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Abstract— Solid Oxide Fuel Cells (SOFCs) are high temper-
ature fuel cells with a strong potential for stationary power
house applications. However, considerable challenges are to
be overcome to connect these cells to the power grid. The
cells have to satisfy the changing demand of the grid without
sacrificing their efficiencies and without causing any structural
or material damage. Such an operation, coupled with fast and
highly nonlinear transients of the transport variables, leads to
a very challenging control problem. This requires an efficient
and robust controller. For synthesizing such a controller, a
well-validated dynamic model is essential. In this work, a
dynamic model is validated by using experimental data from
an industrial cell. The data are generated over a broad range
of cell temperatures, reactant flow rates, DC polarizations, and
amplitudes of step. In the process of validation, it is identified
that the Knudsen diffusion and an extended active area for
the electrochemical reactions play key roles in determining the
current transients of the cell. The dynamic model is used for
identification of reduced order models that can be solved in
real time for implementation in the MPC framework. Several
linear and nonlinear models are considered and the best model
is chosen according to the AIC values of the models. Both SISO
and MIMO models are identified. For the MIMO model, voltage
and H2 flow are considered as inputs. Power and utilization
factors are considered as outputs. A linear model such as ARX
model is found to be satisfactory for most SISO cases. However,
a nonlinear model such as NAARX model with more cross terms
is found to improve the model performance significantly for the
MIMO case. All through this work, efforts have been made to
synthesize the simplest, yet representative model that can be
used for real-time applications.

I. INTRODUCTION AND LITERATURE REVIEW

Solid oxide fuel cells (SOFCs) are being considered for

their future application in a grid-connected system. Along

with other advantages, SOFCs have good load-following

characteristics [1]. However, they have to follow the load in

the presence of the challenging constraints without damaging

the hardware of the system. An efficient controller is essential

to satisfy these requirements. To synthesize such a controller,

a thoroughly validated dynamic model of SOFC is critical.

However, it might not be feasible to use a detailed dynamic

model for real time applications. Nonetheless, the dynamic

model can be utilized to identify reduced order models that

can be solved in real time for online control. The detailed

model can also be used for studying the transients of the

system.

Most dynamic studies do not consider the detailed dynamics

of the diffusion of the gaseous species through the electrodes
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[2], [3], [4]. Instead, a lumped term for the concentration

overpotential is considered to account for the mass transfer

losses inside the electrodes. The effects of the diffusive

resistances on the transients of the system have been reported

in the work of [5]. However, the diffusion considered in

their work [5] is one dimensional and Taylor’s expansion

is applied to approximate the flux in the form of a transfer

function. Effects of any approximation and/or assumption on

the transients becomes clear if the dynamic model is vali-

dated extensively in a broad operating range. Such validation

studies are rare in the existing literature. [6] have presented

validation studies for a button cell in a single operating

condition due to a step change in the current. However, for

a well-validated dynamic model, it is essential to validate

the model for steps in different inputs at various operating

conditions. Besides, the magnitude and the directionality of

the steps need to be varied. Presence of such a study is

minimal in the open literature.

Although the detailed dynamic model is essential for con-

trol studies, it cannot be solved in real time in many

circumstances. In NMPC (Nonlinear MPC) implementation,

for example, it is often required to solve an optimization

subproblem including the dynamic model to decide the future

control moves. If a complex dynamic model is used in the

optimization framework, the solution of the optimization

problem in real time cannot be guaranteed. This necessitates

the identification of a reduced-order model which can be

used for real-time applications.

Existing literature on identification of statistical models for

SOFC can be divided into two categories – Linear and

Nonlinear. There are different techniques for computing the

linear models such as FIR (Finite Impulse Response), ARX

(Auto-Regressive with eXogeneous input), ARMAX (Auto-

Regressive Moving Average with eXogeneous input ), BJ

(Box-Jenkins), FFT based-methods etc. Not many linear

models are found in literature for identification of SOFC

because of the high nonlinearity in the SOFC process. In the

work of [7], a linear ( ARX) model is used for identification.

