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Abstract—This paper presents a general complex switched 
network (CSN) model that contains switching behaviors in both 
its nodes and topology configuration. Stabilization of such 
directed time-varying CSNs with two types of delays is 
investigated. The two types of delays consist of the system delay 
at each node and the coupling time-delay between nodes. Based 
on the Lyapunov stability theory, delay independent stabilizing 
conditions for CSNs with both types of delays are obtained via 
impulsive control. A numerical example is provided for 
illustration. 

I. INTRODUCTION 
N recent years, complex networks (CNs) have attracted 
rapidly increasing attention in the scientific community, 
largely due to the ubiquity of CNs in sciences and societies 

[1, 2]. A number of important issues such as the stability, 
synchronization and spread mechanism of complex networks 
have been the subjects of extensive research in the literature 
[3-14, 19-22]. Although there is a great deal of existing 
research on the stabilization of CNs with either identical 
coupling delays [7-10] or heterogeneous coupling delays [11], 
relatively few results are available for the stabilization of 
complex switched networks (CSNs) with delays. In [12] the 
stabilization of the directed and undirected complex networks 
with identical coupled nodes was achieved under hybrid 
impulsive and switching control. Though the model in [12] 
contains no delay, the control framework presents a way to 
deal with complex networks with switching behaviors on 
nodes.  

In fact, switching behaviors can exist not only on nodes 
(through their dynamical behavior), but can also occur on the 
network topology configuration, see, e.g., [13, 14, 23-26], in 
which the synchronization problems of CNs with switching 

topologies were studied. In this paper, a general complex 
switched network (CSN) model is presented. The model is 
more general than those in the literatures in that it contains 
switching behaviors on both its nodes and topology 
configuration. This type of networks can be found in many 
evolutionary processes [12], such as bursting rhythm models 
in pathology, optimal control models in economics and so on. 
Stabilization of CSNs with both the system delay of each 
node and the coupling time-delay is investigated under 
impulsive control. For simplicity, the system delays of all 
nodes are assumed to be identical. Similarly, the coupling 
delays are also assumed to be identical. 

 
Manuscript received Aug, 2008; revised Feb, 2009. This work was 

supported in part by the National Natural Science Foundation of China under 
Grant 60704035, 60604030, Program for New Century Excellent Talents in 
University, and Hubei Province Foundation under Grant 2007ABA222.  

M. Yang, Y.-W. Wang and J.-W. Xiao are with the Department of Control 
Science and Engineering, Huazhong University of Science and Technology, 
Wuhan, 430074, P.R.China (e-mail: wangyw@mail.hust.edu.cn ). 

Y.-W. Wang and H.O. Wang are with the Department of Mechanical 
Engineering, Boston University, Boston, MA 02215, USA (e-mail: 
wangh@bu.edu). 

H. Ohtake and K. Tanaka is with the Dept. of Mechanical Engineering and 
Intelligent Systems, The University of Electro-Communications, 1-5-1 
Choufugaoka, Chofu, Tokyo 182-8585 Japan (e-mail: ktanaka@mce.uec. 
ac.jp) 

J.-W. Xiao is the corresponding author (phone: 86-27-87543130; fax: 
86-27-87543130; e-mail: jwxiao@mail.hust.edu.cn). 

It is worth noting that in the proposed control scheme of 
this paper, the impulse effects from the control can be applied 
not only at intervals coinciding with network mode switching, 
but also at intervals when there is no network switching. 
Based on the Lyapunov stability theory, delay independent 
stabilizing conditions for CSNs with both node and coupling 
delays are obtained under impulsive control. A numerical 
example is provided for illustration. 

