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Abstract—This paper addresses the control of spacecraft to 
approach and align with a tumbling target. In order to complete 
the task, the spacecraft is required to perform large position and 
attitude maneuvers with sufficient accuracy. In addition, the 
flexible motion induced by large angular maneuvers needs to be 
minimized.   The primary contribution of this work is to 
consider the control of position, attitude, and flexible motion in 
one unified optimal control framework. The 6-DOF rigid body 
dynamics and coupled flexible structure dynamics are highly 
nonlinear and lead to a challenging control problem. The −θ D  
nonlinear optimal control technique is employed to design an 
integrated controller for this problem by solving the associated 
Hamilton-Jacobi-Bellman (HJB) equation in an approximate 
analytical form via a perturbation process. The closed-form 
controller offered by this method is easy to implement onboard 
especially for this problem with a large state-space. Numerical 
results show that the proposed controller exhibits good tracking 
performance even under large moment of inertia uncertainties. 

I. INTRODUCTION 
With the fast growing space activities, there is an increasing 
interest in autonomous on-orbit servicing satellites for 
economical and other reasons. The Orbital Express Program 
[1] and SUMO program [2] developed by DARPA are 
technology demonstration missions that aim to offer the 
potential for spacecraft salvage, repair, refueling, and debris 
removal. A key enabling technology in these missions is 
autonomous rendezvous and capturing. In this paper, we 
consider the problem of driving a spacecraft to a proximity 
position with respect to a target and synchronizing the 
spacecraft attitude with the tumbling target’s attitude. The 
two vehicles will eventually have no relative motion and then 
subsequent service operations can be safely performed with a 
normal docking or capture mechanism. The spacecraft 
kinematics and dynamics are highly nonlinear and thus 
traditional linear control designs are unsuitable, especially 
when large angular maneuvers are required.  

Many nonlinear control techniques have been investigated 
in the past to address the attitude control problem such as 
sliding mode [3], backstepping [4], and adaptive quaternion 
feedback [5]. The State Dependent Riccati Equation (SDRE) 
technique was used in [6] to design both position and attitude 
controllers. However, the SDRE method needs to solve the 
Riccati equation repetitively at every integration step. It may 
raise an implementation issue if the system order is higher. 
Ma et al. [7] designed a feed-forward optimal control strategy 
for spacecraft to approach a tumbling satellite by minimizing 

time/fuel consumption. A restricted planar rigid body motion 
was considered. 
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Since the spacecraft tracking a tumbling target may involve 
large or rapid angular motions, effective vibration control of 
flexible structures becomes essential to ensure the successful 
control task. There are many research works on vibration 
control of spacecraft structures [8-10]. However, very few 
works consider the coupling of the flexible motion with the 
six degree of freedom position and attitude dynamics. 

In this paper, the control of spacecraft to approach a 
tumbling target is formulated as a unified optimal control 
problem incorporating control of position, attitude, and 
flexible structures. The Dθ −  technique [11,12] is employed 
to design this integrated control law. This method can provide 
a closed-form feedback controller based on an approximate 
solution to the Hamilton-Jacobi-Bellman (HJB) equation. 
The resultant closed-form solution offers a great advantage 
for online implementations. 
Rest of the paper is organized as follows. Section II describes 
the equations of motion of the problem including six 
degree-of-freedom rigid body dynamics and the model of 
flexible structures. The Dθ −  technique is reviewed in 
Section III and is employed to design the spacecraft 
controllers in Section IV. Simulation results are presented in 
Section V. Some concluding remarks are given in Section VI. 

II. EQUATIONS OF MOTION AND PROBLEM FORMULATION 
In this study, we consider a spacecraft mission performing 
proximity flight around a tumbling target such as space debris 
or mal-functioned satellite that needs to be served. The 
control objective is to have the spacecraft positioned at a 
certain distance from the target while synchronizing the 
spacecraft body frame with the target body frame during the 
operation. The body fixed coordinate frames of the spacecraft 
and the target are represented by  and ˆ ˆ ˆ{ , , }

x y zs s s sB b b b

ˆ ˆ ˆ{ , , }
x y zt t t tB b b b  respectively, which is shown in Figure 1. The 

inertial coordinate system is denoted by ˆ ˆ ˆ{ , , }I x y zN n n n . 

