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Abstract— This paper presents new results in observer-
based robust fault reconstruction for uncertain systems using
cascaded sliding mode observers. Signals from an observer are
used as the output of a fictitious system whose input is the fault.
Then an observer is implemented for the fictitious system. This
process is repeated until the first Markov parameter of the
fictitious system is full rank. The result is that robust fault
reconstruction can be carried out for a wider class of systems.
An example verifies the effectiveness of the proposed scheme.

I. INTRODUCTION

Fault reconstruction [6], [5], [15], is an important area of

research activity. However, most fault reconstruction schemes

are designed about a model, which usually does not per-

fectly represent the system – as certain dynamics are either

unknown or do not fit exactly into the framework of the

model. These dynamics are usually represented as a class

of disturbances within the model [14]. The disturbances

corrupt the reconstruction, and could produce a nonzero

reconstruction when there are no faults, or worse, mask the

effect of a fault. Therefore, schemes need to be designed so

that the reconstruction is robust to disturbances. Edwards et

al.[6], [5] used a sliding mode observer [4] to reconstruct

faults, in which there was no explicit consideration of the

disturbances or uncertainty. Tan & Edwards [18] built on

the work in [5], [6] and presented a design algorithm for

the observer, using Linear Matrix Inequalities (LMIs) [2],

such that the L2 gain from the disturbances to the fault

reconstruction is minimized. Saif & Guan [15] aggregated

the faults and disturbances to form a new ‘fault’ vector and

used a linear unknown input observer to reconstruct the new

‘fault’ vector. A necessary condition in [6], [5], [18], [15] is

that the first Markov parameter of the system connecting the

fault to the output must be full rank. This limits the class of

systems to which [6], [5], [18], [15] are applicable.

Recently, there have been developments in fault recon-

struction for systems whose first Markov parameter is not

full rank. Floquet & Barbot [7] transformed the system

into an ‘output information’ form such that existing sliding

mode observer techniques can be implemented to estimate

the states in finite time and reconstruct the faults. However,

in [7] there is no explicit consideration of disturbances or

uncertainty. Higher order sliding mode schemes have been

suggested by [1], [3], [9]. The work in [9] uses the concept

of ‘strong observability’ together with higher order sliding

mode observers. Strong observability has also been exploited

in [1] using a hierarchy of observers. Chen & Saif used

a bank of high-order sliding-mode differentiators to obtain
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derivatives of the outputs and then estimates the faults from

these signals [3]. Floquet et.al suggest the use of exact

differentiators to generate derivatives of the measurements to

‘create’ additional outputs [8] to circumvent relative degree

assumptions. However all the work in [7], [3], [8], [1],

[9] does not consider uncertainty – unless the faults and

uncertainty are augmented and treated as ‘unknown inputs’.

In this case the number of disturbances plus faults must

not exceed the number of outputs. This results in strong

constraints which must be satisfied, and hence a smaller class

of systems for which the results are applicable.
Ng et al.[13] extended the work of Tan & Edwards [18]

exploiting two sliding mode observers in cascade; known

signals from the first observer were considered as outputs

of a ‘fictitious’ system which has a full rank (first) Markov

parameter; then a second sliding mode observer is designed

based on the fictitious system to reconstruct the fault. This

enables robust fault reconstruction for systems where the

number of disturbances and faults exceed the number of

outputs (which cannot be achieved by [7], [3]).
This paper builds on the work of [13] by using multiple

observers in cascade. The use of sliding mode observers in a

cascade framework for unknown input estimation is not new

[16], [11], [10], [12]. However the work in [10] assumes

full state measurement, whilst [11] does not consider any

external disturbances. Although [16] considers both faults

and uncertainties, they are aggregated and are both treated as

unknown inputs – this introduces considerable conservatism.

In this paper the faults and disturbances are treated differ-

ently. Using similar techniques as in [13], measurable signals

from an observer are used as outputs of a fictitious system;

the next observer is designed for the fictitious system and

the known signals from this observer are used as outputs

of another fictitious system. The process is repeated until

a fictitious system whose (first) Markov parameter is full

rank is obtained. The technique proposed in [18] is then

used to robustly reconstruct the fault. This results in robust

fault reconstruction applicable to a wider class of systems

than in [13]. The final fictitious system is found to be in

the same framework as [18] which minimizes the L2 gain

from the disturbances to the fault reconstruction; this enables

the algorithm to be applicable for systems when the number

of outputs are less than the sum of faults and disturbance

channels. In addition, it is also found that the design of

previous observers do not affect the sliding motion of the

final observer, which implies that the L2 gain from the

disturbances to the fault reconstruction is not affected.

