
  

  

Abstract—In this work, we present a computationally 
efficient nonlinear multivariable predictive controller (NMPC) 
for an autothermal reforming (ATR) reactor. The proposed 
NMPC scheme is based on a fast reduced order nonlinear model 
and consists of three parts. The first is a steady state optimizer, 
which aims to minimize fuel flow for a given hydrogen demand 
while simultaneously observing the lower bound on the reactor 
temperature to maintain ignition of the reactor. The second part 
of the controller is to find a desired input/output trajectory via 
an offline nonlinear dynamic optimization problem subject to 
process constraints. The third portion of the controller employs 
a linearized model around the trajectory and minimizes an 
unconstrained trajectory tracking problem of which analytic 
solution is obtained. A linear Kalman Filter (KF) is employed to 
estimate process states. The proposed NMPC is compared with 
the classic feed-forward controller to illustrate improved 
performance. 

I. INTRODUCTION 

As a promising hydrogen delivery technology for fuel cell 
vehicles, autothermal reforming of hydrocarbon fuels has 
attracted significant research interest [1-5]. Experimental and 
simulation-based studies have revealed that during start-up 
and load changes tight control of the ATR reactor is vital for 
catalyst protection and maintaining ignition of the reactor. 
Recent efforts on controller design for reforming reactors 
include [6-7]. However, these efforts are mainly focused on 
controller design for Catalytic Partial Oxidation (CPOX) 
reactors where only fuel and air are fed into the reactor and 
the H2/CO ratio is comparatively low. In previous work, we 
investigated the classic methods for control of the ATR 
reactor where CPOX mode is initially operated to preheat the 
catalyst and then steam/water is injected (named ATR mode) 
to improve the H2/CO ratio [8]. It was found that the classic 
methods could not regulate well the catalyst temperature 
during the transition from CPOX mode to ATR mode and 
during large load changes. It was concluded that advanced 
control (e.g., model predictive control) should be used to 
address these operating scenarios. 

Model predictive control (MPC) has been a staple of the 
process industries [9-10]. The fundamental principle behind 
MPC is that it calculates a series of control moves with the 
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available measurements at every time step to optimize future 
plant behavior as predicted by a process model. Due to its 
unique advantages in handling process constraints, linear 
MPC has been widely applied in the process industry (over 
4500 commercial applications were reported in [9]).  

Many chemical processes are, however, inherently 
nonlinear. In these cases, nonlinear models are desired to 
describe the process dynamics within a nonlinear model 
predictive controller (NMPC) [10-11]. The excessive 
computational cost, however, remains a major hurdle. 
Developing computationally efficient NMPC techniques has 
been the focus of NMPC research field during the past 
decade [11-14]. 

A major feature of the ATR reactor is that it is a very fast 
nonlinear process (the settling time is only around 10 
seconds), which makes online implementation more difficult. 
Currently, there are no references available in the literature 
regarding advanced control of the ATR reactor. The main 
objective of this work is to propose and evaluate a KF-based 
NMPC for the ATR reactor. 

II. PROCESS DESCRIPTION 

The current effort is just one component of a larger project 
aimed at identifying the start-up capabilities of a fuel 
processing unit [15]. This project (titled the Feasibility of 
Acceptable Start-Time Experimental Reformer [FASTER] 
project) was charged with constructing a 10 kWe system and 
showing that it could be started in less than 60 seconds. At 
the heart of the FASTER process, is the autothermal 
reforming (ATR) reactor, depicted in figure 1. Within this 
reactor, it is sufficient to assume that three non-elementary 
reactions take place [5]:  

Total Oxidation:  
  OH2/COO)4/(HC 222 nmnmnm +→++        (1) 

Steam Reforming: 
  

22 H)2/(COOHHC nmmmnm ++→+               (2) 

Water-Gas Shift:    

222 HCOOHCO +↔+                                 (3) 

The set of inputs includes the inlet flow rates of air, fuel 
and steam as well as the temperature of this inlet gas stream. 
The inlet temperature will depend heavily on the state of the 
recuperating heat exchanger on the upstream air flow, so it 
will be treated as a measured disturbance. The air, fuel and 
steam flows will be the manipulated variables (MVs). 
Concerning measurable outputs, the set of outputs is limited 
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to four thermocouples on the solid catalyst support at various 
axial locations, see figure 1. These measurements are at the 
following locations: 0.08 cm, 0.7 cm, 1.9 cm and 3.1 cm 
(indicated by T1, T2, T3 and T4, respectively). In the analysis 
and model validation of [5], exit concentration of CO and H2 
were utilized. However, in a production scale system the 
availability of these measurements, including T1, is unlikely 
and thus will be ignored in the current study. The selected 
controlled variable (CV) is T2, which is the measured 
temperature with smallest time delay. The non-measurement 
(system) noise is mainly from the fluctuations in the reactor 
temperature due to radial non-uniformities. Compared with 
the temperature fluctuations, the measurement (sensor) noise 
is much smaller and thus neglected. 