ˆ
ztb
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Fig. 1: Spacecraft and target coordinate frames 
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A. Rigid Body Dynamics 
The above task involves both translational and rotational 

maneuvers with highly nonlinear kinematics and dynamics. 
The six degree-of-freedom (6-DOF) motion of a spacecraft 
neglecting gravity can be described by [13]: 
Kinematics:     ωs s s s= − +r r v                                 (1) 

 
( )1Ω

2s s s=q ω q
                              

(2) 

where ,  are spacecraft 

position, velocity, and body angular velocity respectively;  
Note that they are defined in the spacecraft body frame. 

 is the quaternion vector to 
describe the spacecraft attitude with respect to the inertial 
frame. The elements of the quaternion are defined as: 

3 3,s sR R∈ ∈r v

0 1 2s s s sq q q⎡⎣

x y z

T

s s s sω ω ω⎡= ⎣ω

3

T

sq ⎤⎦

⎤
⎦

=q

               (3)                                                    
0

cos( / 2), sin( / 2), 1,2,3
i is s sq q c iϕ ϕ =

where ϕ  is the rotation angle about the Euler-axis, and 
 are the direction cosines of the Euler axis with 

respect to the reference frame. 
1 2

,c
3

( , )s s sc c

The definition of sω  and ( )sΩ ω  can be referred to [13]. 

Dynamics:                 s
s s s

sm
+ =

F
v ω v                     (4) 

                                  1 1
s s s s s s sJ J J− −+ =ω ω ω Γ             (5) 

where sm and sJ are spacecraft mass and moment of inertia 

matrix respectively. Control force  and 

control torque Γ are defined about the 

spacecraft body axes 

x y z

T

s s s sF F F⎡ ⎤= ⎣ ⎦F

z

T

s
⎤Γ ⎦

ˆ, }
zs

x ys s s
⎡= Γ Γ⎣

ˆ ˆ{ ,
x ys s sB b b b . 

The kinematic and dynamic equations of the 6-DOF tumbling 
target can be written in the target body frame in the same 
fashion as Eqs. (1),(2) and Eqs. (4), (5) in the absence of 
control forces and control torques.   
The errors in position, velocity, angular velocity, and 
quaternions between the spacecraft and the target can be 
described by: 
                                  sB I

e s I tT= −r r r                             (6) 

                                  sB I
e s IT= −v v vt              (7) 

                                  sB I
e s IT= − tω ω ω

sq
                   (8)  

                                                          (9) 1
e tQ−=q

where ,  are the target position, 
velocity, and body angular velocity respectively defined in 
the target body frame; is the target quaternion vector. The 
target states can be transformed to the inertial frame by 

3 3,t tR R∈ ∈r v

tq

3
t R∈ω

 [ ]
t

TI I I I
t t t B t t tT⎡ ⎤ =⎣ ⎦r v r vω ω                 (10)  

where superscript ‘I’ denotes inertial frame and 
t

I
BT  is the 

target body-to-inertial coordinate transformation matrix that 
can be obtained from the target quaternions [13]. sB

IT is the 
coordinate transformation matrix from the inertial frame to 

the spacecraft body frame and can be obtained in terms of the 
spacecraft quaternions [13].  is defined as: tQ

3 0

2 1

1 2

t t

t t

t t

t t

q q

q q

q q

q q

−

                         

0 3 2 1

1 2

0 3

3 0

t t

t t
t

t t

t t

q q

q q
Q

q q

q q

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−− −⎣ ⎦

                  (11) 

B. Coupling of Flexible Structure Dynamics 
During the slewing maneuver of the spacecraft to track the 
tumbling target, it is important to suppress the induced 
vibrations in order to ensure accurate attitude control. In this 
paper, control of flexible motion is also considered together 
with the rigid body dynamics and is formulated as a unified 
optimal control problem.  
The specific model considered in this study consists of a rigid 

attached symmetrically to the 
center hub representing the lightweight flexible structures. 
Without loss of generality, deflection of flexible appendages 
is assumed to occur only about the spacecraft body 

hub with two appendages 

ˆ
ysb  axis 

(pitch motion) as shown in Fig. 2. Furthermore, it’s assumed 
that the deflection is anti-symmetric such that the center of 
mass of the spacecraft does not shift. This assumption has 
been validated to be a good one in Ref. [10].  

