
  

  

Abstract—Power systems are characterized by non-linearity 
and uncertainty. A neural network predictive fuzzy control is 
proposed for load frequency control. Recurrent neural network 
is employed to forecast controller and system’s future output, 
based on the current Area Control Error (ACE) and the 
predicted change-of-ACE. The Control Performance Standard 
(CPS) criterion is introduced into the fuzzy controller design, 
thus improves the dynamic quality of system. Simulations on a 
two-area power system that takes into account load disturbance 
demonstrate the effectiveness of the proposed methodologies. 

I. INTRODUCTION 
ODERN power systems are normally composed of 

interconnected subsystems or control areas. The 
constant change of load in a given power system can affect 
the system frequency. Controlling of the power system 
frequency within a certain scope is realized through 
maintaining the total power input of the parallel operation 
unit equal to the effective power consumption of the system 
load. The process is known as the power grid load frequency 
control(LFC). 

The tie-line bias control of power system has been 
achieved using conventional PI control considering Area 
Control Error (ACE). As the frequency and tie-power deviate 
from the scheduled values, accumulations of time error and 
inadvertent interchange may occur.  

Paper [1] deals with discrete-time automatic generation 
control(AGC) of an interconnected reheat thermal system 
considering a new area control error (ACEN) based on 
tie-power deviation, frequency deviation, time error and 
inadvertent interchange. This controller can effectively 
regulate time error ξ  and inadvertent interchange 
accumulations I. However, it did not consider the generation 
rate constraint (GRC) and the nonlinear effect of dead zone. 

The inherent non-linearity in system components and 
synchronous machines has led researchers to consider 
artificial neural network(ANN) and fuzzy logic techniques to 
build a non-linear controller with high efficiency. In [2], a 
feed forward neural network has been trained by back 
propagation-through-time algorithm to control the steam 
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turbine admission valve. The ANN based controller on a four 
area interconnected system which consists of reheat turbines 
and generation constraints has been studied in [3]. The inputs 
of the proposed ANN controller are system state variables 
and disturbance vector. Back propagation-through-time 
algorithm has been used to cope with the continuous time 
dynamics as the learning rule.  

In using neural networks for dynamic power system 
control, since it contains large number of parallel input vector, 
the total system may be too complicated. Paper [4] initially 
designed a fuzzy logic controller for automatic generation 
control. The results show advantages over classical integral 
controller. Paper [5] presented fuzzy gain scheduling PI 
controllers. This scheme has been designed for a four area 
interconnected power system with control dead zone and 
generation rate constraints. Paper [6] developed a combined 
fuzzy logic, GA and ANN based controller for LFC. A multi 
layered feed-forward neural network with inputs from GA 
based fuzzy controller trained by back propagation has been 
used to develop the proposed controller. 

Control Performance Criteria (CPC) has been formerly 
used to evaluate AGC performance. This has been difficult to 
meet the requirements of today's high power quality control. 
The Control Performance Standard (CPS) is specifically 
designed to comply with the performance standards imposed 
by the North American Electric Reliability Council (NERC) 
for equitable operation of an interconnected system. Fuzzy 
logic system is usually designed to assure that the control 
performance is in compliance with NERC’s control 
performance standards [7]. 

Considering the power system load frequency control, this 
paper establishes a recurrent neural network model to predict 
the future frequency of the target object, thus forecasting the 
ACE and the CPS standard index. Based on this prediction, 
the optimized controller is designed, which follows the CPS 
performance standards through the fuzzy logic. Simulation 
results show the effectiveness of the proposed method. 

II. INTERCONNECTED ELECTRICAL POWER SYSTEMS 
Interconnected power systems consist of many control 

areas connected by tie-lines. The block scheme of a two-area 
power system is shown in Fig. 1. gT , tT  and pT  represents 

the time constant of the governor, the time constant of the 
turbine and the time constant of the power system 
respectively. iR  (hereinafter area i = 1, i = 2) is the governor 

speed regulation parameter; iβ  is the frequency bias; pK  is 
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the power system gain; giPΔ  is the incremental generation 

change; eiXΔ  is the incremental change for the position of 

the governor valve; ciPΔ  is the incremental change of the 

governor; iU  is the output value of the controller; idPL  is 

the local demand; idf  is the frequency deviation from 

nominal value; tiedP  is the error in schedule tie flow; T12  is 
the synchronizing coefficient between 1st and 2nd Area. 