ANN (Artificial Neural Network) is often used to model

the nonlinearity [8]. Hammerstein model structure ( a static

nonlinearity followed by a dynamic linear part) has been also

explored [9].

In all these studies, the process model that is used to generate

the data for identification is simple. The dynamic data used

for identification should be representative of the system

nonlinearity and, therefore, needs to be generated from a

detailed model that has been validated with the experimental

data over a broad operating range for steps in different inputs
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with varying magnitude and directionality. Most authors have

validated the identified models by giving a single step in

input [7], [9].

All the work mentioned above assume, a priori, a structure

for the linear or nonlinear model and their performance

are studied. A comparative performance criterion (such as

Akaike Information Criterion-AIC) can be thought of as

a rational approach to justify the use of a certain model

structure of a given complexity. This paper addresses some

of the issues mentioned above. The arrangement of the paper

is as follows. In the following section, a brief account of the

dynamic modeling is presented. The next section presents

the validation studies of the dynamic model. The last section

shows the identification of the reduced order models.

II. MODELING OF SOFC

In this industrial cell, pure H2 enters the anode gas

flow channel and diffuses through the anode to the TPB

(Triple Phase Boundary) for the anodic reaction. Steam gets

generated due to the reaction and flows out to the flow

channel. In the cathode side, air enters the channel and O2

diffuses to the cathode TPB for the electrochemical reaction.

Although, N2 does not take part in the reaction, it may show

transients until it reaches a new equilibrium. The coordinate

system and the nomenclature followed in the radial and axial

directions are shown in Figure 1.

Fig. 1. Illustration of the coordinate system

The cell is divided into several segments of length △z
by a plane perpendicular to the axial direction. In each

segment, there are 5 Control Volumes(CVs): anode flow

channel, anode, electrolyte, cathode and the cathode flow

channel. Inside a CV, uniform transport fields are assumed.

In this study, the electrolyte is considered to be solid.

A. Anode gas flow channel

1) Species Conservation: Considering the diffusion from

the anode gas flow channel to the porous anode, the species

conservation equations can be written as:

∂Cj,ac

∂t
= −

∂

∂z
(Cj,acuz,ac) +

2Dj,eff

rin,ac

∂

∂r
(Cj,an) (1)

where j denotes species H2 and H2O . Cj,ac and Cj,an

are the concentrations of the species j in anode gas flow

channel and inside anode respectively (mole/m3). uz,ac is

the velocity in the z direction inside the anode channel (m/s).

rin,ac is the inside radius of the anode channel (m). Dj,eff

is the effective diffusivity of species j in electrode.

B. Cathode gas flow channel

1) Species Conservation: Because of the counter-flow

configuration of the cell and the convention of the coordinate

axes, the species conservation equations in the cathode flow

channel can be written as:

∂Cj,cc

∂t
=

∂

∂z
(Cj,ccuz,cc) −

2Dj,effrin,cc

r2
out,cc − r2

in,cc

∂

∂r
(Cj,ca) (2)

where j denotes species O2 and N2 . rin,cc and rout,cc

are inside and outside radius (m) of the cathode channel

respectively. Cj,cc and Cj,ca are the concentrations of the

species j in cathode gas flow channel and inside cathode

respectively (mole/m3). uz,cc is the velocity inside the

cathode channel (m/s) in the z direction.

C. Anode

Hydrogen gets consumed due to the reaction at the TPB

while steam is generated. Considering the velocity to be zero

in the porous region, the species conservation equation can

be written as [10]:

εan

∂Cj,an

∂t
= Dj,eff (

1

r

∂

∂r
(r

∂Cj,an

∂r
) +

∂2Cj,an

∂z2
) (3)

Here j denotes species H2 and H2O and εan is the porosity

of the anode.

D. Cathode

As in the anode, the species conservation equations can

be written as :

εca

∂Cj,ca

∂t
= Dj,eff (

1

r

∂

∂r
(r

∂Cj,ca

∂r
) +

∂2Cj,ca

∂z2
) (4)

Here j denotes species O2 and N2 and εca is the porosity

of the cathode.