 

The flexible structure considered is a continuous simple 
elastic structure such as Euler-Bernoulli beam. The control 
force and control torque are placed only on the rigid hub.  

Fig. 2. Spacecraft and appendage allocation

Appendage deflection can be expressed in term of a series of 
assumed admissible mode shape function [10].  

( ) ( )
1

n

k =

( , ) k kw t x t x rη φ −∑
                  

(12) =

where ( )k tη  is the kth time-varying mode coefficient and 

( )x rkφ −  is the pre-determined admissible shape function. 
 is the mode number; r is the hub radius; n x is the distance 

from the center of the hub. 
The rotation angle about the spacecraft ˆ

ysb  axis is denoted 

byψ and the torque placed on the hub is 
ysΓ . The pitch 

equation of motion of the flexible structures can be derived 
via Lagrangian procedure [10]  

             
( )M M 2 M

y y

TT T
s sJ ψ ψ− + − =* *η η η η ηψ η Γ   (13) 

            2 *M C K Mψ ψ⎡ ⎤ 0ψ+ + + + =⎣ ⎦ηη η ηη ηηη M η η  (14) 

where      ( ) ( )M 2
r L

k pkp r
x r x r dxφ φ ρ

+
⎡ ⎤ = − −⎣ ⎦ ∫ηη         

( )2
r L

kk r
x x r dxψ φ ρ

+
⎡ ⎤ = −⎣ ⎦ ∫ηM  ; ( ) ( )C 2

y

r L

s k pkp r
CJ x r x r dxφ φ

+
⎡ ⎤ = −⎣ ⎦ ∫ηη −  
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( ) ( )K 2 ;− M Μ M−*
ηη=

y

r L

s k pkp r
EJ x r x r dxφ φ

+
⎡ ⎤ = −⎣ ⎦ ∫ηη                              

( ) ( ) ( )2 2 21Μ 2
2

r L

k pkp r
r L r x x r x r dxρ φ φ ρ

+ ⎡ ⎤⎡ ⎤ = + − − − −⎣ ⎦ ⎣ ⎦∫   

ysJ  is the moment of inertia about the spacecraft body ˆ
ysb  

axis; L is the undeformed length of the appendage; C and E 
are the damping coefficient and modulus of elasticity 
respectively;  is the mode number; p ρ is mass per length. 

When spacecraft maneuvers are relatively fast, we can 
simplify the equation (13) by neglecting the quadratic terms 
[10]. Also note that 

ysψ ω= . The equation (13) becomes: 

                      ω
y y y

T
s sJ ψ+ =ηM η sΓ  (15) 

The rigid body rotational equation of motion coupling the 
flexible mode can be written as 

[ ]{ } [ ]ω 0 1 0 0 1 0T TT T
s s s s sJ J Mψ+ + +ηω ω η M η sψ =η Γ   (16) 

     (17) 2 *M ω C K ω M
y ys sψ

⎡ ⎤+ + + +⎣ ⎦ηη η ηη ηηη M η 0=η

As can be seen, the flexible modes are coupled with the 
attitude dynamics and in turn coupled with the position and 
attitude kinematics. These equations are highly nonlinear and 
pose a challenging control problem. 
In the next two sections, we propose the Dθ −  suboptimal 
control technique to solve this nonlinear control problem.  

III. REVIEW OF θ - D  CONTROL TECHNIQUE 

The θ  nonlinear control technique addresses the class 
of nonlinear time-invariant systems described by 

- D

                                     ( )f B= +x x u                             (18) 
with the cost functional: 

                          
0

1 [
2

T T ]J Q R
∞

= +∫ x x u u dt

m m

                     (19) 

where , : , , : , ,n n n m m n nR f R B R R Q R R R× × ×∈Ω⊂ Ω→ ∈ Ω→ ∈ ∈x u

nR

; 
Q is a positive semi-definite matrix and R is a positive definite 
matrix; B is a constant matrix and f(0)=0; Ω  is a compact 
subset in ;  

The optimal solution to this infinite-horizon nonlinear 
regulator problem can be obtained by solving the 
Hamilton-Jacobi-Bellman (HJB) partial differential equation 
[14]: 

          11 1( ) 0
2 2

T T
T TV V Vf BR B Q−∂ ∂ ∂

− +
∂ ∂ ∂

x
x x x

=x x         (20) 

where V(x) is the optimal cost , i.e. 