II. PROBLEM FORMULATION AND PRELIMINARIES 
Consider a CSN with two types of delays. The CSN 

consists of  non-identical coupled nodes and thus is 
described by  
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where ( ) nT
iniii Rxxxtx ∈= ),,,( 21 L  is the state vector of 

node i , .  and  are constant 0tt ≥ σiA σiB nn ×  matrices. 

 is a nonlinear vector-valued function 

with 

nn
i RRR:

I 

g →×+σ

0)0,( ≡tgiσ . The constants 1τ  and 2τ  are the system 
delay at each node and the coupling time-delay between 
nodes respectively, 0, 21 >ττ .  is the ladder function. )(tls

1)( =tls  for 1+≤< ss TtT  with discontinuity points 

LL sTTT << 21 , , where  ; 

otherwise, 

∞=
→∞ ss

Tlim 01 tT > +∈ Zs

0)( =tls . The switching signal 
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PRt →= +:)(: σσ , where  with constant 
 being the total number of the modes, and 

{ mP ,,1L= }
m Ppt ∈=)(σ  

for .   is the 

inner-coupling matrix. If two coupled nodes are linked 
through their th and 

1+≤< ss TtT :))(()( nnij trt ×=Γ nnRR ×+ →

i j th state variables respectively, 

 , otherwise, 

.  is the 

coupling configuration matrix. If there is a connection 
between node i  and node 

0)( ≠trij ( nji ≤≤ ,1 )
( )njitrij ≤≤= ,10)( NNij tctC ×= ))(()( σ

σ

j  ( ji ≠ ), ; otherwise, 

. The diagonal elements of matrix  

are defined as , . Notice 

that the switching matrices  are allowed to 

take values in the finite set   

, . 

0)( ≠tcij
σ

)(0)( jitcij ≠=σ

)

tCBA mimim ,, Ni ,,1L=

)(tCσ

∑
≠=

−=
N

ijj
ijii tctc

,1
)()( σσ Ni ,,1 L=

( )( tCBA ii σσσ ,,
( )( ){ tCBA ii 111 ,, ,,L

( ( ))}
 

For the CSN (1), an impulsive controller u  is designed as 
follows: 

,)()(
1

∑
∞

=

−=
k

kik tttxEu δ            (2) 

where  are  constant matrices, and kE nn × )( ktt −δ  is 
the Dirac impulse function, with discontinuous points 

, where  and LL <<<< kttt 21 01 tt > ∞=
∞→ kk

tlim .  

Suppose that for any switching instant , there exist two 

positive integers  and  such that 
sT

k p L<<= +1ksk tTt  

, where , …,  are the impulsive 

instants. 
pkt +< 1+= sT kt pkt +

 
From (1) and (2), the controlled CSN can be derived as: 
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It is worth noting that (3) is a general form of the networks 
studied in [7], [8], [12] and [13]. 

The following lemmas are needed in the subsequent 
discussion. 

 
Lemma 1 [15]: If  and Y are real matrices with 
appropriate dimensions, there exists a constant 

X
0>ε  such 

that 

YYXXXYYX TTTT 1−+≤+ εε . 
Lemma 2 [16]: If nnRP ×∈  is a positive definite matrix, 

 is a symmetric matrix, then nnRQ ×∈
    QxxPxxQP TT ≤− )( 1

minλ
 ,  nT RxPxxQP ∈≤ − ,)( 1

maxλ
where )(min ∗λ  and )(max ∗λ  are the minimum and 
maximum eigenvalues of ∗ , respectively. 

 

III. STABILIZATION OF THE DIRECTED CSN WITH DELAYS 
In this section, sufficient stabilizing conditions for the CSN 

(3) are derived. The notations  denote some 

positive-definite matrices with . 
σiP

T
ii PP σσ =

)()()( 22
1

2

2
txtxtx nL+= . Similar to references [16] and 

[17], the following assumptions are made for our result. 
 

Assumption 1: For , , , there 

exist continuous functions 
0tt ≥ n

i Rx ∈ Ni ,,2,1 L=
( ) 0≥tiσϕ , such that 

)()()()(),( txPtxttxPxtg ii
T
iiiii

T
i σσσσ ϕ≤ . 

Assumption 2: For , there exist positive constants 0tt ≥ iρ  

such that 
22 )()( txtx iii ρτ ≤− , , hold for Ni ,,1L=

1ττ =  and for 2ττ = . 