 

 
 

Figure 1: Schematic of the ATR reactor 

III. STEADY STATE OPTIMIZATION 

It is reported that fuel cost is up to 68% of the total cost 
for hydrogen production [16]. In this work, we propose an 
analytical method to calculate the required minimum fuel 
flow rate and the corresponding air and steam flow rates for 
given hydrogen demand.  

For ATR mode at steady state, the fuel should be 
completely consumed within the reactor and it is reasonable 
to assume that WGS reaches equilibrium at the exit of the 
reactor [5]. The resulting material and energy balances are 
given by 
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where
pgĉ is the heat capacity, ξ  represents the conversion of 

WGS and 
iN denote the molar flows. For given feed rates, 

the exit temperature,
)( g

LT , and WGS conversion,ξ , will be 

determined easily from equations (4) and (5).  
The material balance for hydrogen at steady state leads to 
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It is well known that low temperature favors the exothermic 
WGS but may extinguish the reactor or result in unconsumed 
fuel at the exit. The solution of the NLP reveals that the 
lower bound on solid temperature is the only active 
constraint, if the feed rate constraints are not violated. Table 
1 shows the optimal results for different hydrogen yields. 
The inlet conditions in this table will be used as the set 
points for all subsequent flow controllers. 

 
Table 1 Optimized feed rates for different hydrogen yields (Tin = 450 oC) 

H2 yield, 
mol/min 

Tl, oC 
Fuel, 
g/min 

Air, 
dm3/min 

Water, 
g/min 

Net H2 yield*, 
% 

800 24.3 93.7 158.6 83.8 
3 

750 22.9 82.75 162.8 86.6 
800 40.53 156.2 264.3 83.8 

5 
750 38.2 137.9 271.3 86.6 
800 64.85 250 422.8 83.8 

8 
750 61.0 220.7 434 86.6 

* The net H2 yield is defined by the ratio of H2 yield to the maximum 
theoretical H2 yield when the resultants include only carbon dioxide and 
hydrogen. 

IV. REFERENCE TRAJECTORY CALCULATION 

The reference trajectories for input and output play an 
important role in MPC technology because they represent the 
trajectories on which the system gradually reaches the 
desired set points. Typically the output trajectory is 
formulated by drawing a first or second order curve from the 
current value of the control variable (CV) to the new 
setpoint, with adjustable response speed [9]. A popular 
approach is to specify the output trajectory, dy , to be the 

filtered set point as follows [17]: 

)()1()()( kykyjky sp
j

d
j

d αα −+=+ , Pj ,,2,1 L=       (7) 

where 10 ≤≤ α ; P is prediction horizon. For ATR control, 
such gradual transitions should not violate the temperature 
and flowrate bounds. Thus, the goal of the reference 
trajectory calculation is to find the feasible input and output 
trajectories on which the solid temperature (T2) should 
approach the desired set point. In order to speed up the NLP 
problem solution time, a fast reduced order nonlinear 
dynamic mode has been developed. 

A. Reduced Order Model Development 

The reduced order model was derived from a kinetic model 
developed in [5]. The kinetic model was solved via Finite 
Element Methods (FEM) and validated by experimental data. 
However, solution via FEM is far too slow to be applied 
within model based optimization (6 seconds is required for a 
simulation horizon of 10 seconds).  

Our first step to model reduction was to apply the Galerkin 
method to approximate the temperature profile by a linear 
combination of basis functions. As a result, the PDEs of the 
energy balance were reduced to ODEs. This first reduced 
order model (ROM1) used an ODE solver to solve the mass 
balance. ROM1 showed significant agreement with the FEM 
model in terms of temperature and concentration profiles. 
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The computational cost was reduced from 6 seconds to 1.7 
seconds. Our second effort was to approximate the reaction 
rates by exponential functions and thus to find analytic 
expression for the concentration profiles. The second 
reduced order model (ROM2) consisted of ODEs and 
algebraic equations only: 
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 The discrete version of the linear state-space model 
represented by equation (8) is given by 
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It should be noted that we assume q̂ is held constant over the 

sample interval, 
sT∆ . This can be thought of as a variation of 

the traditional sample and hold discretization for linear 
systems. The developed ROM2 of equation (9) required only 
0.002 seconds for a simulation horizon of 10 seconds, and 
possessed fidelity comparable to ROM1 and the FEM model 
[14]. Hence, ROM2 was used in the following reference 
trajectory calculation.  