        
0

1( ) min ( )
2

T TV Q
∞

= +∫ux x x u R dtu                            (21) 

Optimal control is obtained from the necessary condition as 

                      1 T VR B− ∂
= −

∂
u

x
                                          (22) 

The Dθ −  control technique provides an approximate 
solution to the above HJB equation (20) such that a 
suboptimal closed-form feedback controller can be obtained. 

The Dθ −  control method can be summarized by the 
following procedure [11].  
Write the nonlinear state equation as a linear-like structure:  

  0
( )( ) ( ) Af B F B A Bθ
θ

⎡ ⎤= + = + = + +⎢ ⎥⎣ ⎦

xx x u x x u x u

]

   (23) 

where A0 is a constant matrix such that (A0, B) is a 
controllable pair and [F B( ),x  is pointwise controllable. 

Add a perturbation power series 
1

i
i

i
Dθ

∞

=
∑ to the original cost 

function (19) 

            
0

1

1
2

T i T
i

i
J Q D R dθ

∞∞

=

t
⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑∫ x x u u          (24) 

Assuming a power series expansion 
0

( , ) i
i

i

V T θ θ
∞

=

∂
=

∂ ∑ x
x

x

i

and 

solving the new optimal control problem (23) and (24) 
through the HJB equation yield a suboptimal control  

                     1

0
( , )T

i
i

R B T θ θ
∞

−

=

= − ∑u x x                        (25) 

where ( , )iT θx ( 0, , ,i n= ) is a symmetric matrix and is 
solved recursively by the following algorithm. 
     1

0 0 0 0 0 0 0T TT A A T T BR B T Q−+ − + =                             (26a) 

1 1 0
1 0 0 0 0 1 1

( ) ( )
( ) ( )

T
T T T T A A T

T A BR B T A T BR B T D
θ θ

− − 0− + − = − − −
x x

                     

   (26b)  
                                                                                    

1 1 1 1
0 0 0 0

( ) ( )
( ) ( )

T
T T T n n

n n
T A A T

T A BR B T A T BR B T
θ θ

− − − −− + − = − −
x x

                                      
1

1

1

n
T

j n j n
j

T BR B T D
−

−
−

=

+ −∑        (26c) 

Equation (26a) is an algebraic Riccati equation and the rest 
of equations are Lyapunov equations that are linear in terms 
of (iT 1, ,i n= ). Since all the coefficients of  are the same 

constant matrices, i.e. 
iT

1
0 0

TA BR B T−− and 1
0 0
T TA T BR B−− , 

closed-form solution for ( , )iT θx  can be easily obtained by 
solving Eqs. (26a)-(26c) successively [11]. 

The  matrix is constructed in the form of:      iD

                 1 0
1 1

( ) ( )T
l t T A A T

D k e
θ θ

− 0⎡ ⎤
= − −⎢ ⎥

⎣ ⎦

x x
          (27a)  

                           
1

11 1

1

( ) ( )
n

T n
l t Tn n

n n j n j
j

T A A T
D k e T BR B T

θ θ

−
− −− −

−
=

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑x x  (27b) 

where  and are design parameters; Di satisfies  ik 0il >
1

11 1

1

( ) ( )T i
Ti i

j i j
j

T A A T
T BR B T D

θ θ

−
−− −

−
=

i− − + ∑x x
−  

1
11 1

1

( ) ( )T i
Ti i

i
j

T A A T
T BR B Tε

θ θ

−
−− −

−
=

j i j

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑x x  (28) 

where 1 il t
i ik eε −= − ( 1,i n= ).  
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iε  is a small number used to overcome the large control 
problem because the state dependent term A(x) on the 
right-hand side of the equations (26b,c) may cause large 
magnitude of ( , )iT θx  if the initial states are large. iε  is also 
required in the proof of convergence and stability of the 
above algorithm [11].  
Remark 3.1 θ  is just an intermediate variable. The 
introduction of θ  is for the convenience of power series 
expansion, and it is cancelled when ( , )iT θx  multiply iθ  in 
the final control calculations, i.e., equation (25).   