 
Fig. 1.The block scheme of a two-area power system 

The overall system can be modeled as a multi-variable 
system in the following form: 

d

.
X = AX + BU + FΔP   X(0) = 0       (1) 
where A is the system matrix, B and F are input and 

disturbance distribution matrices, x(t), u(t) and d(t) are state, 
control and load changes disturbance vectors, respectively. 

T
1 2X=[X , X ] , T

1 2U=[U , U ] , T
d d1 d2ΔP =[ΔP , ΔP ] ; iX , iU  

and diΔP  represent state variable vector, control variable 
vector and disturbance load vector of the 1st or 2nd subsystem 
respectively. 

i i gi ci ei tiei

T
i ii

X =[Δf , ΔP , ΔP , ΔX , ΔP , 

        ACE dt, ACEN dt, ACEN ]∫ ∫
 

The output of the system is based on ACEN: 

1

2

ACENY1
Y= = =CX

ACENY2
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

      (2) 

in which i i i iACEN =ACE +γ ACE dt∫ , 

i tie i iACE = P +β fΔ Δ . 
In the existing literature, since a normally operated power 

system is only exposed to small change in the vicinity of the 
load demand, the above linearised model is usually used to 
express the dynamic behavior of the system around the 
operating point. However, when a sudden large change in the 
load demand occurs by deregulated operations, frequent 

on–off controls of large capacity load units may cause large 
amount of overshoot or long-lasting oscillation on the valve 
position of the governor [4].The nonlinearity of the 
systematical model mainly exists in: 

1) The impact of the generator rate constraints on LFC. 
This constraint is to avoid damage to the equipment as a result 
of excessive changes of the variables such as temperature and 
pressure. 

2) The influence of the governor dead zone on LFC. 
 

III. THE NEURAL NETWORK FUZZY CONTROL 
In the control scheme, neural network is chosen to create 

the real-time dynamic model of the power system. In 
accordance with the current controller output u(r), the tie-line 
power deviation dPtie(r) and the frequency deviation df(r), 
the neural network is used to predict the next moment’s 
frequency deviation df (r+1), thus calculate the ACE, the 
ACEN as well as CPS. The predicted CPS1 and CPS2 are 
used as input variables to the fuzzy controller that offers 
optimal PI parameters.  

A. The recurrent neural network LFC model 
Elman network is a typical dynamic recurrent neural 

network. Its feedback consists of a group of connected 
modules and is used to record the implicit memory. 
Meanwhile, the feedback, along with the network input, acts 
as the import to hidden units in the next moment. This nature 
renders recurrent neural network with dynamic memory and 
thus the capacity to predict future output, which is quite fitful 
to power system load frequency control.  

 
Fig. 2.The Elman neural network structure in the load frequent control 

 
The network structure is shown in Fig. 2. α(0≤α≤1) is the 

feedback link gain. The external inputs to the network are the 
fuzzy controller output u(r)∈R, the tie-line power deviation 
dPtie(r)∈R and frequency deviation df(r)∈R. The network 
output is the predicted frequency deviation for the next 
moment df (r+1)∈R, in which r is the sampling instant. Let 
the hidden layer output be x(r+1)∈R5, then: 
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1 c 2 3 4

c c

5

x(r+1)=f(W x (r)+W u(r)+W dPtie(r)+W df(r))
x (r)=x(r)+αx (r-1)
df(r+1)=g(W x(r+1))

      (3) 

where W1, W2, W3, W4 and W5 are the weight matrix of 
connected units to the hidden units, input units to hidden units 
and hidden units to the output unit respectively. f (•) and g (•) 
are the non-linear vector function of the activation function of 
the hidden layer neural cell and output layer neural cell; 

cx (r+1)  represents the state at r+1 moment. Here, x(r+1) is 
the total state of the power system dynamic. Genetic 
algorithm is used to train the feed-forward and the feedback 
connection weights. 

