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Abstract— We are concerned with characterization of attrac-
tion domains for linear state-space systems. Considered are
bounded linear state feedback control and saturated control.
Attraction domains for such systems are described in terms of
invariant ellipsoids using LMI-based techniques and semidefi-
nite programming (SDP). For systems with saturated control,
the ideology of absolute stability is adopted. An application to
nonlinear systems is provided.

I. INTRODUCTION

The need in characterizing attraction domains of dynamic

systems arises in various practical problems, for example, in

the analysis of the behavior and control design for mechan-

ical systems. As a rule, the control resources are limited in

most of the realistic applications, the model of the system

is not known precisely, and moreover, the system is affected

by uncontrollable exogenous disturbances.

A general approach to solving certain types of such prob-

lems for linear systems was first formulated by A.M. For-

malsky in [1]; for nonlinear systems, the notion of attraction

domain goes back to classical works of LaSalle and Lefshetz

[2], also see survey [3]. Among the recent publications, the

monograph [4] is worth mentioning, which accumulates most

of the theoretical achievements and computational experience

available in this subject area; the notion of set invariance is

the cornerstone of the exposition in [4].

In the last fifteen years, the methods of the theory of linear

matrix inequalities (LMIs) have become a popular tool for

characterization of reachability and attraction domains of

dynamic systems; e.g., see [5]. The salient feature of the

LMI-based approach is that it covers diverse formulations of

analysis and design problems; moreover, it is applicable to

high-dimensional systems and uses simple and user-friendly

computational tools compatible with the standard MATLAB

environment.

Since recently, much attention has been paid to character-

ization of attraction domains for systems driven by saturated

linear control, in particular, [4]–[11], and especially, [6]–

[10].

In the present paper, we follow this line of research. In

order to synthesize a bounded control that maximizes the

attraction domain for the closed-loop system, we are further

attempted at combining the potential of the invariant ellipsoid

approach with the ideas of the theory of absolute stability,

[11]. The main attention is paid to the problem with saturated

control, for which a new LMI-based technique is applied.

The results in this paper are considered as a successive step
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towards solution of more realistically formulated problems,

primarily those related to nonlinear systems, accounting for

exogenous disturbances, imprecise knowledge of the model,

etc.

II. DEFINITIONS AND PROBLEM STATEMENT

We consider a linear continuous time invariant system

ẋ = Ax + Bu, A ∈ R
n×n, B ∈ R

n×m, (1)

where the matrices A,B are known, the pair (A,B) is

controllable, and

‖u‖ ≤ umax (2)

is a bounded state feedback control, where umax is known.

Specifically, below we consider the two cases, where the

admissible control is taken either as a linear state feedback

u = Kx or a saturated linear feedback u = sat(Kx).
For any fixed admissible control, consider the closed-loop

system and introduce the following definition.

Definition 1: The attraction domain A of the closed-loop

system (1), (2) is the set of all initial conditions x0

.
= x(0)

having the property x(x0, t) → 0 as t → ∞.

In words, the attraction domain is the set of points in

the phase space, from which a system can be driven to the

origin by a bounded control. Hence, the goal is to design an

admissible control that maximizes this domain.

First, in the sequel we will be interested only in unstable

open-loop systems; otherwise, use of the trivial bounded

control u = 0 · x ≡ 0 obviously yields the largest possible

attraction domain, i.e., the whole space R
n. Interestingly,

A = R
n can be obtained for stable systems by using

saturation controls, which are not identically zero.

It is well known (e.g., see [4]) that the set A does not admit

an exact closed-form description even for the simple case of

bounded linear control; for instance, the efficient application

of the classical approach via supporting functions is limited

to the two-dimensional case, n = 2. We therefore adopt

an approximate description keeping in mind the important

property of the attraction domain; namely, its invariance, [4].

Invariance means that x0 = x(0) ∈ A implies x(x0, t) ∈ A
for all t > 0, i.e., for any initial point in A, the trajectory of

the systems remains inside A at all times. In what follows we

construct inner approximation also in the form of invariant

sets having, however, a simpler structure; namely, invariant

ellipsoids (also referred to as holdable ellipsoids, [5]).

Definition 2: The ellipsoid

E(P ) = {x ∈ R
n : xTP−1x ≤ 1}, P ≻ 0, (3)
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centered at the origin is said to be invariant attractive for

the closed-loop system (1), (2), if for any x0 ∈ E it holds

x(x0, t) → 0 and x(x0, t) ∈ E for all t ≥ 0.

Here, P ≻ 0 denotes the positive-definiteness of the

matrix P .