II. THE ROBUST FAULT RECONSTRUCTION SCHEME

Consider the following system

ẋ1 = A1x1 + M1f1 + Q1ξ1 (1)
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y1 = C1x1 (2)

where x1 ∈ R
n1

are the states, y1 ∈ R
p are the outputs

and f1 ∈ R
q are unknown faults. The signals ξ1 ∈ R

h

are uncertainties or dynamics that represent the mismatch

between the linear model (1) and the real plant. Assume

without loss of generality rank(M1) = q, rank(C1) = p
and rank(C1M1) = r̄1 < q, implying that r̄1 ≤ min {p, q}.

Since rank(C1) = p, then C1 can be written without loss

of generality in the form C1 =
[

0 Ip

]
.

The objective is to reconstruct f1 whilst minimizing the

effects of ξ1 on the fault reconstruction. If h + q > p and

r̄1 < q, then the approaches suggested in [6], [5], [15], [18],

[16], [1], [3], [9], [7], [8] are not applicable. In this situation,

this paper proposes the cascade observer scheme shown in

Figure 1.

Firstly partition the matrices from (1) as

A1 =

[
A1

1 A1
2

A1
3 A1

4

]

, M1 =

[
M1

1

M1
2

]

, Q1 =

[
Q1

1

Q1
2

]
ln1−p

lp

where A1
1 is square. Since by assumption C1 =

[
0 Ip

]

and rank(C1M1) = r̄1, then it follows that rank(M1
2 ) =

r̄1. In the representation above, Q1 has no particular struc-

ture.

A. Summary of fault reconstruction algorithm

The fault reconstruction method proposed in this paper can

be summarized in the following steps. Set i = 1 and enter

the following algorithm:

1) Consider the generic uncertain faulty system

ẋi = Aixi + M if i + Qiξi (3)

yi = Cixi (4)

and define r̄i := rank(CiM i).

a) If rank(CiM i) = rank(M i), set i = k and

jump to step 7.

b) If rank(CiM i) < rank(M i) and i = n1, then

the method in this paper cannot be used to re-

construct the faults1 and terminate the algorithm.

If neither (a) nor (b) are satisfied, proceed to the next

step.

2) For the case when i = 1, define the following

M̄0
11 := M1

1 , M̄0
12 := M1

2 ,m1 := p, r̄0 := 0 (5)

Ã0
13 := A1

3, Ã
0
11 := A1

1, Ā0
Ω = α0 = M̄0

22 = φ (6)

-
y1

SMO 1 -z
1

-

-

z1
2

z1
1

Filter -

z1
f

1st SMO and filter structure

-
y2

SMO 2 -z
2

-

-

z2
2

z2
1

Filter -

z2
f

2nd SMO and filter structure

-
y3

.....
-

yk

SMO k -

νk
eq

W -
f̂1

k-th SMO

Fig. 1. The proposed FDI scheme formed from a cascaded sliding mode observer/filter structure

1The justification of this will be given in Proposition 2 in the appendix.

where φ is the empty matrix. Then Ai and M i can be

expanded as








Āi−1
Ω 0 ⋆ 0 0

⋆ Ãi−1
11 ⋆ 0 0

⋆ Ãi−1
13 ⋆ 0 0

⋆ 0 ⋆ −αi−1I 0
⋆ ⋆ ⋆ 0 −αi−1I









l(i−1)h

lni−p−(i−1)h

lmi

lp−mi−r̄i−1

lr̄i−1

(7)

and

M i =









0 0
M̄ i−1

11 0

M̄ i−1
12 0
0 0
0 αi−1M̄ i−1

22









l(i−1)h

lni−p−(i−1)h

lmi

lp−r̄i−1−mi

lr̄i−1

(8)

3) Define two orthogonal matrices Di ∈ R
mi×mi

and

T i
2 ∈ R

(q−r̄i−1)×(q−r̄i−1) such that

[
I 0
0 (Di)−1

] [
M̄ i−1

11

M̄ i−1
12

]