In this way, the connection weights will be in a binary 
encoded string form. Assume that the connection weights 
have the right to pre-define the scope of the changes. The 
relationship between the network connection weights and the 
actual weights could be expressed as:  

t 2
t min l

max min                        

(w (i,j,m,k))
w (i,j,m,k)=w (i,j,m,k)+

2 -1
[w (i,j,m,k)-w (i,j,m,k)]

i
             (4) 

where t represents sampling time; k represents the number 
of learning times; max min[w (i,j,m,k),w (i,j,m,k)]  is the 

changing scope of these connection weights; tw (i,j,m,k)  
represents the connection weight between the ith neuron of 
the (m-1)th layer to the jth neuron of the (m)th layer at that 
sampling time t; t 2(w (i,j,m,k))  represents the corresponding 

binary strings of tw (i,j,m,k) . 
The optimizing genetic algorithm can be summarized as:  
(1) Generate a set of randomly binary strings, each string 

represents a collection of all network collection weights.  
(2) Translate the binary strings into network connection 

weights according to (4), and evaluate the performance by 
running the network. Make the individual choice of the 
network according to the following probability expression: 

il
s N

il
i=1

f
P =

f∑
                                           (5) 

where sP  is the selection probability; ilf  represents 
adapter value of using one bit of binary code in individual i. 
Here the adapter value is the countdown of the quadratic 
square of the difference between the network output and the 
actual output. Obviously, the greater the adapter value is, the 
greater the genetic probability is. For the selected network, 
make crossover and mutation under pre-determined value of 
the probability cP  and mP  to generate the next network. 

Repeat equation (4) and (5) until the difference between 
the network output and the desired value reaches the required 
condition. At this time, decode the optimal individuals in the 
finalized group to find out the network connection properties. 

B. Fuzzy logic design based on CPS optimization 
1) CPS performance standard 

For equitable operation of the interconnected system, 
control areas have to comply with the North American 
Electric Reliability Council control performance standards 
CPS1 and CPS2, which were adopted in February 1997. 
CPS1 assesses the impact of ACE on frequency over a certain 
period window or horizon and it is defined as follows: over a 
sliding period, the average of the “clock-minute averages” of 
a control area’s ACE divided by “10 times its area frequency 
bias” times the corresponding “clock-minute averages of the 
interconnection frequency error” shall be less than the square 
of a given constant, 1ε , representing a target frequency bound. 
This is expressed by: 

2i
period 1 1 1

i

ACE
AVG || | Δf |=ε

-10β
×     a sΔf=f -f             (6) 

where 1Δf  is the interconnection frequency error, iβ  the 

frequency bias of the ith control area, 1ε  the targeted 

frequency bound for CPS1 and 
1

 is the clock-1-min 

average. 
To calculate CPS1 ( CPS1K ), a compliance factor ( CFK ) is 

defined as: 

i
1 1

i
CF 2

1

ACE
|| | Δf |

-10β
K =

nε

×∑

                                   (7) 

CPS1 is then obtained from the following equation: 

CPS1 CFK =(2-K ) 100%×                             (8) 
Thus, 
1) When CPS1K 200%≥ , which means CFK 0≤ , there 

is 1 1(ACE Δf ) 0× ≤∑ . Under this condition, ACE facilitates 
the frequency quality.  

2) When CPS1100% K <200%≤ , which means CF0<K 1≤ , 

there is 2i
1 1 1

i

ACE
0 || | Δf | nε

-10β
≤ × ≤∑ . The CPS1 standard is 

satisfied.  
3) When CPS1K <100% , which means CFK >1 , there 

is 2i
1 1 1

i

ACE
|| | Δf |>nε

-10β
×∑ . ACE has exceeded the permitted 

range so that it has a bad effect on the frequency and quality 
of power grid.  

