronics 

Design

Embedded 

Hardware/
Software 

Co-design

Control 

Design

Physical 

Prototype

Manufacturing 

Test Design

Manufacturing
Virtual 

Prototype

Fig. 2. Concurrent design approach (adopted from: National Instruments,
http://zone.ni.com).

In the literature, an idea that is similar to our approach

has been proposed in [1]. There, an early conceptual design

phase is introduced, in which the requirements for the overall

mechatronic system are established and clustered by the

system architects for the different design domains. After this

conceptual design phase, the designers try to maximize the

performance of their own domains. However, even if the

requirements for each domain hold perfectly, the require-

ments for the overall system may not hold globally due to

the trade-offs between the design domains. This means that

improving the performance in one design domain may cause

the performance of another design domain to deteriorate.

In our concurrent design framework, we introduce a

multiple-model management system to solve this problem.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB10.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4933



The design starts with functional description of the overall

mechatronic system and multiple design models and the

requirements for each model are generated automatically.

Then the design for each domain goes on in parallel and the

interactions between the design models are supported. While

currently available tools can be used within our framework,

we expect that new prototyping tools will be developed as

well.

This paper is organized as follows. Section II reviews

high-level approaches and tools for a concurrent mechatronic

system design. Section III discusses the available methods

for the integration of the design domains using the bond

graphs and UML (Unified Modeling Language). Section IV

presents our concurrent design framework the multiple-model

management system. Section V reviews the tools and meth-

ods for automatic controller design and code generation.

Section VI concludes the paper with an outline of future

steps that should be taken to obtain an optimal mechatronic

system design method.

II. HIGH-LEVEL APPROACHES: STATE OF THE

ART

The need for high-level approaches for concurrent mecha-

tronic system simulation and design has already been recog-

nized [2], [4]. Although no integrated tools are available to

support the interaction between the design domains, separate

tools have been developed for pairs of domains. Examples

are the integration of mechanical design and control design,

or embedded software design and control design, as detailed

below.

A. Toward a mechatronic compiler

Building a “mechatronic compiler” has been proposed

in [2] to translate high-level specifications automatically

into a mechatronic system where mechanical design and

control design are optimized together. To illustrate the idea,

design of a controller for a 3-axis machine configuration has

been considered. The configurations are stored as classes

in a library and controllers for this class of systems can

be designed simultaneously in the same environment. A

model of the machine is constructed by choosing the best

mechanical configuration by means of a genetic algorithm,

given high-level specifications like maximal static stiffness,

high dynamic stiffness, maximal working space, etc. A robust

H∞ controller is applied in order to handle uncertainties

arising among others from the fact that a family of machine

configurations is considered. In this way, the mechanical de-

sign and the controller design are optimized simultaneously.

B. Embedded control systems

Relatively more effort has been put into the integration

of embedded systems design and control design. It is well

known that the performance of the control algorithm vitally

depends on the respective real-time implementation and the

computer hardware platform. The interplay between control

design and embedded real-time system design has been

addressed, e.g., in [5] and [6]. Tools that help take the timing

effects (i.e. delay and jitter) into account in control design for

the concurrent embedded control systems design have been

reviewed and compared in [6]. They include mainly AIDA

and XILO [7] of the Royal Institute of Technology, Swe-

den; Jitterbug and TrueTime of Lund University, Sweden;

ORCCAD of INRIA, France; Ptolemy II of the University

of Berkeley, California; TargetLink [8] by dSPACE, and

Torsche [9] of the Czech Technical University, Prague.

However, as pointed out in [10], these tools are special-

ized on a single domain instead of supporting co-design to

generate an embedded control algorithm taking into account

the aspects of control design together with communication

aspects. In addition, the theory and methods focus mainly on

analysis rather than on design and synthesis.

In the following section we discuss the use of bond-

graph modeling and UML to integrate the design domains

of mechatronics. Afterwards, in Section IV our concurrent

design framework called the multiple-model management

system is presented.