(T i
2)

−1 =





M i
11 M i

12

0 0
0 M i

22



 (9)

where M i
22 ∈ R

ri×ri

is square and invertible. Define

T i
1 := T i

11 × diag
{
Ini−p, (D

i)−1, Ip−mi

}
where T i

11

is defined as









I 0 0 0 0 0
0 I 0 −M i

12(M
i
22)

−1 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 0 I










lh

lni−p−h

lmi−ri

lp−mi−r̄i−1

lri

lr̄i−1

(10)

Define

Ãi
3 := (Di)−1Ãi−1

13 =

[
Ãi

31

Ãi
32

]
lmi−ri

lri
(11)

and

Ãi
1 := Ãi−1

11 − M i
12(M

i
22)

−1Ãi
32 (12)

Perform the coordinate transformation

xi 7→ T i
1x

i, f i 7→ f i+1 :=

[

T i
2 0
0 Ir̄i−1

]

︸ ︷︷ ︸

T i
f

f i (13)

then the matrix triple (Ai,M i, Ci) will have the form
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[
Ai

1 Ai
2

Ai
3 Ai

4

]

=









Āi−1
Ω 0 ⋆

⋆ Ãi
1 ⋆

⋆ Ãi
31 ⋆

⋆ 0 ⋆
⋆ ⋆ ⋆









l(i−1)h

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

(14)

[
M i

1

M i
2

]

=






0 0
M i

11 0
0 0
0 M̄ i

22






l(i−1)h

lni−p−(i−1)h

lp−r̄i

lr̄i

(15)

Ci =
[

0 Ci
2

]
(16)

where

M̄ i
22 =

[
M i

22 0
0 αi−1M̄ i−1

22

]
lri

lr̄i−1

and

Ci
2 = diag

{
Di, Ip−mi

}






I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I






lmi−ri

lp−r̄i−1−mi

lri

lr̄i−1

4) Assume ξi satisfies

ξ̇i = Ai
Ωξi + Bi

Ωξi+1 (17)

Augment (17) with (3) to obtain

˙̄x
i

= Āix̄i + M̄ if i+1 + Q̄iξi+1 (18)

yi = C̄ix̄i (19)

where

Āi =











Ai
Ω 0 0 0
⋆ Āi−1

Ω 0 ⋆

⋆ ⋆ Ãi
1 ⋆

⋆ ⋆ Ãi
31 ⋆

⋆ ⋆ 0 ⋆
⋆ ⋆ ⋆ ⋆











lh

l(i−1)h

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

M̄ i =






0 0
M i

11 0
0 0
0 M̄ i

22






lih

ln1−p−(i−1)h

lp−r̄i

lr̄i

Define

Āi
Ω :=

[
Ai

Ω 0
⋆ Āi−1

Ω

]

then Āi can be re-expressed as

Āi =









Āi
Ω 0 0

⋆ Ãi
1 ⋆

Q̄i
21 Ãi

31 ⋆
⋆ 0 ⋆
⋆ ⋆ ⋆









lih

lni−p−(i−1)h

lmi−ri

lp−mi−r̄i−1

lr̄i

(20)

5) Define mi+1 := rank(Ãi
31). If mi+1 < q−r̄i, then the

fault can never be fully reconstructed2 and terminate

the algorithm. Otherwise, proceed with the following:

2The justification for this will be given in Proposition 3 in the appendix.

Let U i
1 and U i

2 be invertible matrices of dimension

mi − ri and ni − p − (i − 1)h respectively such that

U i
1Ã

i
31(U

i
2)

−1=

[
0 Imi+1

0 0

]

, U i
1Q̄

i
21=

[
Q̄i

211

Q̄i
212

]

(21)

where Q̄i
211, Q̄

i
212 are matrices with no particular struc-

ture. Also partition

U i
2Ã

i
1(U

i
2)

−1=

[
Ãi

11 Ãi
12

Ãi
13 Ãi

14

]
lni−p−mi+1−(i−1)h

lmi+1
(22)

Introduce the following transformation x̄i 7→ T̄ ix̄i

where T̄ i := diag
{
Iih, U i

2, U
i
1, Ip+ri−mi

}
T̄ i

1 with

T̄ i
1 :=






I 0 0 0
0 I 0 0

Q̄i
211 0 I 0
0 0 0 I






lih

lni−p−(i−1)h−mi+1

lmi+1

lp

(23)

