
Estimation of an Affine Motion

Lili Ma, Chengyu Cao, Naira Hovakimyan, Craig Woolsey, and Guoqiang Hu

Abstract— This paper discusses the 3D affine motion esti-
mation problem using two cameras via observations of a single
feature point. The unknown parameters to be estimated include
the nine rotational parameters, the three translational param-
eters, and the 3D position. One camera assumes a parabolic
projection. The other camera is the conventional camera that
has a planar projection surface. The parabolic camera is needed
due to its ability of estimating the nine rotational parameters
independently of the other camera. The conventional camera
is utilized to solve the depth ambiguity problem. A closed-
loop nonlinear observer is developed for the affine motion
estimation problem. Simulation results are presented to show
the robustness of the proposed motion estimation scheme.
Key Words: Motion estimation, affine motion, parabolic pro-
jection, stereo vision.

I. INTRODUCTION

The problem of 3D motion estimation has been a central

topic in development of vision-based navigation and control

algorithms. Solutions to this problem can perceivably affect

applications such as vision-based target tracking, coordina-

tion, navigation, and obstacle avoidance. Various solutions

to this problem have been proposed over years, such as the

nonlinear optimization techniques [1]–[3], linear least-square

methods [4], and extended Kalman filter [5], [6], in addition

to a class of nonlinear observers that arise from a control

view point. These nonlinear observers, typically named as

perspective nonlinear observers, study the perspective dy-

namic systems that result from the perspective projection.

In general, a perspective dynamic system is a linear system

whose output is observed up to a homogeneous line. It is due

to this perspective projection that depth ambiguity occurs.

The problem of 3D motion estimation via perspective

nonlinear observers has evolved through two stages in its

development. First, range identification was addressed, where

all the motion parameters of the moving object have been

assumed to be known. The objective was to estimate the

range, sometimes called the depth. A variety of nonlinear

observers have been proposed, including those in [7]–[16], to

name but a few. Next, 3D motion estimation was considered

that estimates both the unknown position and all (or some of)

the unknown motion parameters, by employing stereo vision

[12] or multiple cameras running simultaneously [17], by

integrating vision with range sensors [18], by active vision

(moving the camera on a rod) [19], or by modifying the

behavior of the follower (where the camera is installed) to

provide persistent excitation to recover the target’s informa-

tion [20].

Despite the significant amount of work on vision-based

motion estimation, the solution to motion estimation of an

affine motion using a single feature point is not available,

to the best of the authors’ knowledge. For instance, the

method proposed in [12] studied the rigid-body motion,

where the motion dynamics contain only three rotational

parameters. The method proposed in [19] did not consider

the rotational dynamics. The algorithms presented in [17],

[18] assumed a planar object. In our early study, it has been

shown that a parabolic camera can be used to estimate the

nine unknown constant rotational parameters under certain

conditions, when the translational parameters were assumed

known [21]. In this paper, we resort to the stereo pinhole-

parabolic system and provide a solution to the affine motion

estimation problem.

The contribution of this paper is the closed-loop nonlinear

solution to the affine motion estimation problem using one

parabolic camera and one conventional camera. Based on

the orthographic projection provided by the parabolic camera

and the measurements of the two cameras, the motion estima-

tion problem is cast into a nonlinear identifier design problem

that can be resolved by applying the existing nonlinear

identifier-based-observer (IBO) technique [7], [22], [23]. It

is worth mentioning that the motion estimation technique

proposed in this paper uses the IBO, but is not limited

to the IBO. Other nonlinear observers can be equivalently

considered for the same purpose.

The paper is organized as follows. Section II describes

the affine motion and formulates the assumptions needed

for estimation. The IBO is briefly reviewed in Sec. III. In

Sec. IV, the planar and the parabolic projection surfaces are

given. Our proposed method for 3D affine motion estimation

is presented in Sec. V. Section VI shows simulation results,

and finally Section VII concludes the paper.