III. INTEGRATION OF THE DESIGN DOMAINS OF

MECHATRONICS: STATE OF THE ART

Optimizing the mechatronic system design requires an

early stage design phase. A sufficiently sophisticated con-

troller should work well for the initial conceptual design

of a mechatronic system. Similarly, a reduced-order model

of the physical structure can also be used initially to tune

the controller. However, using a simplified model may cause

the transfer functions or the state-space descriptions of the

mechanical system to lose the relation with the physical

parameters [1]. Therefore a new framework and/or new tools

are required to keep the links to the dominant physical

parameters (i.e. mass and stiffness) in the model and let the

other design domains’ tools access these parameters through

these links, i.e., the control design parameters can be tuned

as well as the mechanical system parameters in the same

environment.

The literature indicates the importance of the bond-graph

modeling for concurrent multidisciplinary systems design.

Bond graphs are exploited to form a common design en-

vironment using the components of both mechanical and

electronic design domains for physical modeling of the

mechatronic systems [1], [11]–[13]. At the same time, UML,

the object-oriented modeling language has attracted consid-

erable attention for the integration in the software domain,

utilizing the code reusability and modularity [4], [13]–[16].

The use of bond graphs and UML for an integrated

mechatronic system design are discussed in the following

sections.

A. Bond graphs

Bond graphs provide a way to represent typical com-

ponents of mechatronics from electromechanical, electro-

hydraulic, thermo-fluid, and electronic control system do-

mains in a unified modeling environment [11], [17]. Energy

is the common ground that connects the physical laws for

different domains. Bond graphs are used to analyze the

4934



flow of energy through the interconnections (ports) of the

components from different domains as the product of a flow

variable (i.e. velocity or current) and an effort variable (i.e.

force or voltage).

While the flow of energy is useful for combining the

components of mechanical and electronic design domains,

one may argue that a general control system is more con-

veniently designed using the flow of information. To bridge

the bond-graph models of electromechanical systems with

the control domain, a tool called CAMP-G [11], 20-sim [1],

and Dymola with Modelica language [18] can be used. These

tools can generate state-space models corresponding to the

physical (bond-graph) model of the plant and then export

them into Matlab/Simulink or Scilab/Scicos [19]. Even the

non-linear Modelica models can be used directly in Simulink.

In addition, one does not necessarily need to know bond-

graph modeling to benefit its advantages by using the iconic

diagrams of 20-sim1 [1].

The next section explores the use of UML to integrate the

multiple views of mechatronics at the highest meta-modeling

level.

B. The use of UML for mechatronic systems

UML is the most widely used object-oriented visual

modeling language for software specification, analysis, and

design [20]. Despite the debates on the use of UML for

real-time software design [21], there is a clear trend to use

UML for creating abstract meta-models that are platform-

independent and that, later on, can be mapped into any

platform-specific application by a model compiler [13]. The

aim of all the efforts in this area is to build a common

description language so that the designers from different

disciplines can understand the global behavior of the whole

system. Moreover, UML is an object-oriented modeling

language that keeps the reusability and the modularity at the

top level.

UML allows the model-specific design by means of stereo-

types derived from the basic UML meta-model elements.

A consistent set of stereotypes is called a profile. UML-

RT (here RT stands for Real-Time) profile adds five new

stereotypes to UML: capsules, ports, connectors, protocols,

and protocol roles. These additional stereotypes help to make

UML suitable for modeling complex real-time systems [14],

[22].

A unified language to obtain a complete description of an

automated system, suitable for its simulation, documentation,

and validation has been presented in [13]. It integrates the

specifications for the design of the automated system, in-

cluding the dynamics of the physical plant, the discrete-event

behavior of distributed control software, and the specification

of interface ports between the plant and the controller.

Exploiting bond graphs and their mathematical formalization

as port-Hamiltonian systems, it has been shown that any

physical system can be described within the UML-RT profile.

1http://www.20sim.com/

To illustrate the potential benefits of using UML for the

integrated design of control systems further, two related

projects are highlighted below.