Then Āi, M̄ i, C̄i are transformed to be
[

Āi
1 Āi

2

Āi
3 Āi

4

]

=











Āi
Ω 0 0 ⋆

⋆ Ãi
11 Ãi

12 ⋆

⋆ Ãi
13 Ãi

14 ⋆
0 0 I ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆











lih

lni−p−mi+1−(i−1)h

lmi+1

lmi+1

lp−mi+1−r̄i

lr̄i

(24)

[
M̄ i

1

M̄ i
2

]

=








0 0
M̄ i

11 0
M̄ i

12 0
0 0
0 M̄ i

22








lih

lni−p−mi+1−(i−1)h

lmi+1

lp−r̄i

lr̄i

(25)

C̄i =
[

0 C̄i
2

]
, |C̄i

2| 6= 0 (26)

Finally partition

Āi
3 =

[
Āi

31

Āi
32

]
lmi+1

lp−mi+1
(27)

which from (24) results in Āi
31 =

[
0 Imi+1

]
.

6) A sliding mode observer [4] for the system (18) - (19)

is

˙̂
x̄

i
= Āi ˆ̄x

i
− Ḡi

l ē
i
y + Ḡi

nν̄i (28)

ŷi = C̄ix̄i (29)

where ˆ̄x
i
∈ R

n̄i

is the estimate of x̄i and ēi
y =

ŷi − yi is the output estimation error. The matrices

Ḡi
l, Ḡ

i
n ∈ R

n̄i×p are observer gains (to be designed).

In the coordinate system of (24) - (26), Ḡi
n will be

assumed to have the structure

Ḡi
n =

[

−L̄i

Ip

]

(P̄ i
oC̄

i
2)

−1, L̄i =
[

L̄i
o 0

]
(30)

where P̄ i
o ∈ R

p×p is a symmetric positive def-

inite (s.p.d.) matrix, L̄i ∈ R
(n̄i−p)×p and L̄i

o ∈
R

(n̄i−p)×mi+1

. The term ν̄i is a nonlinear discontinu-

ous term defined by

ν̄i = −ρ̄i
ēi
y

‖ēi
y‖

, ρ̄i ∈ R+ (31)
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Define ēi := ˆ̄x
i
− x̄i as the state estimation error, and

combine (18), (19) and (28) - (29) to obtain the error

system

˙̄e
i
= (Āi−Ḡi

lC̄
i)ēi +Ḡi

nν̄i−M̄ if i+1−Q̄iξi+1 (32)

Proposition 1: Consider a s.p.d. matrix

P̄ i=

[
P̄ i

1 P̄ i
1L̄

i

(P̄ i
1L̄

i)T (C̄i
2)

T P̄ i
oC̄

i
2 + (L̄i)T P̄ i

1L̄
i

]

(33)

where P̄ i
1 ∈ R

(n̄i−p)×(n̄i−p). Assume that

P̄ i(Āi − Ḡi
lC̄

i) + (Āi − Ḡi
lC̄

i)T P̄ i < 0 (34)

Then, for a large enough ρ̄i in (31), an ideal sliding

motion takes place on S̄
i =

{
ēi : C̄iēi = 0

}
in finite

time.

Proof: See Lemma 1 and Proposition 2 from Tan

& Edwards [18].

Apply a change of coordinates T i
L to the triple in (24)

- (26) and Ḡi
n in (30) where

T i
L :=

[
In̄i−p L̄i

0 C̄i
2

]

then the matrices Āi, M̄ i, C̄i, Q̄i from (24) - (26) and

Ḡi
n are transformed to have the structures

Āi →

[
Āi

1 + L̄i
oĀ

i
31 ⋆

C̄i
2Ā

i
3 ⋆

]

, M̄ i →

[
M̄ i

1

C̄i
2M̄

i
2

]

(35)

C̄i →
[
0 Ip

]
, Q̄i →

[

Q̄i
1

0

]

, Ḡi
n →

[
0

(P̄ i
o)

−1

]

(36)

Assume that a sliding motion is taking place on S̄
i so

that ēi
y = ˙̄e

i

y = 0, then (32) can be partitioned in the

new coordinates associated with (35) - (36) as

˙̄e
i

1 = (Āi
1 + L̄i

oĀ
i
31)ē

i
1 − M̄ i

1f
i+1 − Q̄i

1ξ
i+1(37)