B. The Reference Trajectory Calculation 

The NLP problem for trajectory calculation is: 
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where )(, ktyy dkd == is the designated temperature reference 

represented by equation (7), j
su are the setpoints for fuel, air 

and steam flow rates determined from table 1; 
)(, ktyy rkr == , )(, ktuu j

r
j

kr == are the to be determined 

reference trajectories; sk is a slack variable vector used to 
avoid the infeasible solutions due to hard temperature 
constraints and wj ,,γβ are weighting constants.  

Figure 2 shows the calculated input and output trajectories 
for a transition from CPOX mode (Ffuel = 30 g/min, Fair =60 
dm3/min, Fwater = 0 g/min) to ATR mode (Ffuel = 38.2 g/min, 
Fair= 137.9 dm3/min, Fwater= 271.3 g/min). The optimal 
trajectories for all three feed flow rates are basically in the 
ramp formulation and the changes within each sampling time 
are limited by jumax∆ (see the top plot of figure 2). If we 

apply those input trajectories to ROM1, we find only minor 

differences in the temperature trajectories, as shown in the 
middle plot of figure 2. However, compared with the desired 
trajectory defined by equation (7) the calculated output 
trajectory shows significant difference due to the constraints 
on j

kru ,∆ . Looking at the bottom plot of figure 2, hydrogen 

flow quickly moves from 1 to 5 mol/min, and the trajectories 
from different models show only a small difference. 

The time required to solve problem (10) is typically 
around 60 seconds for P = 20, which is significantly larger 
than the sampling time of the ATR reactor, typically less 
than 1 second (e.g., ∆Ts =0.5s).  
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Figure 2: Calculated input & output references (top: feed flow rates; 

middle: reactor temperature, T2; bottom: hydrogen flow) 
 
 

 
Figure 3: MPC structure: Receding horizon regulator & state estimator 
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V. MODEL PREDICTIVE CONTROL 

Once we have determined the reference trajectories, we 
can design the feedback portion of the predictive controller. 
The structure of proposed MPC is shown in figure 3 where 
the ATR system is simulated by ROM1 but the controller 
design is based on ROM2. The strategy used in this work is 
to develop a linear model which is successively linearized 
around the offline calculated trajectories, then formulate an 
unconstrained linear quadratic programming (QP) problem 
which can be solved within the sample time of the controller. 
However, the linear model used by MPC will suffer model 
mismatch due to modeling errors and unmeasured 
disturbances entering the system. In order to capture these 
errors, the Kalman Filter (KF) based state estimator is 
employed to reconstruct the system states from the available 
temperature measurements. 

A. The Time-Varying Linear Model 

In order to implement MPC online, we develop successive 
linear models around the input and output trajectories 
obtained in the previous section.  

  Starting from equation (9),
dq̂ can be linearized around the 

trajectories as follows: 
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where 
krkk yyy ,

~ −= and
kdk DAA += .  

B. State Estimation 

The state estimation algorithm with KF is based on the 
fact that the actual system always suffers various 
disturbances and noise. Using the combined input and output 
disturbance modeling procedure of [18], the following 
augmented linear model was developed: 
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where [ ]Tpgxz ~~= , [ ]Tw υωξ =  and the matrices 

kA , 
kB , G  and C  are appropriately defined. ,,, υωw  

and 

v are white noise sequences with zero mean and covariance 

,,, υω QQQw
and 

vR  respectively.  

It has been indicated that, in order to make the augmented 
system detectable the combined number of states in the g and 
p vectors cannot be greater than the number of outputs [18]. 
For the ATR system, the number of states in the p vector is 
conservatively selected to be one because the system has 3 
outputs (but only one controlled output) and the number of 

states in the g vector is one (this represents the inlet gas 
temperature). 

Based on equation (13), the following KF is obtained: 
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where
kkz |1ˆ + is the estimate of the augmented state vector at 

time k+1 given output measurements up to time k; m
ky is the 

measurement of ky ; the discrete Kalman filter gain, 
kL is 

determined by the following recursive equations: 
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C. Control Formulation 

To track the temperature reference trajectory determined 
by problem (10) and obtain the optimal control moves, the 
following quadratic objective function is used for the 
regulator. 
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where
rkkc TTy 2,2,

ˆˆ −= and jγβ ,  are weighting constants. The 

above minimization is typically subject to the following 
model equations and input magnitude, rate and output 
magnitude constraints: 
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where ]001[1 =c . The above three equations formulate a 

classic QP problem which can be solved easily by the QP 
solver available in the literature. The simulations, however, 
show that it still costs around 15 seconds to solve equations 
(16) through (18) with appropriately small model and MPC 
parameters (N = 20, P = 10 and M = 5). So it is impossible to 
complete the required online calculations within a sampling 
time of the ATR system.  

Recall that we have considered all process variable 
constraints indicated by equation (18) during the reference 
trajectory calculations, so those constraints are not likely to 
be violated during the closed-loop implementation. Hence, 
we propose to implement the unconstrained MPC problem. 
The advantage being that the solution may now be calculated 
analytically. 