C. Projects that use UML for the integration and control

code generation

There are two projects related to the research on the

development of the integrated design notation (IDN) which

is proposed to integrate process engineering, software en-

gineering, and control engineering: (1) the PiCSI (Process

Control Systems Integration) Project [23], [24] and (2) the

FLEXICON (Flexible Control Systems Development and

Integration Environment for Distributed Control) Project

[25].

Both projects aim to achieve the integration and co-

simulation of continuous control and sequential control.

Continuous control and sequential control are applied to

control the continuous dynamics and the discrete dynamics

of the hybrid system respectively. For the continuous con-

trol they use Simulink, and for the sequential control they

use SFC (Sequential Function Chart) which is a graphical

language for PLCs covered in the IEC 61131-3 standard

by the International Electrotechnical Commission. UML is

chosen as the core of the integrating development environ-

ment. The models designed by using different design tools

like Simulink, Stateflow, and SFC are translated into UML

diagrams for the integration. Translating UML diagrams into

hardware independent Java code concludes the integration

and code generation approach.

IV. PROPOSED FRAMEWORK: MULTIPLE-MODEL

MANAGEMENT SYSTEM

The framework we propose will be described now in more

detail, which has formerly been introduced in [26] and [27].

In our framework, the design starts with a functional and

behavioral description of the plant and the requirements for

the overall performance of the mechatronic system. This

description is in a language that is close to human perception

and serves as the input to the integrated design framework

(see Fig. 3). The functional description is translated into

qualitative behaviors for the mechanical, electronic, and con-

trol design domains. As control design relies on quantitative

models and specifications, the qualitative models and the

requirements, obtained from the functional description, must

be converted into an appropriate form, such as a Simulink

block diagram and specifications in terms of, e.g., overshoot

and rise time. The next step is to decide which control

method to use to satisfy these design requirements.

Note that our aim is not to develop a mechatronic system

design tool that enables the design of the whole mechatronic

system with all the components from multiple domains, but

to design the controller automatically based on multiple

models in a unified framework that integrates a set of tools

from multiple domains. The former aim seems an unrealistic

approach for two reasons: (1) the design of the whole

system is often too big and complex to fit into one single

environment, (2) the tools are usually designed for specific

4935



Functional
Model

Function Model

Qualitative
Behavior

Mechatonics Feature-based
Product Definition

Mechatronics
Feature Modeling

Qualitative Behavior
Generation

Plant Model
Generation

Control
Software

Hardware & Machine
Level Verification

Software Level
Verification

Function Modeling (Modes, Communication, User Interaction)

Mechanical CAD
Model & Prototype

Control Hardware
Model & Prototype

Plant
Model

Quantitative Behavior
Generation Control Design

Mechanical
Embodiment Design

Quantitative
Behavior

Control Code
Generation

Fig. 3. Multiple-model management system.

domains and the designers have been educated to work with

these tools.

Matlab serves a good basis for the design of controllers

integrating many toolboxes and Simulink as a user friendly

block-oriented design and simulation environment. Matlab

also provides other tools viz. SimMechanics and SimElec-

tronics to model the mechanical and electronic parts of

the system; however, simulating the controller together with

the mechanical and electronic models in closed loop is

not necessarily convenient. Although Matlab/Simulink fits

best for the control design, Dymola with the open source

object-oriented language Modelica that can also use the bond

graphs modeling framework may be an alternative choice for

the design, modeling, and simulation of electromechanical

systems [18].

Therefore, our approach keeps all the different design

models as they are and enables the designers of different

models to oversee the whole design such that the designers

have more access to other domain models while working

on their own specific design with the help of the qualitative

behaviors generated within the framework. The controller

is designed having all the qualitative behavior information

of the whole system and the most up-to-date quantitative

model of the (electro)mechanical plant. In parallel to the

controller design (control code generation), the plant model

is generated from the (electro)mechanical embodiment de-

sign domain which uses the recent quantitative model of the

controller for the electromechanical system design.