II. AFFINE MOTION

One model for the relative motion of a point in the

camera’s field of view is given by the following linear system





Ẋ(t)

Ẏ (t)

Ż(t)



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









X(t)
Y (t)
Z(t)



+





b1(t)
b2(t)
b3(t)



 , (1)

where the matrix [aij ] presents the rotational dynamics,

the vector [bj ] corresponds to the translational motion, and

[X(t), Y (t), Z(t)]⊤ are the coordinates of the point in the

camera frame at time instance t. The affine motion dynamics

introduced in (1) describes an object motion that undergoes a

rotation, translation, and linear deformations [24]. In general,

aij can be time-varying functions. However, in this paper we

limit the discussion to constant parameters aij .
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Let

a = [a11, a12, a13, a21, a22, a23, a31, a32, a33]
⊤,

b(t) = [b1(t), b2(t), b3(t)]
⊤.

(2)

We make the following assumptions:

• The motion parameters a and b(t) are bounded by some

known constants.

• Z(t) is bounded away from zero Z(t) > ǫ > 0 for all

t ≥ 0, where ǫ is a constant.

• X(t) and Y (t) are bounded for all t ≥ 0.

• Similar to that in [12] (pp. 2087), it is assumed that

ḃ(t) can be written as

ḃ(t) = p(θ(t), t) b(t), (3)

where

θ(t) = [b1(t)x4(t), b2(t)x4(t), b3(t)x4(t),a
⊤]⊤,

x4(t) =
1

√

X2(t) + Y 2(t) + Z2(t) − Z(t)
.

(4)

Further, the function p(θ(t), t) ∈ R
3×3 and its first time

derivative are piecewise smooth and uniformly bounded.

The objective is to estimate [X(t), Y (t), Z(t)]⊤ and the

motion parameters a and b(t), using a stereo vision system

consisting of a conventional camera and a parabolic camera.

III. REVIEW OF IBO

We review the IBO in this section, which is used for the

estimation task. The IBO is designed for a class of nonlinear

systems with the following structure [7]:







ẋ1(t) = w⊤(x1(t),u(t))x2(t) + φ(x1(t),u(t)),

ẋ2(t) = g(x1(t),x2(t),u(t)),

y(t) = x1(t),

(5)

where x1(t) ∈ X1 ⊂ R
n1 , x2(t) ∈ X2 ⊂ R

n2 , and u(t) ∈
U ⊂ R

k. The n1×n2 matrix w⊤(x1(t),u(t)) and the vector

g(x1(t),x2(t),u(t)) are general nonlinear functions of their

parameters. Let x(t) = [x⊤
1 (t),x⊤

2 (t)]⊤ and n = n1 + n2

so that x(t) ∈ X ⊂ R
n, where X = X1 ⊕ X2.

Following [7], we introduce the following assumptions:

Assumption 3.1:

1) Let x(t) be bounded: ‖x(t)‖ < M, where M > 0.

Let Ω = {x ∈ R
n : ‖x(t)‖ < M}. Further, for some

fixed constant γ > 1, let Ωγ = {x(t) ∈ R
n : ‖x(t)‖ <

γM}. Assume that the function g(x1(t),x2(t),u(t))
is locally Lipschitz in Ωγ with respect to x2(t), i.e.,

there exists a positive constant α such that

‖g(x1,x2,u) − g(x1,z2,u)‖ < α ‖x2 − z2‖, (6)

for all x2(t),z2(t) ∈ Ωγ ∩ X2, uniformly in x1(t) ∈
Ωγ ∩ X1 and u(t) ∈ U.

2) Let the regressor matrix w⊤(x1(t),u(t)) and its first
time derivative be piecewise smooth and uniformly

bounded. Further, assume that there exist positive
constants L1, L2, η, and µ such that

‖w⊤(x1, u)‖ < L1,

∥
∥
∥
∥

dw⊤(x1, u)

dt

∥
∥
∥
∥

< L2, (7a)

∫ t+µ

t

w (x1(τ), u(τ)) w
⊤ (x1(τ), u(τ)) dτ > ηI, (7b)

for all t ≥ 0, for all trajectories that originate in X and

for all u(t) ∈ U, while I denotes the identity matrix

of appropriate dimension.