Theoretic results concerning the convergence of the series 

0

( , ) i
i

i

T θ θ
∞

=
∑ x , closed-loop stability, and optimality of 

truncating the series can be found in Ref. [11]. 

IV. INTEGRATED SPACECRAFT CONTROL DESIGN 
In order to employ the Dθ −

y

optimal control, the system 
dynamics need to be written in the state-space representation. 
To this end, we can eliminate ωs from Eqs. (16) and (17) to 
get the differential equation for the flexible mode η : 
                     1 1 1 2Ks sM C M= ⋅ − ⋅ − ⋅ − ⋅η ω η η Γ  (29) 
where: [ ]1 1

1 0M 0 1 0 ωs s sM J Jψ
− −= ηM  

[ ] [ ]{ }1 1
1 0C M 0 1 0 0 1 0 T T

s sC M J Mψ ψω− −−= ηη η η  

1 2
1 0K M K M

ysω− ∗⎡ ⎤= +⎣ ⎦ηη , [ ]1 1
2 0M 0 1 0 sM Jψ

− −= ηM  

[ ] [ ]1
0M M 0 1 0 0 1 0 T T

sJψ ψ
−= −ηη η ηM M  

Define . Equation (29) can be written in the 
state-space form:  

1 2,= =s η s η

1 2=s s   (30) 

2 1 1 2 1 1 2C Ks sM= ⋅ − ⋅ − ⋅ − ⋅s ω s s ΓM              (31) 
To improve the steady-state tracking performance, an integral 
state of sr  is augmented into the state space, i.e. 

                                    sI =r rs                                         (32) 
In the flexible structure model, the first three modes are 
considered. This will be shown to be a good approximation. 
The state-space variables for this spacecraft control problem 
are chosen to be  [ ]1 2 22 1

T
s s e s sI ×

=x r v q ω r s s  (33) 

where sr  and sv  are governed by the position kinematic and 
dynamic equations (1) and  (4). The attitude error kinematics 
is governed by 

               

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

1
2

t x y

x t z

y z t

z y x

e e e e e e e

e e e e e e e

e
e e e e e e e

e e e e e e e

q q q q

q q q q

q q q q

q q q q

ω

ω

ω

ω

ε ω ω ω

ω ε ω ω

ω ω ε ω

z

y

x

t
ω ω ω ε

− − −⎡ ⎤
⎢ ⎥

+ + −⎢ ⎥
= ⎢ ⎥− + +⎢ ⎥

⎢ ⎥+ − +⎢ ⎥⎣ ⎦

q     (34) 

where 0.0001
tωε = −  is added to the quaternion error 

dynamics since the target body rates are unstable. 

Let s

t

B I
I B tT T=ξ ω . The angular velocity tracking error eω  

expressed in the spacecraft body frame can be written as 
[ ] [ ] [ ]1 0 0 ; 0 1 0 ; 0 0 1

x x y y z z

T T
e s e s e sω ω ω ω ω ω= − = − = − Tξ ξ ξ(35) 

Using Eq. (29) in Eq. (16) yields the state equation for sω  

( )
[ ](

1
3 1 1

1
1 2

K

C 0 1 0 )
2s s s

T T
s s

M coeff J coeff M

coeff J Mψω

−

−

= + ⋅ ⋅ + + ⋅

+ ⋅ − ⋅

ω ω s Γ

sη

s

 (36) 

where 1
3 1s s sM J J coeff Mω−= − − ⋅ ; [ ]1 0 1 0 T T

scoeff J ψ
−= ηM  

The state-space equations (1), (4), (34), (36), (32), (30), and 
(31) describe the entire spacecraft dynamics. The Dθ −  
technique can be employed to integrate the control of position, 
attitude, and flexible structures.  
In the Dθ −  formulation, the nonlinear state-space equations 
need to be written in the form of (23).  is chosen to be: ( )F x

[ ]