The designed controller is verified using the dynamics of

the latest physical model in the closed loop. Simultaneously,

the physical model is verified using the dynamics of the

controller in the closed loop. [27] can be referred to for

further details about the plant model generation and the

verification parts of the proposed approach. After the verifi-

cation is accomplished by means of iterative simulations, the

control software is generated by the available code generation

mechanisms like the Matlab/Simulink/Real-Time Workshop.

Finally the generated control code is validated on the real

system (or its prototype). In summary, our framework enables

the automatic generation of control code from functional

descriptions of a mechatronic system supporting the co-

design of control, mechanical, and electronic design domains

[26], [27].

The next section elaborates further the control design and

the generation of the control code automatically from the

qualitative behaviors and the requirements obtained from the

functional descriptions of the whole mechatronic system.

V. AUTOMATIC CONTROLLER DESIGN FROM

REQUIREMENTS

This section starts with brief exposition about the com-

puter aided control system design (CACSD) tools with

code generation capabilities for real-time implementation and

goes on with a survey of the attempts taken to develop a

standard methodology for control system design from the

requirements in a top down approach.

A. CACSD software tools for control code generation

Although there have been many CACSD tools devel-

oped for the design and simulation of some specific areas

of control systems, only a few CACSD software pack-

ages like FBCad [28], 20-sim (by Technical University of

Twente), Mathematica, Matlab, and Scilab are commonly

used. Some of these tools are reviewed below starting with

Matlab/Simulink which is the dominating CACSD software

in the control engineering area [23], [29], [30].

1) Matlab/Simulink: The studies on Rapid Controller Pro-

totyping (RCP) with Matlab/Simulink go back to 90s in the

effort to fill the gap between the two essential phases of

control engineering: (1) control systems analysis and sim-

ulation, (2) real-time implementation of control algorithms.

Real-time extensions of MS-DOS have been considered to

provide low-cost solutions using PCs with open-architecture

standard hardware followed by a rapid controller prototyping

toolbox for Windows 95/98/NT, which automatically gen-

erates real-time code from a Simulink model using Real

Time Workshop (RTW) [29]. By the development of code

generation mechanisms and Simulink modules to embed

Matlab/Simulink models into microcontrollers [30], Matlab

has become the dominating tool for the control system design

and implementation.

2) RTAI – Real-Time Application Interface: Mat-

lab/Simulink/RTW is integrated with the Linux Real-Time

Application Interface (RTAI) by a tool called RTAI-Lab

4936



which also supports the open source CACSD Scilab/Scicos2.

RTAI-Lab is an alternative to the Simulink external mode,

but with reliable hard real-time support on the Linux RTAI

distribution. It is also possible to use distributed control with

the Linux RTAI-Lab GUI, which facilitates a hard real-time

network communication [31].

3) FBCad – Functional Block Computer-aided design:

FBCad is a prototype CACSD tool for designing and analyz-

ing reusable high-level control software components and for

generating run-time code for distributed control systems [28].

FBCad can generate the C++ source code automatically for

the simulation of robot control systems with 3-D graphical

animations. FBCad uses function blocks (FBs) that are

already defined in the IEC 61499 standard. FBs are discussed

further in Section V-B.

4) R2D2C – Requirements 2 Design 2 Code: Initial steps

have been taken for designing a system from requirements

which is called “Requirements-Based Programming (RBP)”

for software development [32]. There is still a large gap

in going from requirements to design, but “RBP seeks to

eliminate this gap by ensuring that the ultimate application

can be fully traced back to the actual requirements of the

system” [33].

After this brief review on the tools that can generate

the control code from the control system models and on

the first steps toward fully functional requirements based

programming (RBP), in the following section, the idea of

designing the controller systematically or automatically from

the system requirements is discussed.

B. CDM – Control Development Methodology

The first question that one might ask when developing a

control code generation software is: Is there a structured way

of designing controllers?

The European Space Agency has already defined a basic

control development methodology (CDM) for space applica-

tions. Additional features to the CDM have been investigated

[34]. Moreover, some principles leading to structured and

formal design methods for the development of distributed

control systems for robotic applications have been addressed

[28], [34].