Letting x̂1(t) and x̂2(t) be the estimates of x1(t) and

x2(t), respectively, the IBO is introduced as:






˙̂x1(t) = GAm(x̂1 − x1) + w⊤(x1,u)x̂2 + φ(x1,u),

˙̂x2(t) = −G2w(x1,u)P (x̂1 − x1) + g(x1, x̂2,u),

x̂(t+i ) = M
x̂(t−i )

‖x̂(t−i )‖
,

(8)

where G is a scalar constant and Am is an n1 ×n1 Hurwitz

matrix. The matrix P is the positive definite solution of the

Lyapunov equation A⊤
mP + PAm = −Q for some Q > 0.

The sequence ti is defined as follows:

ti = min{t : t > ti−1 and ‖x̂(t)‖ ≥ γM}, t0 = 0, (9)

where γ is a fixed constant.

Theorem 3.1: Subject to Assumption 3.1, there exists a

positive constant G0 such that the estimation errors e1(t) =
x1(t) − x̂1(t) and e2(t) = x2(t) − x̂2(t) converge to zero

exponentially, if the constant G in (8) is chosen larger than

G0 [7].

IV. PLANAR AND PARABOLIC PROJECTION

To provide a solution to the 3D affine motion estimation

problem, two cameras are used: a conventional camera (with

planar projection surface) and a parabolic camera (with

parabolic projection surface). We briefly review these two

projections in this section.

Conventional Camera: The conventional camera has a

planar projection surface. It is supposed that the observed

position on the planar surface is defined by

y∗(t) = [y∗

1(t), y∗

2(t)]⊤ =

[
X(t) − m

Z(t)
,

Y (t) − n

Z(t)

]⊤

,

(10)

where m and n are known constants.

Parabolic Camera: The parabolic camera assumes

parabolic projection, which refers to the projection induced

by a parabolic mirror onto an image plane. The parabolic

projection of a point P in space is the orthographic projection

of the intersection of the line connecting the point P with

the paraboloid’s focus, and the paraboloid [25]. Consider a

paraboloid placed in such a way that its symmetric axis is

the Z-axis and its focus is at the origin, as shown in Fig. 1.

Further, assume that the paraboloid’s focal length f equals

1/2, without loss of generality.

The function of the parabolic surface is

1

2
(x2

1 + x2
2 − 1) = x3. (11)
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Fig. 1. 2D illustration of a parabolic projection.

The projection of a point P = [X, Y, Z]⊤ onto the paraboloid

surface can be described by [X, Y, Z]
⊤

/L with L =
±
√

X2 + Y 2 + Z2 − Z. Let P1 be the intersection point

(as light ray enters the paraboloid), as shown in Fig. 1.

Correspondingly, L =
√

X2 + Y 2 + Z2−Z [15], [16], [25].

Let

x(t) = [x1(t), x2(t), x3(t), x4(t)]
⊤,

=
1

L(t)
[X(t), Y (t), Z(t), 1]⊤,

(12)

where

L(t) =
√

X2(t) + Y 2(t) + Z2(t) − Z(t). (13)

The system (1) with output observations (12) is equivalent

to the following system:











ẋ1(t)
ẋ2(t)
ẋ3(t)



 =





b1 + Ω0(t)x1

b2 + Ω0(t)x2

b3 + Ω0(t)x3



 x4 +















(

1 −

x2
1

1 + x3

) 3∑

j=1

a1jxj

−

x1x2

1 + x3

3∑

j=1

a1jxj

−

x1x3

1 + x3

3∑

j=1

a1jxj















+















−

x1x2

1 + x3

3∑

j=1

a2jxj +
x1

1 + x3

3∑

j=1

a3jxj

(

1 −

x2
2

1 + x3

) 3∑

j=1

a2jxj +
x2

1 + x3

3∑

j=1

a3jxj

−

x2x3

1 + x3

3∑

j=1

a2jxj + (1 +
x3

1 + x3
)

3∑

j=1

a3jxj















,

ẋ4(t) =





3∑

j=1

a3jxj −

1

1 + x3

3∑

i=1

3∑

j=1

aijxjxi



 x4 + Ω0(t) x2
4,

(14)

with output

y(t) = [y1(t), y2(t), y3(t)]
⊤ =

1

L(t)
[X(t), Y (t), Z(t)]⊤,

(15)

where Ω0(t) in (14) is

Ω0(t) = b3 −
1

1 + x3

3∑

i=1

bixi. (16)

In the next section, estimation of the affine motion in (1)

will be performed using the visual measurements y∗(t) and

y(t) in equations (10) and (15), respectively.