Remark 1: Though the constants iρ , , in 
Assumption 2 need to be derived from the simulation in some 
cases, which might be restrictive for these cases in practice, 
this assumption is reasonable for many other systems, 
especially for those of which the bounds or the monotonies of 
states are known in advance. 

Ni ,,1L=

Assumption 3: If the system states , )(txi Ni ,,1L= , are 
in the σ  mode of node , the delayed system states i

(ix t )τ−  are in the )(mode τσ −  mode of node , where i
[ ] ( )τστσ −=− t:)(mode . 
 

For convenience, define   
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where 0>lξ  and 0>lε ,  are constants, and 2,1=l
( ) ( ) ( )( ) 1ˆ −++= μϑθγγ ttt .          (11) 

 
Theorem 1: Suppose that Assumptions 1-3 are satisfied and 

0≥kη  holds, and there exist two positive integers k  and 

 such that . p 11 +++ =<<<= spkksk TttTt L

i) If there exist two constants α , β , satisfying  0≥≥ αβ  

and 0)(ˆ <−≤ βγ t , such that 

( ) ,,2,1,0)(ln 1 L=≤−− − ktt kkk αρη     (12) 
then, the CSN (1) is globally exponentially stable under the 
control of (2).  

i) If 0)(ˆ ≥tγ  and there exists a constant 1≥α  such that 

( ) ( ) ,,2,1,0ˆln 1
L=≤+ ∫

+ kdssk

k

t

tk γαρη     (13) 

then, 1=α  implies that the CSN (1) is stable under the 
control of (2), and 1>α  implies that the CSN (1) is 
asymptotically stable under the control of (2). 
 

Proof. Construct a Lyapunov candidate as 

( ) ( ) ( )txPtxtV
N

i
ii

T
i∑

=

=
1

σ .           (14) 

It is obviously that  remains identical for , 

therefore, for any , the total derivative of  
with respect to (3) is 
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  For the directed CSN, since , the following 

equations can be obtained:  
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Therefore, from Lemma 2, 
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Since ρ  and kη  are bounded constants, it can be 
concluded that the trivial solution of (3) is globally 
exponentially stable. 
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Then, 1=α  implies that the trivial solution of the trivial 
solution of (3) is stable, and 1>α  implies that the trivial 
solution of (3) is asymptotically stable. 

The proof is thus completed. 

IV. ILLUSTRATIVE EXAMPLE 
Consider a nearest-neighbor coupled network with 100 

coupled nodes, in which each node is a Lorenz chaotic system 
[18] with delays. 

In the simulation, let the switching signal 2,1)( =sσ , and 

the switching interval 02.01 ==− − switchss TT τ . Then, the 

CNS with two types of delays 5.01 =τ  and 04.02 =τ  can 

be described by (1) with ,  

, and 

T
iiii xxxx ),,( 321= ),( ii xtg σ

T
iiii xxxx ),,0( 2131−= I=Γ . In the simulation, for 

any L,2,1,0=h , if ( ) ( )( ]1202.0,202.0 +∈ hht , 

1)( =sσ , ( ) )(1 tCtC =σ , each isolated node is a 
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Fig.1. States of the controlled CSN with 5.01 =τ , 04.02 =τ . 

 
From the simulation result, it can be observed that the 

proposed impulsive scheme is effective to achieve 
asymptotical stabilization of the CSN with two types of 
delays. 

V. CONCLUSION 

This paper has presented a complex switched network 
(CSN) model that is more general than those in the literature. 
The CSN model features switching behaviors in both its 
nodes and topology configuration. Stabilization of such CSNs 
with both system delays at nodes and coupling time-delays 
between nodes has been considered. Based on the Lyapunov 
stability theory, delay independent stabilizing conditions for 
CSNs with both types of delays are obtained via an impulsive 
control framework. A numerical example illustrates the 
effectiveness of the control method. 
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