The effective diffusion coefficient of species j is expressed

by Bosanquet equation [11]. The detailed calculation of the

diffusion coefficients are shown in [12].

E. Electrochemical Reaction:

Nernst potential is given by :

ENernst =
−△G0

2F
+

RuT

2F
ln(

PH2
P 0.5

O2

PH2O

) (5)

where △G0 is the change in standard state Gibbs’ free en-

ergy of oxidation reaction of hydrogen, T is the temperature

of PEN, PH2
and PH2O are the ratios of partial pressures of

hydrogen and water respectively at the anode TPB over the

standard atmospheric pressure, PO2
is the partial pressure

of oxygen at the cathode TPB over standard atmospheric

pressure and Ru is the universal gas constant.

The ohmic losses in the electrodes and the electrolyte are

assumed to follow Ohm’s law. The calculation of the ohmic

resistances and the temperature-dependent relations used can

be found in [12]. For calculating the activation polarization at
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the electrodes, the hyperbolic sine approximation of Butler-

Volmer equation is considered. The exchange current densi-

ties in the electrodes are considered to be temperature and

concentration dependent.

Initially, only binary diffusivity was considered for the

species transport. The simulation results showed a much

lower overshoot in the current than observed in the experi-

mental data. The time constant and the settling time in the

simulation results were lower than the experimental data

too. Observing the mismatch with the experimental data,

Knudsen diffusion is considered in the next level of model.

Although, the overshoot, time constant, and the settling

time matched quite well with the experimental data, the

steady state current in the simulation results fell much lower

than the experimental data. Because of this mismatch, an

extended active area for the electrochemical reactions have

been considered. A number of authors have reported the

existence of an extended TPB length and surface area for

the electrochemical reactions [13], [14], [15]. In this work,

the extended area for reactions have been characterized as

regularly spaced cylinders. This is illustrated in Figure 2. In

Figure 2, ’c’ is the radius of the cylinder and ’2x’ is the

periodic spacing of the cylinders. ’c’ is a measure of the

grain size of the electrolyte particles in the electrode. ’h’

is the height of a cylinder. In order to reduce the number

of tuning parameters and simplicity, ’h’ is considered to be

same for both the electrodes. Assuming uniform porosity in

the active area, ’x’ can be expressed in terms of ’c’ and the

porosity. Therefore ’h’ is the only tuning parameter in the

calculation of the active area. The gradual development of

the detailed dynamic model can be found in [16].

III. Validation Studies

A. Data for Validation

The industrial cell studied here is a counter-current

anode-supported tubular solid oxide fuel cell. The cell is

well-insulated and kept inside a furnace that maintains

the temperature of the cell with a feedback control. As a

result, under most operating conditions, the cell considered

can be assumed to be isothermal. The cell is started up

and the temperature is slowly brought to 700oC. After the

Open Circuit Potential (OCP) of the cell stabilizes at this

temperature, data collection is started. First, the steady state

data of the cell are collected at various temperatures and

flowrates of H2. The dynamic data are collected by stepping

up and down the cell voltage at various temperatures

and different H2 flowrates. After that, the dynamic data

are collected by introducing steps of different magnitude

and directionality in the flowrate of H2. The voltage and

current data are collected by a Tektronix TDS 3014B

oscilloscope. The sampling time is 0.1 ms and the data

are collected for 1 s. This sampling time is found to

be adequate to capture the current transients as well as

the entire range of data until the cell reaches the steady state.