V. MOTION ESTIMATION

Motion estimation of the rotational parameters is achieved

via the parabolic camera. Estimation of the unknown

depth/position and the translational parameters is obtained

appealing to the stereo vision setup.

A. Estimation of Rotational Parameters a

Estimation of the rotational parameters a is achieved via

the parabolic camera using visual measurements y(t). Let

θ(t) =








θ1(t)
θ2(t)

...

θ12(t)








=







b1(t)x4(t)
b2(t)x4(t)
b3(t)x4(t)

a







, (17)

where x4(t) is given in (4). Using the assumption in equation
(3), the system (14) can be rewritten as










ẋ1(t)
ẋ2(t)
ẋ3(t)



 = w
⊤

1 (x1(t), x2(t), x3(t)) θ(t),

θ̇(t) =







g1(x1(t), x2(t), x3(t), θ(t))





θ1(t)
θ2(t)
θ3(t)





09×1







+







p(θ(t), t)





θ1(t)
θ2(t)
θ3(t)





09×1







,

(18)

where

w
⊤

1 (x1(t), x2(t), x3(t)) =





1 −
x2

1

1+x3

−x1x2

1+x3

x1

1+x3
(1 −

x2

1

1+x3
)[x1, x2, x3]

− x1x2

1+x3
1 −

x2

2

1+x3

x2

1+x3
− x1x2

1+x3
[x1, x2, x3]

− x1x3

1+x3
− x2x3

1+x3
1 + x3

1+x3
− x1x3

1+x3
[x1, x2, x3]

− x1x2

1+x3
[x1, x2, x3]

x1

1+x3
[x1, x2, x3]

(1 −
x2

2

1+x3
)[x1, x2, x3]

x2

1+x3
[x1, x2, x3]

− x2x3

1+x3
[x1, x2, x3] (1 + x3

1+x3
)[x1, x2, x3]






(19a)

and

g1(x1(t), x2(t), x3(t), θ(t)) =

−
x2

1θ4 + x1x2θ5 + x1x3θ6 + x1x2θ7 + x2
2θ8 + x2x3θ9

1 + x3

+
x1θ10 + x2θ11 + x3θ12

1 + x3
+ θ3 −

x1θ1 + x2θ2 + x3θ3

1 + x3
.

(19b)

The system (18) exhibits the structure given in (5),

to which IBO may be applied, by treating x1(t) =
[x1(t), x2(t), x3(t)]

⊤, x2(t) = θ(t), and φ(x1(t),u(t)) =
0. To apply the IBO, we need the following assumption for

the system (18):

Assumption 5.1: There do not exist constants κi (for i =
1, 2, 3, 4) with

∑4
i=1 κ2

i 6= 0 such that

κ1x1(τ) + κ2x2(τ) + κ3x3(τ) + κ4 = 0, (20)

for all τ ∈ [t, t + µ], where µ is an arbitrarily small positive

constant.
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It is straightforward to verify that w1(x1, x2, x3) and its
first time derivative are piecewise smooth and uniformly
bounded. It can be seen from (19a) that rearranging the
columns of w⊤

1 (x1(t), x2(t), x3(t)) one can arrive at

w̄
⊤

1 (x1(t), x2(t), x3(t))

=






1 −
x2

1

1+x3

−x1x2

1+x3

x1

1+x3

− x1x2

1+x3
1 −

x2

2

1+x3

x2

1+x3

− x1x3

1+x3
− x2x3

1+x3
1 + x3

1+x3






︸ ︷︷ ︸

A

⊗ [1, x1, x2, x3]
︸ ︷︷ ︸

B

, (21)

where ⊗ denotes the Kronecker product. Using straightfor-

ward algebraic manipulations, it can be shown that Assump-

tion 5.1 ensures that all columns in the matrices A and

B are linearly independent. Thus, the twelve columns in

w⊤
1 (x1(t), x2(t), x3(t)) are also linearly independent, which

leads to (7b), as shown below.