The goal is to find a bounded stabilizing control which

maximizes the size of the attraction ellipsoid E ⊆ A.

As mentioned in the Introduction, the convenience of

invariant ellipsoids is explained by their direct connection to

quadratic Lyapunov functions and the availability of a well-

developed apparatus of linear matrix inequalities, which is

the main tool for the construction of ellipsoidal approxima-

tions of attraction domains.

Namely, in the sections to follow, we formulate the

problem above as a convex optimization problem subject to

LMI constraints, which is easy to solve numerically. The

performance index (the size of E(P )) in such problems

can be taken in different forms, e.g. such as − ln det P−1

(associated with the maximization of the volume of E(P )),
tr P (associated with the sum of squared semiaxes), or

its minimal eigenvalue (associated with the radius of the

inscribed ball), etc. In the sequel, the trace criterion trP is

adopted as a one retaining the SDP structure of the problem

(SDP, semidefinite program, optimization of a linear function

subject to LMI constraints), which is then solvable by means

of widely available MATLAB-based software.

III. LINEAR CONTROL

We consider system (1) with linear state feedback control

u = Kx, ‖u‖ ≤ umax, (4)

and find a stabilizing matrix K ∈ R
m×n that maximizes the

attraction ellipsoid for the closed-loop system (1), (4).

Solution to this problem is provided by the theorem below.

Theorem 1: Let P, Y be solutions of the following SDP:

max tr (P ) s.t. AP + PAT + BY + Y TBT ≺ 0;

(

P Y T

Y u2

max
I

)

º 0,
(5)

in the matrix variables P = PT and Y . Then the control

u = Kx, K = Y P−1,

(i) stabilizes system (1),

(ii) is bounded ‖u‖ ≤ umax on the ellipsoid E(P ) (3), and

(iii) this ellipsoid is maximal with respect to the perfor-

mance tr (P ) among all invariant ellipsoids of the system.

The function V (x) = xTP−1x is a quadratic Lyapunov

function for the closed-loop system ẋ = (A + BK)x.

The first LMI ensures that the control u = Kx is

stabilizing, the second one guarantees its boundedness, and

the performance optimization yields the best one among such

controls. These LMI constraints above are well-known, e.g.,

see [5]; Theorem 1 explicitly reduces finding the maximal

invariant ellipsoid to an SDP problem.

It is readily seen that the solutions P, Y of (5) may lead to

the controller K = Y P−1 such that the closed-loop system

with matrix Ac = A+BK is at the stability margin. In other

words, the ellipsoid thus obtained is not attractive (although

being invariant) in the sense of Definition 2; indeed, the

system trajectories do not tend to the origin.

In order to ensure x(t) → 0, we require that the Lyapunov

function V (x) decrease at a certain rate, V̇ (x) ≤ −α‖x‖2

for some α > 0; namely:

(A + BK)TP−1 + P−1(A + BK) ¹ −αI.

This requirement is closely related to the decay rate

constraint formulated as V̇ (x) ≤ −αV in [5] or to the so-

called β-contractivity condition exploited in [4].

Pre- and post-multiplying the last matrix inequality by P
and changing to the new variables P and Y = PK, we

re-write it as the following LMI:
(

AP + PAT + BY + Y TBT P
P −I/α

)

¹ 0,

which is now to be used instead of the first LMI constraint

in (5). We therefore arrive at the following formulation.

Theorem 2: Let P, Y be solutions of the SDP

max tr (P ) s.t.

(

AP +PAT+BY +Y TBT P
P −I/α

)

¹0;

(

P Y T

Y u2

max
I

)

º 0

in the matrix variables P = PT and Y , where α > 0.

Then the control u = Kx, K = Y P−1, is stabilizing,

the matrix P defines the attraction ellipsoid E(P ) for the

closed-loop system such that the control input is bounded

over it, ‖u‖ ≤ umax, and this ellipsoid is maximal over all

linear static state controllers such that the Lyapunov function

V (x) = xTP−1x decreases not slower than −α‖x‖2.

It is noted that in the problem considered, the bound mag-

nitude umax can be specified arbitrarily, since the constraints

are always compatible (for smaller umax we simply obtain

a smaller attraction ellipsoid). Hence, in the exposition to

follow we take umax = 1.

IV. SATURATED CONTROL

The ellipsoid obtained above corresponds to linear controls

u = Kx. Let us expand the class. Namely, for system (1),

we consider scalar controls (i.e., KT ∈ R
n) having the form

u = sat(Kx) =







−1 for Kx < −1;
Kx for |Kx| ≤ 1;
+1 for Kx > 1;

i.e., those defined over the whole phase space.