0 = C̄i
2Ā

i
3ē

i
1 − C̄i

2M̄
i
2f

i+1 + (P̄ i
o)

−1ν̄i
eq (38)

where ν̄i
eq is the equivalent output error injection

required to maintain a sliding motion [6], [5] and can

be approximated to any degree of accuracy [6] by

replacing ν̄i with

ν̄i = −ρ̄i
ēi
y

‖ēi
y‖ + δ̄i

(39)

where δ̄i is a positive scalar. As the term ēi
y is a

measurable signal, the signal ν̄i
eq is computable online

and is available for use in an online FDI scheme [6],

[5].

Define wi := −ēi
1 and re-arrange (37) - (38) to obtain

ẇi = (Āi
1+L̄i

oĀ
i
31)w

i+M̄ i
1f

i+1+Q̄i
1ξ

i+1 (40)

(P̄ i
oC̄

i
2)

−1ν̄i
eq = Āi

3w
i + M̄ i

2f
i+1 (41)

Define

zi := (P̄ i
oC̄

i
2)

−1ν̄i
eq =

[
zi
1

zi
2

]
lmi+1

lp−mi+1

Note, as argued above, zi
1 and zi

2 are available in real

time. Substituting for Āi
3 from (27) results in

zi
1 =

[
0 Imi+1

]
wi (42)

zi
2 = Āi

32w
i +

[
0 0
0 M̄ i

22

]

f i+1 (43)

Define a signal zi
f , that is also available in real time,

as an output from a stable filter

żi
f := −αizi

f + αizi
2 (44)

where αi ∈ R+. From (43) and (44):

żi
f = −αizi

f + αiĀi
32w

i +

[
0 0
0 αiM̄ i

22

]

f i+1 (45)

Combining (40), (42) and (45) the following state-

space system

ẋi+1 = Ai+1xi+1 + M i+1f i+1 + Qi+1ξi+1 (46)

yi+1 = Ci+1xi+1 (47)

can be obtained where

xi+1 :=

[
wi

zi
f

]

, yi+1 :=

[
zi
1

zi
f

]

Ci+1 :=
[

0 Ip

]
(48)

and

Ai+1 :=

[
Āi

1 + L̄i
oĀ

i
31 0

αiĀi
32 −αiIp−mi+1

]

(49)

M i+1 :=





M̄ i
1[

0 0
0 αiM̄ i

22

]



 (50)

Qi+1 :=

[

Q̄i
1

0

]

(51)

Notice that (46) is in the form of (1) and Ci+1 and

Ci have the same structure. It is clear that f i+1 ∈
R

q, ξi+1 ∈ R
h. Let xi+1 ∈ R

ni+1

, yi+1 ∈ R
p and

define r̄i+1 := rank(Ci+1M i+1). Note that r̄i+1 ≤ q.

It can be seen that

ni+1 = ni + h − mi+1 (52)

Increment the counter i by 1 and return to step 1.

7) Since rank(CkMk) = rank(Mk), then the ro-

bust fault reconstruction approach from [18] may be

adopted to estimate fk, which minimizes the effect of

the disturbance ξk. Define f̂k to be the estimate of fk,

then the reconstruction of f1 can be obtained from

f̂1 := (T k
f )−1...(T 2

f )−1(T 1
f )−1f̂k (53)

where the T i
f are defined in (13).

Key observation: Notice from the structure of Ai in (7),

the matrix L̄i−1
o appears only in the last p columns of Ai.

From the structure of Ci in (48), it is clear that L̄i−1
o affects

only the p output states of xi, and hence L̄i−1
o will not affect

the reduced order sliding motion of observer i and also all

subsequent observers. From [18], the quality of the fault

reconstruction depends on the sliding motion of observer k,
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which is independent of L̄i
o from previous observers. Hence,

only the design of the k-th observer will affect the quality of

the fault reconstruction, and only the k-th observer needs to

be designed using the method in [18]; all previous observers

can be designed using simpler methods, such as in [17].