The main purpose of such a structured control design

methodology for robotic applications is to enhance the

reusability of the previous projects by dividing the whole

design problem, in a structured, hierarchical way, into smaller

tasks and functions that are easily understood and that can

be reused. So, the gap between the functional design and the

final implementation is filled in five steps by the CDM [28].

The first step of the CDM defines the design problem

clearly. The second step divides the design problem into

simpler control tasks (and further subtasks) such that each

task can be realized by a control algorithm. Formal repre-

sentation of these control tasks have been defined by the

industrial standard IEC-61499 as the fundamental functional

block (FB). An FB represents a functional unit of the

2www.scilab.org

software associated to a control task. Connecting instances

of FBs in a proper way, it is possible to create a complex

control application. The execution control chart (ECC) of

the FB model determines the execution order of the control

algorithms as a supervisory control system. This allows the

design of hybrid systems where continuous dynamics are

combined with discrete event systems. The last three steps

define the implementation, integration, and verification of the

control software and hardware for the whole mechatronic

system [28].

VI. CONCLUSIONS, OPEN ISSUES AND

CHALLENGES

A. Conclusions

Optimizing the mechatronic system design requires the

concurrency of the constitutive design domains: mechanical

design, electronic design, control design, and embedded

systems design. Currently, each of these domains uses dif-

ferent tools and the designers of each domain are usually

not familiar with the tools and methods used in the other

domains. Easier interactions between the domains will thus

lead to a more efficient and higher quality mechatronic

system design.

We have discussed high-level approaches like bond graphs

and UML for the integration of the design domains. Based on

the flow of energy, bond-graph modeling integrates the me-

chanical and electronic design domains. Being an extendable

object-oriented meta-modeling language, UML offers more

flexibility for the integration of the software design domain

in addition to its potential for integrating the bond-graph

models.

A new integration framework called the multiple-model

management system has been proposed such that multiple

models for the domains of mechatronics are automatically

generated from the functional description of the system.

Developing such a high-level integration framework and

integrating the design domains within this framework are the

main challenges of this methodology. Finally, several com-

puter aided control system design tools and the first attempts

for a structured control system design methodology have

been reviewed. A high-level design example that illustrates

our integration framework will be presented in our future

work.

B. Open issues and challenges

Toward the development of a framework for an optimal

integrated mechatronic system design, there are still open

issues and challenges the most important of which will now

be outlined briefly.

The controller of the mechatronic system must handle the

sequential control represented by discrete event systems as

well as the control of continuous systems. To this end, mod-

eling and control of hybrid systems and the respective real-

time implementation must be investigated further to come

up with a structured method for the design of mechatronic

control systems.

4937



New methodology and tools must be developed to generate

qualitative behaviors and models for each design domain of

mechatronics from the functional model. The requirements

for designing the controller need to be generated from the

functional model in a similar way. New tools can be devel-

oped or the current tools can be investigated to exchange the

dominant parameters of the models which may influence the

integrated design.

Finally, a “control compiler” should be designed such

that controller is constructed automatically from several

library components according to the plant model and the

requirements. This will lead to the design of a common

environment for the integration of the design domains of

mechatronics and for the automatic generation of control

code.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the

Dutch Innovation Oriented Research Program ‘Integrated

Product Creation and Realization (IOP-IPCR-0602)’ of the

Dutch Ministry of Economic Affairs.

REFERENCES

[1] J. van Amerongen, “Mechatronic design,” Journal of Mechatronics,

Elsevier, vol. 13, no. 10, pp. 1045–1066, December 2003.
[2] H. Van Brussel, P. Sas, I. Nemeth, P. De Fonseca, and P. den

Braembussche, “Towards a mechatronic compiler,” IEEE Journal of

Mechatronics, vol. 6, no. 1, pp. 90–105, 2001.
[3] J. M. Rieber and D. G. Taylor, “Integrated control system and me-

chanical design of a compliant two-axes mechanism,” Mechatronics,
vol. 14, no. 9, pp. 1069–1087, November 2004.