Likewise the previous section, we are aimed at designing a

control of such form yielding the maximal invariant attractive

ellipsoid. Since the closed-loop system is nonlinear, we

make use of the approach adopted in the theory of absolute

stability.

Let us briefly describe the main idea underlying these

constructions. Assume that the desired controller K is found.

For γ ≥ 1, consider the sector bounded by the straight lines
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Fig. 1. Control with saturation.

u = Kx and u = Kx/γ, and all bounded nonlinearities

−1 < u ≤ 1 belonging to this sector, see Fig. 1. Let us find

a quadratic Lyapunov function

V (x) = xTP−1

satx, Psat ≻ 0,

having the property V̇ (x) < 0 along the trajectories of the

system subjected to any nonlinearity in the sector. It then

suffices to find such a function for the two “limiting” linear

systems: the one associated with u = Kx (i.e., γ = 1), and

the other corresponding to the maximal possible value of γ
(maximal opening of the sector). On top of that, we require

that the desired ellipsoid {xTP−1

satx ≤ 1} be contained in the

stripe S = {|Kx| ≤ γ}. Writing down these conditions in

the form of quadratic constraints, using the lossless version

of S-theorem with two constraints (see [12]) and changing

to the new variables P, Y (similarly to what was done in

Theorems 1 and 2), we arrive at the following result (below,

the notation µ = 1/γ is used).

Theorem 3: Let Ysat, Psat be solutions of the SDP

max tr (P ) s.t.

(

AP +PAT+BY +Y TBT P
P −I/α

)

¹0;

(

AP +PAT+µ(BY +Y TBT) P
P −I/α

)

¹0;

(

P Y T

Y 1

µ2 I

)

º 0;

in the matrix variables P = PT, Y , for some value of

the scalar parameter µ ∈ (0, 1]. Then the control u =
sat(Ksatx), Ksat = YsatP

−1

sat , is stabilizing, and among all

saturated controls it provides the maximal attraction ellipsoid

Esat = {x : xTP−1

satx ≤ 1} ⊂ S
.
= {|Ksatx| ≤ 1/µ} for

the closed-loop system with a given rate of decrease of the

Lyapunov function V (x) = xTP−1

satx along the trajectories.

In the above approach we assumed µ being fixed. It is of

interest to maximize the size of the ellipsoid with respect to

µ. The conjecture is that the maximum is attained at µ = 1,

i.e. saturated control does not enlarge the attraction ellipsoid.

The result of Theorem 3 is similar to the ones reported in

the literature, e.g., see [6]. However, there is an essential

difference. First, in proving our result, we make use of

the lossless version of S-theorem with 2 constraints, thus

reducing the conservatism of the ellipsoidal approximations

obtained. Second, maximization of the attraction ellipsoid

E(P ) in the above-mentioned literature is understood as

maximal expansion βXR of a certain reference set XR

contained in the ellipsoid. For the natural case where XR is

a given ellipsoid E(P0), we cover this formulation by simply

imposing an extra LMI constraint P ≥ βP0 and maximizing

the variable β. The same goes for the case where XR is a

polygon with given vertices xi by a standard representation

of the requirement xi ∈ E(P ) in LMI format. Third, our

approach admits an extension to the presence of uncertainty

in the matrix coefficients.

V. ATTRACTION DOMAIN FOR A NONLINEAR SYSTEM

The technique described above can be extended to more

general nonlinear systems. Consider the closed-loop system

in the form

ẋ = Ax + Bϕ(cT x)

where B, c ∈ R
n, and ϕ : R

1 → R
1 is a nonlinear function.

Such system description is standard for the absolute stabil-

ity framework [15], [16]. An LMI technique for checking

absolute stability has been proposed in [5]. However in

contrast with the absolute stability theory we do not assume

ϕ to be a sector nonlinearity; for instance this function can

tend to ∞. In that case, we can not guarantee stability for

all initial points x(0). We suppose that the matrix A is

Hurwitz while ϕ(0) = 0, ϕ′(0) = 0. The issue of interest is

the largest attraction ellipsoid satisfying the the conditions

above. The technique to obtain such ellipsoid is similar to

the one developed in Section IV with function u replaced

with ϕ. For simplicity of exposition, we restrict ourselves

to an illustration of the approach as applied to the problem

borrowed from [13].

Consider a nonlinear two-dimensional system ẋ = g(x),
x ∈ R

2, with g1(x) = x2 and g2(x) = 0.2347136969 −
0.0633 sin(x1+0.0405)−0.582 sin(x1+0.4103)−0.7143x2.