III. DESIGN EXAMPLE

The method proposed in this paper will now be demon-

strated using a model of a 2-cart system. The first cart is

connected to a rigid wall via a damper, and is connected

to a second cart by a spring. An external force is then

applied to the second cart via an actuator. Assume both carts

have a nominal mass of a = 1 kg, the damper constant

b = 2 Ns/m and the spring constant c = 1 N/m. Denote

x1, x2 respectively as the displacement of carts 1 and 2, and

u as the applied force. The equations of motion are therefore

ẍ1 = −
c

a
x1 −

b

a
ẋ1 +

c

a
x2 (54)

ẍ2 =
c

a
x1 −

c

a
x2 +

1

a
u (55)

Assume that the positions of both carts are measurable and

that the force on the second cart is achieved from the force

command via an actuator modelled as a first order lag with

a time constant τ = 0.2. The states are the force, velocity of

the first cart, velocity of the second cart, position of the first

cart and position of the second cart. Assume the actuator is

potentially faulty.

Further suppose that the spring and damper constants are

imprecisely known; the actual values being 1.02 N/s and

1.8 Nm/s respectively. Hence the state equation becomes

ẋ1 = (A1 + △A1)x + M1f (56)

where △A1 is the discrepancy between the known matrix

A1 and its actual value. The first, fourth and fifth rows

of the system matrix do not contain any uncertainty due

to the nature of the state equations. Hence, any parametric

uncertainty will appear in the second and third and fourth

rows of A1. Equation (56) can be placed in the framework

of (1) by writing △A1x1 = Q1ξ1 where Q1 ∈ R
5×2.

The disturbance ξ1 will be generated by the states x1,

which are in turn generated by the fault f1. Notice that the

method in [7] cannot be used on this system as there is no

consideration of the disturbance ξ1. If the signals f1 and ξ1

are augmented to form a new ‘fault’ vector, as in [15], this

results in the new ‘fault’ vector having 3 components. The

number of outputs in this system is only 2, and hence the

method in [7] is still not applicable. It can be established

that n1 = 5, p = 2, q = 1, h = 2, r̄1 = 0.

A. Design of observer 1

Here the filter matrices that describe the characteristics

of ξ1 are chosen as Ā1
Ω = −10I2, B̄

1
Ω = 10I2, and an

augmented system of dimension n̄1 = n1+h = 7 is produced

(as in (18)). For this example it can be shown that m2 = 2.

The gains of the first sliding mode observer Ḡ1
l , Ḡ

1
n were

designed using the method in [17], based on a sub-optimal

Linear Quadratic Gaussian (LQG) approach. For full details

of the algorithm, see [17]. In this design the weighting

matrices have been chosen as W̄ 1 = 0.01I7, V̄
1 = I2 and the

corresponding observer parameters Ḡ1
l ∈ R

7×2, P̄ 1
o ∈ R

2×2

and L̄1 ∈ R
5×2 have been obtained from the LMI solver.

Then Ḡ1
n can be calculated using P̄ 1

o and L̄1.

Since p − m2 = 0 (because C1M1 = 0), the filter scalar

α1 does not exist. It follows that the system associated with

the second observer will be of order n2 = n̄1 −m2 = 5 and

the number of outputs are p = 2. The system matrices for

the second observer A2,M2, C2, Q2 can be calculated using

the parameters of the first observer.

B. Design of observer 2

For this example, C2M2 = 0, and hence r̄2 = 0 which

results in r2 = 0. To obtain the structures of (14) - (16),

suitable coordinate transformations T 2
1 ∈ R

5×5, T 2
2 ∈ R are

found. Here the matrices A2
Ω, B2

Ω that describe ξ2 are chosen

as A2
Ω = −10I2, B

2
Ω = 10I2 and the augmented system (18)

can then be formed for the case i = 2. It can be shown that

m3 = 1. To obtain the structure in (24) - (26) a suitable

transformation matrix T̄ 2 ∈ R
7×7 is found. The gains Ḡ2

l

and Ḡ2
n have been designed using the method in [17]. The

weighting matrices were chosen as W̄ 2 = 0.01I7, V̄
2 = I2,

and the corresponding gains Ḡ2
l , Ḡ

2
n ∈ R

7×2, P̄ 2
o ∈ R

2×2

have been synthesized. The filter scalar α2 was chosen as

10. It follows that the system for observer 3 will be of order

n3 = n̄2 − m3 = 6 and the number of outputs is p = 2.