[4] K. Thramboulidis, “Model-integrated mechatronics - toward a new
paradigm in the development of manufacturing systems,” IEEE Trans-

actions on Industrial Informatics, vol. 1, no. 1, pp. 54–61, 2005.
[5] J. El-Khoury, “A model management and integration platform for

mechatronics product development,” Ph.D. dissertation, Department of
Machine Design. Stockholm, Sweden, KTH. Trita-MMK, ISSN 1400-
1179, 2006.

[6] M. Törngren, D. Henriksson, K.-E. Arzen, A. Cervin, and Z. Hanzalek,
“Tool supporting the co-design of control systems and their real-time
implementation: Current status and future directions,” in Proc. IEEE

International Symposium on Computer-Aided Control Systems Design,
Munich, 2006, pp. 1173–1180.

[7] O. Redell, J. El-Khoury, and T. M., “The AIDA toolset for design
and implementation analysis of distributed real-time control systems,”
Microprocessors and Microsystems, vol. 28, no. 4, pp. 163–182, 2004.

[8] I. Stuermer, M. Conrad, H. Doerr, and P. Pepper, “Systematic testing
of model-based code generators,” IEEE Transactions on Software

Engineering, vol. 33, no. 9, pp. 622–634, 2007.
[9] P. Šůcha, M. Kutil, M. Sojka, and Z. Hanzálek, “TORSCHE schedul-

ing toolbox for matlab,” in IEEE Symposium on Computer-Aided

Control System Design, Munich, 2006, pp. 50–52.
[10] M. Törngren, D. Henriksson, O. Redell, C. Kirsch, J. El-Khoury,

D. Simon, Y. Sorel, H. Zdenek, and K.-E. Arzen, “Co-design of
control systems and their real-time implementation - a tool survey,”
Mechatronics Lab, Department of Machine Design, Royal Institute of
Technology, KTH, 100 44 Stockholm, Sweden, Tech. Rep., 2006.

[11] J. J. Granda, “The role of bond graph modeling and simulation in
mechatronics systems an integrated software tool: CAMP-G, MAT-
LABSIMULINK,” Mechatronics, vol. 12, no. 9-10, pp. 1271–1295,
November-December 2002.

[12] J. van Amerongen and P. Breedveld, “Modeling of physical systems
for the design and control of mechatronic systems,” Annual Reviews

in Control, vol. 27, no. 3, pp. 87–117, 2003.
[13] C. Secchi, M. Bonfe, and C. Fantuzzi, “On the use of UML for

modeling mechatronic systems,” IEEE Transactions on Automation

Science and Engineering, vol. 4, no. 1, pp. 105–113, 2007.

[14] B. Selic, “Using UML for modeling complex real-time systems,” in
Proc. ACM SIGPLAN Workshop on Languages, Compilers, and Tools

for Embedded Systems, London, UK, 1998, pp. 250–260.
[15] K. C. Thramboulidis, “Using UML in control and automation: a model

driven approach,” in Proc. 2nd IEEE International Conference on

Industrial Informatics, Berlin, June 2004, pp. 587–593.
[16] M. Bruccoleri, C. D’Onofrio, U. La Commare, and F. Raimondi,

“UML design and AWL programming for reconfigurable control
software development of a robotic manipulator,” in Proc. 10th IEEE

Conference on Emerging Technologies and Factory Automation, 2005.
[17] S. Behbahani and C. W. de Silva, Mechatronic Systems: Devices,

Design, Control, Operation and Monitoring. CRC Press, Inc., 2008,
ch. Mechatronic Design and Optimization, pp. 17–1–17–26.

[18] G. Ferretti, G. Magnani, and P. Rocco, “Virtual prototyping of mecha-
tronic systems,” Annual Reviews in Control, vol. 28, no. 2, pp. 193–
206, 2004.