Let vi(t) be the ith column of w⊤
1 (x1, x2, x3) in

(19a) (for i = 1, . . . , 12). From Assumption 5.1, there

do not exist constants κi (for i = 1, . . . , 12) with
∑12

i=1 κ2
i 6= 0 such that

∑12
i=1 κi vi(t) = 0. There-

fore, for any nonzero 12 × 1 vector ν with ‖ν‖ = 1,

we have ν⊤w1(x1, x2, x3) w⊤
1 (x1, x2, x3)ν > ε‖ν‖2 = ε.

Thus w1(x1, x2, x3) w⊤
1 (x1, x2, x3) > ε I and (7b) is sat-

isfied. Assumption 5.1 says that the observed image data

(x1(t), x2(t), x3(t)) should not stay in the neighborhood of

any fixed plane during a very short time interval.

Let

θ̂(t) =
[

θ̂1(t), θ̂2(t), · · · , θ̂12(t)
]⊤

(22)

and

e1(t) = x̂1(t) − x1(t),

e2(t) = x̂2(t) − x2(t),

e3(t) = x̂3(t) − x3(t).

(23)

The following observer is considered for (18):










˙̂x1(t)
˙̂x2(t)
˙̂x3(t)



 = GA3×3





e1

e2

e3



 + w⊤
1 (x1(t), x2(t), x3(t)) θ̂(t),

˙̂
θ(t) = −G2w1(x1(t), x2(t), x3(t))P3×3





e1

e2

e3





+







g1(x1(t), x2(t), x3(t), θ̂(t))





θ̂1(t)

θ̂2(t)

θ̂3(t)





09×1







+







p(θ̂(t), t)





θ̂1(t)

θ̂2(t)

θ̂3(t)





09×1







,

(24)

where G is a scalar constant and A3×3 is a 3 × 3 Hurwitz

matrix. The matrix P3×3 is the positive definite solution of

the Lyapunov equation A⊤
3×3P3×3 + P3×3A3×3 = −Q for

some Q > 0.

According to Theorem 3.1, there exists a positive constant

G0, such that choosing G > G0 ensures the estimation errors

[e1(t), e2(t), e3(t), θ̂
⊤

(t) − θ⊤(t)]⊤

converge to zero exponentially. Clearly, this gives â(t):

â(t) = [θ̂4(t), θ̂5(t), . . . , θ̂12(t)]
⊤, (25)

where θ̂i(t) (for i = 4, . . . , 12) denotes the ith element of

θ̂(t) obtained in (24).

B. Estimation of Z(t) and b(t)

Estimation of the unknown depth Z(t) and the transla-

tional parameters b(t) is obtained using observations of the

feature point from two cameras, the parabolic camera and

the conventional camera.

From equations (10) and (15), we have

y1(t)

y3(t)
=

X(t)

Z(t)
=

X(t) − m + m

Z(t)
= y∗

1(t) +
m

Z(t)
.

Thus, Z(t) can be computed as Z(t) = m
y1(t)/y3(t)−y∗

1
(t) .

Similarly, we can have Z(t) = n/(y2(t)/y3(t) − y∗
2(t)).

Hence, the estimate of Z(t), denoted by Ẑ(t), can be
computed from the visual measurements y(t) and y∗(t) as

Ẑ(t) =

√
√
√
√

(

m
y1(t)
y3(t)

− y∗
1(t)

)2

+

(

n
y2(t)
y3(t)

− y∗
2(t)

)2

, (26a)

where (y1(t), y2(t)) and (y∗
1(t), y∗

2(t)) are the visual mea-

surements from the parabolic and the conventional camera,

respectively.
Similarly, the estimates of X(t) and Y (t), denoted by

X̂(t) and Ŷ (t), can be computed as

X̂(t) =

√
(

y1(t)

y3(t)
Ẑ(t)

)2

+
(

y∗
1(t)Ẑ(t) + m

)2

,

Ŷ (t) =

√
(

y2(t)

y3(t)
Ẑ(t)

)2

+
(

y∗
2(t)Ẑ(t) + m

)2

.