C. Design of observer 3

Now rank(C3M3) = rank(M3). Finally, a robust sliding

mode observer can be designed based on A3,M3, C3, Q3

using the method in [18] which bounds the L2 gain from

ξ3 to the fault reconstruction. In [18], two parameters need

to be chosen to tune the observer gains. The motivation for,

and the effects of these parameters, is described in [18]. Here

they have been chosen as D1 = I2, γo = 10. Implementing

the algorithm in [18] yields an L2 gain of γ = 1.156 .

D. Simulation results

For the observers, the gains were chosen as ρ̄1 = 30, ρ̄2 =
30, ρ̄3 = 60 respectively and the smoothing constants were

chosen as δ1 = 10−4, δ2 = 0.01, δ3 = 0.02. The left

subfigure of Figure 2 shows the fault injected into the

second actuator, and Figure 3 shows the disturbances ξ1 that

arise from it. The fault reconstruction f̂1 from the cascade-

observer method is shown in the right subfigure of Figure 2.

It can be seen that the fault reconstruction rejects the effects

of ξ1 (which is not insignificant in magnitude) because the

fault reconstruction scheme has been designed to minimize

the upper bound of the L2 gain from ξ3 to f̂1.

IV. CONCLUSION

This paper has presented a new scheme for robust fault

reconstruction, using multiple observers in cascade. Signals

from one observer are used as outputs of a fictitious system,

and the next observer in the cascade is designed based on the

fictitious system. The novelty of this scheme is that it can

reconstruct faults in a wider class of systems compared to

previous methods. In addition, the scheme is formulated in a

framework which facilitates the minimization of disturbances

on the fault reconstruction. This is particularly useful in

cases when the number of outputs is less than the number
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Fig. 2. The left subfigure is the fault applied to the 2nd actuator,
the right subfigure is its reconstruction.
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Fig. 3. The components of ξ1, namely △A1x1

of disturbances and faults, a scenario that will render many

other multiple observer methods inapplicable. An example

verifies the effectiveness of the scheme. A method to obtain

k from A1,M1 and C1 is currently under investigation by

the authors.
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APPENDIX

Proposition 2: If rank(Cn1

Mn1

) < rank(Mn1

) then

the fault can never be fully reconstructed.

Proof: From (14), Ãi
1 has ni − (i − 1)h − p rows and

therefore ni − (i − 1)h − p ≥ 0. Substituting for ni from

(52) results in

n1 − Σi
j=2m

j − p ≥ 0 (57)

Since mi+1 = rank(Ãi
31) and knowing that Ãi

31 from

(20) has mi − ri rows, it is obvious that mi+1 ≤ mi and

hence 0 ≤ mi ≤ mi−1 ≤ ... ≤ m2 ≤ m1 = p. It follows

from (57) that mi = 0 when i > n1. From (9), it is clear

that ri ≤ mi and therefore ri = 0 when i > n1. Then, since

by definition r̄i−1 + ri = r̄i, r̄i = r̄n1

when i > n1 which

results in rank(CiM i) = rank(Cn1

Mn1

) when i > n1.

This means that if observer n1 is unable to reconstruct the

fault, then subsequent observers will not be able to either,

and the scheme in this paper is not feasible.

Proposition 3: If there exists an integer i such that the

inequality mi < q − r̄i−1 holds, then the fault can never be

fully reconstructed.

Proof: Since mi := rank(Ãi−1
31 ) and the matrix Ãi−1

31
has mi−1 − ri−1 rows, it can be deduced that

mi ≤ mi−1 − ri−1 (58)

Since M i
22 ∈ R

ri×ri

is obtained from an orthogonal trans-

formation of M̄ i−1
12 which has mi rows, then

ri ≤ min
{
mi, q − r̄i−1

}
(59)

must hold. Suppose

mi < q − r̄i−1 (60)

then from (59), ri < q − r̄i−1. By definition r̄i−1 + ri = r̄i,

and therefore (60) results in r̄i < q which in turn implies that

observer i is unable to reconstruct f . Rearranging (58) and

inductively incrementing i gives mi+1 + ri < mi, which

combined with (60) results in mi+1 + ri < q − r̄i which

implies mi+1 < q − r̄i, which also implies that the next

observer i + 1 is also unable to reconstruct f . Hence, if

(60) is true, then all subsequent observers will be unable to

reconstruct f .
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