[19] M. Najafi and R. Nikoukhah, “Modeling and simulation of differential
equations in Scicos,” in Proc. 5th International Modelica Conference,
Vienna, Austria, September 2006.

[20] A. Watson, “Visual modelling: past, present and future,” Online,
Object Management Group, http://www.uml.org/, September 2008.

[21] B. Selic, A. Burns, A. Moore, T. Tempelmeier, and F. Terrier, “Heaven
or hell? A “real-time” UML?” Proc. Unified Modeling Language:

UML 2000, Lecture notes in computer science, Springer-Verlag, vol.
1939, pp. 93–100, 2000.

[22] P. Ferreira, A. Sampaio, and A. Mota, “Viewing CSP specifications
with UML-RT diagrams,” Electronic Notes in Theoretical Computer

Science, vol. 195, pp. 57–74, 2008.
[23] D. N. Ramos-Hernandez, P. J. Fleming, and J. M. Bass, “A novel

object-oriented environment for distributed process control systems,”
Control Engineering Practice, vol. 13, pp. 213–230, 2005.

[24] D. N. Ramos-Hernandez, I. Zubizarreta, P. J. Fleming, S. Bennett, and
J. M. Bass, “Towards a control software design environment using a
meta-modelling technique,” in IFAC 15th Triennial World Congress,
Barcelona, Spain, 2002, pp. 255–260.

[25] H. A. Thompson, D. N. Ramos-Hernandez, J. Fu, L. Jiang, I. Choi,
K. Cartledge, J. Fortune, and A. Brown, “A flexible environment for
rapid prototyping and analysis of distributed real-time safety-critical
systems,” Control Engineering Practice, vol. 15, pp. 77–94, 2007.

[26] A. A. Alvarez Cabrera, M. S. Erden, M. J. Foeken, and T. Tomiyama,
“High level model integration for design of mechatronic systems,” in
IEEE/ASME International Conference on Mechatronic and Embedded

Systems and Applications, Beijing, China, October 2008, pp. 387–392.
[27] M. J. Foeken, M. Voskuijl, A. A. Alvarez Cabrera, and M. J. L.

Van Tooren, “Model generation for the verification of automatically
generated mechatronic control software,” in IEEE/ASME International

Conference on Mechatronic and Embedded Systems and Applications,
Beijing, China, October 2008, pp. 275–280.

[28] L. Ferrarini and E. Carpanzano, “A structured methodology for the
design and implementation of control and supervision systems for
robotic applications,” IEEE Journal of Control Systems Technology,
vol. 10, no. 2, pp. 272–279, 2002.

[29] W. Grega, K. Kolek, and A. Turnau, “Rapid prototyping environment
for real-time control education,” in Proc. Real-Time Systems Education

III, K. Kolek, Ed., 1998, pp. 85–92.
[30] S. Rebeschiess, “MIRCOS – microcontroller-based real-time control

system toolbox for use with Matlab/Simulink,” in Proc. IEEE Interna-

tional Symposium on Computer Aided Control System Design, Kohala
Coast, HI, 1999, pp. 267–272.

[31] R. Bucher and S. Balemi, “Rapid controller prototyping with Mat-
lab/Simulink and Linux,” Control Engineering Practice, vol. 14, pp.
185–192, 2006.

[32] J. L. Rash, M. G. Hinchey, C. A. Rouff, D. Gracanin, and J. Erickson,
“A requirements-based programming approach to developing a nasa
autonomous ground control system,” Artificial Intelligence Review,
vol. 25, no. 4, pp. 285–297, 2006.

[33] M. G. Hinchey, J. L. Rash, and C. A. Rouff, “A formal approach to
requirements-based programming,” in Proc. 12th IEEE International

Conference and Workshops on the Engineering of Computer-Based

Systems ECBS ’05, Washington, DC, USA, 2005, pp. 339–345.
[34] G. Ferretti, G. Magnani, P. Putz, and P. Rocco, “The structured design

of an industrial robot controller,” Control Engineering Practice, vol. 4,
no. 2, pp. 239–249, 1996.

4938