    The second performance standard, CPS2 ( CPS2K ), 
limits the magnitude of short-term ACE values. It requires the 
10-min averages of a control area’s ACE be less than a given 
constant ( 10L ), as in the equation below: 
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10min i 10AVG (ACE ) L≤                            (9) 

Where, 10 10 i sL =1.65ε (-10β )(-10β ) . Note that sβ  is the 
summation of the frequency bias settings of all control areas 
in the considered interconnection, and 10ε  is the target 
frequency bound for CPS2. To comply with this standard, 
each control area must have its compliance no less than 90%. 
A compliance percentage is calculated from the following 
equation: 

10min i
CPS2

10

AVG (ACE )
K =

L
                     (10) 

In order to meet the requirements of the power grid 
frequency quality, the average ACE value during 10 min in 
each control region should be in the normal distribution as: 

10 i sσ=ε (-10β )(-10β ) .                    (11) 
2) Optimization rules based on CPS standards 

Suppose CPS1 100%≥ and CPS2 90%≥ to be the goal of 
the AGC control strategy. Table 1 shows AGC optimization 
rules based on CPS 

 
TABLE I    AGC OPTIMIZATION RULES BASED ON CPS 

condition The state of 
AGC units 

1 100%≥CPS and 2 90%≥CPS  No optimization 
adjusting 

0× Δ >ACE f  optimization 
adjusting 

1 100%<CPS
and

2 90%≥CPS  0× Δ <ACE f  No optimization 
adjusting 

1 100%≥CPS and 2 90%<CPS  optimization 
adjusting 

1 100%<CPS 2 90%<CPS  optimization 
adjusting 

3) Fuzzy PI controller based on CPS 
Fuzzy logic rules are designed to manipulate the 

conventional PI-type load frequency control. The proposed 
control structure is shown in Fig.3. The controller uses 
information that reflects compliance with CPS1 and CPS2 as 
the inputs to the fuzzy logic rules. Parameters Kp and Ki are 
fuzzy rule outputs.  

 
Fig. 3.Fuzzy PI controller for CPS 
 

According to the optimized rules from the Table 1, the 
membership functions of CPS1, CPS2, Kp, and Ki could be 
defined as Fig. 4 and Fig. 5. Fuzzy rules are summarized in 
Table 2.  

   
Fig. 4.Membership function for the input variables（CPS1, CPS2） 

 
Fig. 5.Membership function for the controller outputs (Kp, Ki) 

 
TABLE II    FUZZY LOGIC RULES  

   CPS1      
CPS2 

PS PM PB 

PS Kp=PB 
Ki=ZE 

Kp=ZE
Ki=ZE

Kp=NS
Ki=PS 

PM Kp=PB 
Ki=PS 

Ki=ZE 
Ki=PM

Ki=NS 
Ki=PM

PB Kp=PS 
Ki=PB 

Kp=ZE 
Ki=PB

Kp=NB 
Ki=PV

B 
 

C. The control algorithm 
The proposed algorithm based on fuzzy neural network 

predictive method can be summarized as follows:  
(1) Set the initial values of the desired frequency deviation 

df(r), desired ACE(r) and desired ACEN(r) to 0;  

(2) Forecast the frequency deviationdf(r+1) at the (r+1) 
moment using recurrent neural network as shown in Fig. 2, 

resulting the forecasting of ACE(r+1);  

(3) Forecast CPS1(r+1)  and CPS2(r+1) at the (r+1) 

moment based on ACE(r+1) and the CPS;  

(4) Get control outputs Kp(r+1) and Ki(r+1)at the (r+1) 

moment by CPS1(r+1) and CPS2(r+1) from fuzzy rules in 
Table 1, return to (2).  

Here, the superscrip represents the predicted value. 
 