B. Processing of Data

The experimental data of current, voltage and flow

are very noisy. Since the voltage and flow are inputs to

the model, clean data for these two inputs are required

to perform model validation. The voltage data are first

filtered by implementing a 3rd order butterworth filter

with a normalized cut-off frequency of 0.1. In the case of

a step down in voltage, the input voltage data could be

curve fit by considering a step fall followed by a transient

like a first order system. For the step up in voltage, the

transient in the input voltage can be fit only by a first

order transfer function. Flow data are found to be extremely

noisy. Because of the overlapping of the signal and noise

frequency, the data could not be cleaned properly so as to

show any clear trend. However, it is observed that the step

in the input flow can be approximated by a second order

transfer function having a damping ratio (ζ) of 0.9 , DC

gain (Gdc) of 1.0 and time constant (τ ) of 0.78. These

values are found out by manipulating the input data for

flow at 850oC, 0.65 V and for flow steps of 40 ml/min to

45 ml/min H2 flowrate. The characteristic parameters are

manipulated such that the simulation results have minimal

error with the experimental data in a least squares sense.

The same parameters are used to find the input data for all

other steps in flow.

Fig. 2. A model of the active reaction zone

C. Steady State Model Validation

Both the steady state and the dynamic results reported

hereafter are based on the cylindrical characterization of the

active area. The steady state model is validated with the

data at 700oC, 800oC and 850oC. At each temperature, the

model validation is done for both 35 ml/min and 45 ml/min

of H2 flowrates. Figure 3 is an example of the validation

at 700oC and 35 ml/min H2 flowrate. Figure 3 shows a

very good match between the simulation results and the

experimental data over the whole range of the DC potentials.

D. Dynamic Model Validation for Steps in Voltage

The voltage signal is pre-processed and used as an input

voltage to the dynamic model. The step in voltage from
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Fig. 4. Input voltages and the current transient for steps in voltages at
700oC

0.7 V to 0.6 V given at 700oC and 35 ml/min is shown

in Figure 4 A. The curve-fit signal matches the input data

very well. Figure 4B shows that the transients are well

predicted by the model. The experimental data for current

transients shown here and in other figures later in this work

are filtered through a 3rd order butterworth filter. Figure 4C

is the actual signal for voltage step from 0.5 V to 0.6 V

given at 700oC and 45 ml/min. Figure 4D shows that the

simulation results capture the nature of the experimental

data.

The validation of the dynamic model is done at other

temperatures and flowrates of H2 for steps in voltage. The

fit of the dynamic model is found to be satisfactory for all

the experimental data.

E. Dynamic Model Validation for Steps in Hydrogen Flow

Figure 5 shows an example of the model validation for

steps in H2 flow. The input flow signal is plotted with

respect to the right axis. The simulation values and the
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Fig. 5. Comparison of results for H2 flow stepping from 35 ml/min to 40
ml/min

experimental data, plotted with respect to the left axis, are

found to match well. Similar kind of fit is obtained for all

other steps in H2 flow.

IV. IDENTIFICATION STUDY

A. Models of Different Forms

In this work, we have considered Linear in Parameter

(LIP) models. The parameter vector is estimated by the

method of least squares. The simplest dynamic model con-

sidered here is the Finite Impulse response (FIR) model

[17]. The other form of linear model considered is the ARX

model. NAARX (Nonlinear Additive Auto-Regressive with

eXogenous inputs) models are considered as one of the forms

for the nonlinear models. NAARX models can be expressed

by:

y(k) =
n∑

i=0

fi(u(k − i)) +
r∑

j=1

sj(y(k − j)) (6)

where fi and sj are nonlinear functions. In this study, f
and s are represented by a polynomial of order P and Q
respectively. A second order Volterra model is considered as

another nonlinear model. It is given by [18]:

y(k) =
M∑

i=0

h1(i)u(k− i) +
M∑

i=0

M∑

j=0

h2(i, j)u(k− i)u(k− j)

(7)

In this work, a modified Wiener model structure has also

been explored for SOFC identification. In this structure,

the input sequence u(k) is transformed to an intermediate

sequence φ(k) by a linear ARX model. Then φ(k)is trans-

formed to the final output y(k) by the Volterra model. Unlike

a typical Wiener model, the nonlinear block has memory in

this modified structure.