11dK=∗u                                                                  (19) 

where
1K is trajectory dependent matrix which can be 

evaluated off-line, rather than on-line, provided that the input 
and output trajectories are known. The only variable which 

662



  

requires on-line computation is d1 given by 
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where m
ky is the measurement of T2 at time k. Thus, no solver 

with iterative methodologies is needed and the computational 
cost will be reduced sufficiently for on-line implementation.   

VI. SIMULATION AND DISCUSSION 

The multivariable MPC strategy of section V is tested 
under start-up conditions in the presence of system noise, 
inlet temperature and feedstock disturbances. The system 
noise is modeled as Gaussian white noise filtered through a 
linear system with transfer function 152050/50 23 +++ sss . 
This filtering allows for the capture of intermediate 
frequency disturbances, which are distinct from the mostly 
high frequency content of the measurement noise. The design 
parameters of the proposed KF based NMPC are chosen as 
follows: 

sTs 5.0=∆ , N = 20, 00|0 =z , I=0|0P , Iα=wQ , 01.0=α ,
 

25.0=ωQ , 5.14=υQ , I25.0=vR , 1=β , 40=jγ , 

001.0=w , M = 5, P = 17 
The selection of the control and prediction horizons is based 
on the guidelines presented in [17].  

Figure 4 compares the simulation results from the open-
loop, the feed-forward control and KF-based NMPC for 
start-up with an inlet temperature step disturbance, +20 oC. 
During this start-up, the fuel flow is increased from 30 to 
38.2 g/min, the air flow is increased from 60 to 137.9 
dm3/min and the steam with a flow rate, 271.3 g/min is 
injected. As a result, the hydrogen flow for the start-up is 
expected to increase from 1 to 5 mol/min. The optimal 
trajectories determined in section 4 are used for the open 
loop case. The feed-forward controller developed in [8] is 
used for the feed-forward case where the fuel and steam 
flows follow the optimal references but the air flow is 
considered as the manipulated variable. The change of steam 
flow is considered as the disturbance. The PI controller 
parameters used are: 15.0=cK , 8.6=IT  and the parameters 

of feed-forward element used are: =fK
 
0.287, =1τ 2.0 and 

=2τ 1.6.  

As shown in the top plot of figure 4, the feed-forward 
controller causes an unacceptable drop in reactor 
temperature (~100 oC lower than the set-point of 750 oC) and 
would extinguish the reactor because the temperature is 
much lower than the temperature bound, 700 oC (see the 
dotted line). For the KF-based NMPC, we can see greatly 
improved performance because the temperature is well 
controlled and driven to the set-point within 7 seconds. It is 
also noted that the hydrogen flow, under the NMPC, shows a 

significant increase in variability (see the bottom plot of 
figure 5). However, we expect that a retuning of the NMPC 
will be able to reduce these variations. 
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Figure 4: Response of open-loop (solid line), feed-forward control (dot 
line) and NMPC (dashed line) for inlet gas temperature disturbance 

 
To test another model mismatch case, the feedstock is 

changed from gasoline (C7.3H14.28) to n-octane (C8H18). As 
shown in the top plot of figure 5, applying the open-loop 
input references will lead to a temperature drop of 45 oC, 
which means the plant is significantly different from the 
gasoline based ROM used in the controller. Once again, the 
feed-forward control shows poor performance because the 
temperature drops down to 640 oC which will again 
extinguish the reactor. The KF-based MPC shows excellent 
performance by adjusting the flow rate air (see the middle 
plot of figure 5).  However, as shown in the bottom plot of 
figure 5, hydrogen production is reduced to ~4.5 mol/min, 
which is lower than the demand, 5 mol/min. For such 
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situations, the trajectories used by the MPC should be 
recalculated and updated with the new data. However, such 
calculations are not required frequently and can be 
conducted offline.  

VII. CONCLUSION 

In this work, we have proposed a KF based nonlinear 
multivariable predictive control structure aimed at regulating 
the temperature/hydrogen flow of an ATR reactor for 
onboard fuel processor applications while achieving the 
minimum fuel cost. In response to hydrogen demand, the 
optimal fuel, air and steam flows can be found through the 
analytical solutions developed. It was found that KF-based 
NMPC scheme is capable of sufficient disturbance 
attenuation through reconstruction of the system states as 
well as identification of input and measurement disturbances. 
The successive linearized model around the input and output 
trajectories can be effectively used for the nonlinear MPC 
and thus reduce the computation required. The simulations 
show that the KF based NMPC achieves good performance 
and can be implemented online. It should be cautioned that 
the reference trajectories used in this work are determined 
offline.  
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Figure 5: Response of open-loop (solid line), feed-forward control (dot 

line) and NMPC (dashed line) for feedstock mismatch 
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