IV. CASE STUDY 
Simulation is conducted on the two regional load 

frequency model shown in Fig. 1. The system parameters are 
chosen as: giT = 0.08s; tiT =0.3s; piT =20s; iR =2.4; 

iβ =0.425; piK =120Hz/pu; ijT =0.086; ija =-1; 

1iε =5.40mHz; 10iε =0.56mHz, (i = 1,2; j = 1, 2, wherei≠j ). 
Kp=0.8, Ki=0.6, γ= 0.5. Correlation coefficients of frequency 
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1iε , 10iε  have a direct impact on CPS1 and CPS2 indicators. 

Here 1iε =5.40mHz, 10iε =0.56mHz. Consider turbine GRC 

to be gi

.
Δ P λ=0.03MW/s≤ , the dead zone of governor to be 

0.002. Add random source with magnitude of 0.003 and 
frequency of 0.5 to simulate the uncertainty of parameters. 
Genetic algorithms are used to train the Elman neural 
network that models the plant. After a series of trial and error, 
the ANN architecture is chosen to be 3 × 6 × 1. The activation 
function of the networks neurons is hyperbolic tangent,  

1-exp(-0.8s) 1-exp(-0.6s)
f(s)= , g(s)=

1+exp(-0.8s) 1+exp(-0.6s)
 

Feedback gain α = 0.65, sampling period T = 0.01s.  
Fig. 6 shows the output of the Elman neural network. It can 

be seen that the proposed ANN could effectively predict the 
power output. 

 

 
Fig. 6.The predictive output of the Elman neural network 

 
Simulation is made under the condition that the two 

regions are added different load disturbance, with 0.005 
p.u.MW to the first region and 0.013 p.u.MW to the second 
region. From Fig. 7 and Fig. 8, the proposed method offers a 
much better frequency response to both areas than that of the 
tradition fuzzy control with the settling time of 15 s in area1 
and 13s in area2. The maximum frequency overshoots are 
-0.025 and -0.02 respectively. Due to the impact of a random 
source, the frequency output based on the traditional fuzzy 
control oscillates constantly with the maximum overshoots 
being -0.024 and -0.023 respectively. From Fig. 9 and Fig. 10, 
the power output under the ANN prediction fuzzy control is 
more stable than that of traditional fuzzy control in both areas. 
From Fig. 11 and Fig. 12, the control effort under the ANN 
predictive fuzzy control is much less than that of traditional 
fuzzy control, which means wear and tear of generating unit’s 
equipments are quite reduced. From Fig.13 and Fig. 14, the 
ACEN is quickly driven to zero and have smaller overshoots 
using the proposed method. From Fig.15-Fig.18, the ANN 
prediction fuzzy control can better meet the CPS performance 
standards. 
 

 
Fig. 7.Frequent deviation in area 1 

 
Fig. 8.Frequent deviation in area 2 

 
Fig. 9.Power generation output in area 1 

 
Fig. 10.Power generation output in area 2 

 
Fig. 11.Control effort in area 1 

 
Fig. 12.Control effort in area 2 
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Fig. 13.ACEN in area 1 

 
Fig. 14.ACEN in area 2 

 
Fig. 15.Output of CPS1 in area 1 

 
Fig. 16.Output of CPS1 in area 2 

 
Fig. 17.Output of CPS2 in area 1 

 
Fig. 18 .Output of CPS2 in area 2 
 

V.  CONCLUSIONS 
In this paper, Elman network is proposed to model the load 

frequency control of a two-area power system. Fuzzy control 
strategy was chosen to comply with the North American 
Electric Reliability Council’s control performance standards, 
CPS1 and CPS2. To demonstrate the effectiveness of the 
proposed method, the control strategy is tested under load 
perturbation. The simulation results show that the proposed 
ANN controller has better control performance compared to 
the conventional fuzzy controllers even in the presence of 
GRC. In addition, it is effective and can ensure the stability of 
the overall system for all admissible uncertainties and load 
changes. The simulation results obtained also show that the 
performance of ANN controller is better than conventional 
fuzzy controller against the load perturbation at any area. 
Especially it can reduce wear and tear of generating unit’s 
equipments, and thus offer a feasible control structure for 
AGC. 
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