33 34 33 33 33 33

33 34 33 33 33 33

43 43 1 2 43 43 43

1

33 33 34 3 33 1 1

33 33 34 33 33 33 33

33 33 34 33 33 33 33

33 33 34 1 33 1 1

ω
ω

1 1
2 2

C
K

0 1 0

K C

s

s

T T
s s

Q Q

coeff
M coeff

J M

M

ψηω−

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⋅⎢ ⎥
⋅⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢
⎢
⎢

− −⎣ ⎦

I 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

I 0 0 0 0 0 0
0 0 0 0 0 0 I
0 0 0 0

⎥
⎥
⎥

 
where 

 
1

t

t

t

t

a b c
a c

Q
b c a
c b a

ω

ω

ω

ω

ε
ε

ε
b

ε

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥−
⎢ ⎥
− −⎣ ⎦

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

 ,  

1 2 3

0 3 2
2

3 0 1

2 1 0

e e

e e e

e e

e e e

q q q
q q q

Q
q q q
q q q

− − −⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
−⎣ ⎦

e

e

and  , , . [1 0 0]Ta = [ ]0 1 0 Tb = [ ]0 0 1 Tc =

The 0A  and are chosen such that ( )A x 0 ( ( ))0A F t= x , and 

0( ))( ) ( ) (A F F t−x = x x . The control coefficient matrix B is: 

( )

33 33

33 33

43 43
1

33 2

33 33

33 33

33 2

1

s

m

B J coeff M

M

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= + ⋅⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎣ ⎦

0 0

I 0

0 0
0
0 0
0 0
0

x

                   A satisfactory state weighting matrix is chosen to be:      

(37) 

The cost function is chosen to be in the form of (19). 

( )1 2s s e s sIr v q r s sQ diag w w w w w w wω⎡ ⎤= ⎣ ⎦   (38) 

[ ]( )1 100 1
sr

w diag= ; [ ]( )1 1 1
svw diag=  

( )11 11 121, 8 10 , 3 10 , 1 10 ;
eq

w diag ⎡ ⎤= × × ×⎣ ⎦ ( )12 13 121 10 1 10 1 10
s

w diagω ⎡ ⎤= × × ×⎣ ⎦  

( )11 11 122 10 4 10 2 10 ,
sIrw diag ⎡ ⎤= × × ×⎣ ⎦ ( )1

9 16 141 10 3 10 3 10 ,sw diag ⎡ ⎤= × × ×⎣ ⎦  

( )2

9 12 121 10 5 10 5 10sw diag ⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦  
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The control weighting matrix is chosen to be  
 (39) ( 4 10 4 10 2 10 2 10 2 10 1 10R diag ⎡ ⎤= × × × × × ×⎣ ⎦

In order to perform the command tracking, the D
)5 5 5 5 4 5

θ −  
controller is implemented as an integral servomechanism   [12] 

1 ( , )
T

T i
i s c s c e e sIR B T θ θ

∞
− ⎡ ⎤= − − − −∑

0
c

i=
⎣ ⎦∫u x qr r v v r rω  (40) 

vector scrib e spacecraft body frame
where cr  and cv  are commanded position and velocity 

s de ed in th  { }sB . In this 

study e first three terms of , th
0

i
i

( , ) iT θ θ
∞

∑ x  

2D  are chose
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 to be bation ic  1D 1 2 1k k= =  
and 1 2 0.01l l= = .  
The spacecraft is required to position itself at a constant 
distance  with respect to the target and ke ame 
velocity tv  as that of the target. The va  td  and tv  are 
defined in the target bo y frame{ }t

td ep the s
riables

d B . ence, the commanded H
 and veloc caposition ity tained by   cr cv  n be ob

              s

t

B I
c I B tT T=r d ,  s

t

B I
c I B tT T=v v                             (41) 

Note that we are designing an optimal controller for this 
highly nonlinear system with 22 state variables. Since the 
integrated controller (40) can be obtained in closed-form via 
the Dθ −  algorithm, this controller possesses a great online 
computational advantage for real-time implementations. 

 located at the origin of the inertial 

e axisymmetric about -axis of 

V. SIMULATIONS AND RESULTS 
A 6-DOF simulation of a spacecraft and a tumbling target was 
established to demonstrate the performance of the integrated 
optimal control design. The simulation scenario assumes that 
the target center of mass is
frame with zero velocity. 
The target is assumed to b ˆ

yt
b

the target body frame, i.e. 
x zt tJ J= . 