(26b)

Denote

L̂(t) =

√

X̂2(t) + Ŷ 2(t) + Ẑ2(t) − Ẑ(t).

It follows from equation (17) that the estimate of b(t),
denoted by b̂(t), can be obtained by

b̂(t) = L̂(t)
[

θ̂1(t), θ̂2(t), θ̂3(t)
]⊤

, (26c)

where θ̂i(t) (for i = 1, 2, 3) denotes the ith element of θ̂(t).
In summary, 3D affine motion estimation is obtained

via equations (25) and (26). It is clear that estimation of

a is achieved using the parabolic camera only. The other

quantities are obtained resorting to the stereo vision system.

The proposed method is feasible due to the following factors:

1) The nonlinearity introduced by the parabolic pro-

jection gives the possibility of estimating all the

rotational parameters aij (see the regressor matrix

w⊤
1 (x1(t), x2(t), x3(t)) in (19a), where all columns

of the regressor matrix can be linearly independent to

satisfy the observability condition (7b)).

2) The assumption that the rotational parameters are

unknown constants reduces the resulting perspective

dynamic system to a linearly parameterized structure,

such that existing perspective nonlinear observers can

be applied (see (18)).

3) The depth ambiguity is resolved via stereo vision.
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VI. NUMERICAL SIMULATION

In this section, numerical simulation results are provided

to illustrate the performance of the motion estimation tech-

nique. The feature point has the following motion dynamics:




Ẋ(t)

Ẏ (t)

Ż(t)



 =





0.3 −4 0.3
4 −0.2 0.4

−0.6 −0.5 0









X
Y
Z



+





2π sin(2πt)
2π cos(2πt)

0



 ,

(X0, Y0, Z0) = (1, 1.5, 1), x0 = (X0, Y0, Z0)/L0,
(27)

where L0 =
√

X2
0 + Y 2

0 + Z2
0 − Z0. The observer’s ini-

tial states are chosen to be [x̂1(0), x̂2(0), x̂3(0), x̂4(0)] =
[X0/L0, Y0/L0, Z0/L0, 1] and â(0) = 0. The observer pa-

rameters are chosen to be M = 15, Am = I3, P = −1/2×I3

and G = 10, where I3 denotes the 3 × 3 identity matrix.

In the simulations, 1% uniform noise was injected into

the measurable image-space signals y∗(t) and y(t) via the

randn() function in Matlab. A step size of 0.02 second is

utilized to simulate a typical real-time image processing rate

of 30Hz.

Estimation of the rotational parameters a, the 3D posi-

tion [X(t), Y (t) Z(t)]⊤, and the translational parameters

b(t) are shown in Figs. 2-8, where true values are plotted

in solid lines and the corresponding estimates are plotted

in dashed lines. Obviously, both position estimation of

[X(t), Y (t), Z(t)]⊤ and parameter estimations of a, b(t)
are convergent. Figure 9 shows the trajectory of the observed

image data (x1(t), x2(t), x3(t)) on the parabolic surface. It

can be observed that the image data do not stay within the

neighborhood of any fixed plane during any time interval

such that Assumption 5.1 is verified.
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Fig. 2. Estimation of a11, a12, and a13.

VII. CONCLUSION

A nonlinear observer is applied to the affine motion

estimation problem, where the motion parameters and the

position of a moving object in the space are identified using

the perspective observations of a single feature point. Two

cameras are used for the estimation task: a conventional

camera (with planar projection surface) and a parabolic

camera (with parabolic projection). The unknown rotational

parameters are estimated via the parabolic camera. Estima-

tion of the position and translational parameters is obtained
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Fig. 3. Estimation of a21, a22, and a23.
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Fig. 4. Estimation of a31, a32, and a33.

resorting to the stereo vision system. Simulation results

are presented showing the effectiveness of the proposed

estimation technique.
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