Using the general mathematical programming formulation,

the authors of [13] obtained the attraction ellipse Emp =
E(Pmp) with matrix

Pmp =

(

11.4161 −7.8977
−7.8977 10.5771

)

.

This ellipse was obtained by maximizing the area (i.e., the

performance index was taken as f(P ) = detP ).

Within our approach, we first linearize the system and

represent it in the equivalent form

ẋ = Ax + Bu,

where A = (Aij) = ∂gi(x)/∂xj |x=0
, i, j = 1, 2, and Bu =

g(x) − Ax, whence

A =

(

0 1
−0.5969 −0.7143

)

, B =

(

0
1

)

(i.e., the A matrix is stable, λ(A) = −0.3572 ± j0.6851),

and u = u(x1) = 0.2347136969−0.0633 sin(x1+0.0405)−
0.582 sin(x1 + 0.4103) + 0.5969x1 represents a scalar non-

linearity.

Next, we assume that the nonlinear disturbance u is

(i) bounded and (ii) confined to the sector with “opening” µ.
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More accurately, we specify a value of xmax

1
, set µ =

u(xmax

1
)/xmax

1
and consider nonlinearities in the sector 0 ≤

u(x1) ≤ µx1, keeping in mind that 0 ≤ x1 ≤ xmax

1
, see

Fig. 2.
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Fig. 2. Sector-confined bounded nonlinearity.

For the two systems associated with the two limiting

values of the constraints (the two rays defining the sector),

we build a common quadratic Lyapunov function. These two

systems are given by

ẋ = Ax; ẋ = Ax + µBKx,

where the row vector K = [1 0] distinguishes the first

component of x, i.e., Kx = x1.

Hence, for various values of xmax

1
(defining the values of

umax and µ) we solve the SDP

max tr (P ) s.t. AP + PAT ¹ 0;

(A+µBK)P + P (A+µBK)T¹0;

(

P PKT

KP
u2

max

µ2 I

)

º 0,

(6)

with respect to one matrix variable P = PT. The ellipse of

interest E = {xTP−1x ≤ 1} corresponds to the value xmax

1

such that the solution matrix P is maximal (e.g., with respect

to trace).

The first two LMI constraints in the SDP above follow

from those in Theorem 3 by noting that here, the controller

K is already chosen (therefore, (6) is an analysis result).

After the calculations we find that the maximum is attained

with x1 ≈ 2.375, and the resulting ellipse (the smaller one

on Fig. 3) defined by the matrix

P =

(

5.6406 −1.7389
−1.7389 1.5297

)

,

turns out to be worse than the one obtained in [13]. The

reason is seemingly that Theorem 3 provides only sufficient

conditions, while the technique elaborated in [13] may lead

to the exact optimal solution.

However, the example above was primarily aimed at

showing the very capability of using the approach proposed

in this paper. Moreover, the technique exploited above is
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Fig. 3. Attraction ellipsoids for the nonlinear system.

very simple; it uses widely accepted MATLAB-based im-

plementations of the methods for solving semidefinite pro-

grams (Yalmip and SeDuMI toolboxes), while the method

in [13] is heavily based on solving a general problem of

mathematical programming and requires a computationally

intensive numerical “fitting” of the result. Finally, and most

importantly, the technique proposed here can be extended to

the many-dimensional case,—the situation where the method

proposed in [13] can hardly be applied; in particular, the sign-

definiteness condition of a matrix is extremely cumbersome

to formulate in terms of the entries of the matrix.

VI. GENERALIZATIONS

We mention several most important possible generaliza-

tions of the approach given here.

First, our technique immediately applies to the dis-

crete time case by considering respective discrete-time Lya-

punov matrix inequalities. Second, importantly, unknown-

but-bounded exogenous disturbances affecting the system

can be taken into account; this will be the subject of the

subsequent papers. Third, the presence of norm-bounded

uncertainty in the matrix coefficients of the system leading to

robust versions of the results are possible (e.g., in the spirit

of [14]). Finally, state constraints of the form x ∈ E(Px) can

be easily covered with our approach by imposing an extra

LMI constraint of the form P ≥ Px.

VII. CONCLUSION

We proposed a design method for bounded saturated state

feedback control which maximizes (an inner approximation

to) the attraction domain of the closed-loop system. The

approach consists of computing the estimates in the form of

invariant ellipsoids by using LMI formulations and applying

the techniques of the theory of absolute stability.

The results obtained testify to the simplicity and usefulness

of the proposed approach; they should be considered as the

first step towards more general results.
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