B. Model Selection Criteria

In the presence of different competing models, several

information-theoretic criteria have been proposed such as

Final Prediction Error (FPE), Akaike Information Criterion

2675



(AIC) [19], Minimum Description Length (MDL) Criterion

[20] etc. However, in this work, AIC has been used as it is

one of the well-accepted and tested criterion for selecting

statistical models. Model complexity of a given form is

increased until the AIC value changes significantly. If there

is no significant difference in the AIC values between two

models, then the simpler model is chosen. Root Mean Square

Error (RMSE) of all the models are also compared for

observing the change in the prediction error with an increase

in the model complexity.

C. SISO Model

For the SISO model, the cell terminal voltage is considered

as the input and cell power is considered as the output. The

performance of the input-output model is observed to be

very poor and does not improve any significantly when more

terms are included in the model.

Figure 6 shows the performance of the ARX model and

the modified Wiener system. Although not clear from the

figure, the performance of the modified Wiener system is

marginally better than that of the ARX model. Two forms of
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Fig. 6. Performance of ARX model and ARX model followed by Volterra
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the NAARX models are considered in the identification of

the SISO model. One form considers the cross terms between

the inputs. The other form does not consider any cross term.

Performances of both the NAARX models are better than

that of the ARX model. The performance of the modified

Wiener system is marginally better than that of the NAARX

models. But in view of the simplicity of the model, the ARX

model is chosen as the best SISO model for this cell and for

this input-output pair.

D. MIMO Model

In the MIMO model, a two input/output system is studied.

The inputs are cell voltage and the flowrate of H2. The

outputs are power and utilization factor (UF ) of H2. For

identification of the MIMO model, steps in both the inputs

are introduced simultaneously. The performances of both

the input-output model and the ARX model are not good.

The modified Wiener system is finally discarded because

of its complexity. Four forms of the NAARX model are

considered. In model 1, no cross-terms between the inputs

are considered. In model 2, only self-cross terms (such as

u1(k)u1(k − 1)) are considered along with all the terms

used in model 1. In model 3, cross-terms between the inputs

corresponding to the same time instant (such as u1(k)u2(k))
are considered along with the terms used in model 2. In

model 4, all possible combinations of cross-terms between

the inputs based on the polynomial order are considered.

The number of terms in each model is increased until

significant changes in AIC and RMSE values are observed.

Figure 7A shows the fit of each model for the transients in

power. Performance of model 1 is very poor. The goodness

of fit improves significantly as cross-terms are introduced

in model 2. Performance of model 2 is shown in Figure 7B.

As more cross-terms are considered, model performance

improves as seen in Figure 7C. Based on the AIC values,

model 3 is the final model for power. Figure 7D shows the

error profiles as model complexity is increased. It is observed

that the error corresponding to model 3 is very close to zero.
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Fig. 7. Performance of different models for power corresponding to
simultaneous step in voltage and H2 flow

For the transients in UF , model 4 is the final model

based on the AIC values. The AIC and RMSE values for

the identification of the model for UF are reported in Table

I.

TABLE I

AIC AND RMSE VALUES FOR MIMO MODELS FOR UF

Model 1 Model 2 Model 3 Model 4

AIC +1.1 × 103
−5.2 × 103

−8.0 × 103
−1.43 × 104

RMSE 4.9625 0.0645 0.0380 0.0132
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V. CONCLUSIONS

In this paper, a dynamic model of an anode-supported

tubular counter-flow SOFC is validated with the experimental

data. In the process of validation, it is observed that the

mass transfer resistances inside the electrodes play a key

role in determining the transients of the system. The effects

of the Knudsen diffusion and an extended active area for

the electrochemical reactions are considered based on the

mismatch between the experimental data and the simulation

results. A cylindrical characterization of the active area is

found to be adequate for model validation.

Reduced order SISO and a MIMO models are identified

using the detailed first principles model. The modified

Wiener system performs very well for all the simulated cases.

However, it is not selected as the final model in view of the

complexities associated with it for implementation in a MPC

framework and for execution of the block in real time. For

the voltage-power SISO model, ARX model is chosen as the

final model. In the identification of the MIMO model, the

model performance is found to improve as more cross-terms

are considered.
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