The 2-1-2 Euler angles, , of the tumbling target are given by  tΘ

2
2

(1 )
( , , )

cos

T

t t t t t
t

t
t radφ θ ψ θ

θ
⎡ ⎤− Λ Ω

Θ = ΛΩ⎢ ⎥
⎣ ⎦

                     (42) 

 the spin rate where 1 .5Λ = − ; 2 0.1 /rad sΩ =  is/ 0
y xt tJ J =

of the target; 0.5t radθ = is the nutation angle.  
The spacecraft is assumed to have a constant mass of 3000 kg. 
The moment of inertia without appendages is assumed to be 

                   
⎤
⎥          (43)  

The flexible structure has the parameters of 

The flexible mode shape function is chosen to be [10]: 

3000 300 500
300 3000 400

hsJ
− −⎡

⎢= − −⎢ ⎥  
500 400 3000⎢ ⎥− −⎣ ⎦

m

2kg m

1 ; 20r m L= = ; 
20.04096 ;kg mρ = ⋅ 22.9661 / ;E m s=  0.0365 /C m= s . 

( ) ( ) ( ) ( ) 2
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pp x r p x r
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π π+− −

1 cosp x rφ
⎡ ⎤ ⎡ ⎤

+ −− = − ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

(44) 

The spacecraft is initially located at an inertial position of 
[ ]8.0 T ith zero velocity and body rate, and an 
orientation aligned with the inertial frame. The control 
objective is to drive the spacecraft to a fixed position of 

[ ]3.5 0.0 0.0 T
t =d m in the target body 

9.0 10.0 m w

frame and its 

n and

ults 

attitude to be coincident with the target body frame. Thus a 
large angular maneuver as well as a complicated position 
change has to be performed by the spacecraft. 
Figure 3 shows the spacecraft position and attitude 
trajectories with respect to the commanded trajectories, which 
are defined in the inertial frame. Figure 4 presents the angular 
velocity responses. As can be seen, the spacecraft is able to 
track the command precisely and quickly.  Fig. 5 shows the 
histories of the control forces and torques. A relatively large 
control forces and torques are required initially to drive the 
spacecraft to the desired position and attitude quickly. Then, 
the control efforts decrease rapidly after some oscillations to 
keep the spacecraft at the desired positio  attitude. Figure 
6 presents the result of flexible motion. Maximum tip 
deformation is only about 11 centimeters. These res
demonstrate that the satellite with the Dθ −  optimal control 
precisely tracks the tumbling target and effectively 
suppresses the vibration of the flexible structure as well. 
The robustness of the Dθ −  ntroller was also tested by 
assuming that the diagonal elements of the moment of inertia 
matrix

co

sJ  are perturbed by -50% uncertainties and the 
off-diagonal elements of sJ are perturbed by -30% 
uncertainties. Figures 7-8 provide the results under the same 
initial conditions of the states as the Figures 3-6. Note that the 
controller is designed based on the nominal moment of 
inertia. As can be seen, the position and attitude tracking are 
still so good that it is not distinguishable from Fig. 3.  The 
only discernible difference is the control torque, which are 
smaller th e actual moment of 
in

ling t

an the nominal case because th
ertia is smaller than the nominal one. 

VI. CONCLUSIONS 
In this paper, nonlinear control of spacecraft position and 

attitude to approach a tumb arget is addressed using the 
Dθ −  technique. The 6-DOF rigid body dynamics coupled 

with the flexible motion is considered in one unified optimal 
control framework. The Dθ −  technique can provide a 
closed-form solution to the resultant nonlinear optimal 
control problem and offers a great implementation advantage. 
The simulation results demonstrate that the controller is able 
to drive the spacecraft to the desired position and attitude 
accurately in close proximity of a tumbling target so that 
subsequent service operations can be conducted. The 
controller is also show  to moment of inertia n to be robust
uncertainties.  
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Fig. 7: Position and attitude tracking with moment of inertia uncertainties 

 

Fig. 3: Position and attitude tracking 

 Fig. 8: Control forces and torques with moment of inertia uncertainties Fig. 4: Angular velocity tracking 
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