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Abstract— This paper is concerned with the dynamics and
control of grasping and regulating motion generated by a 3-
joint dual finger robot. To manipulate an object, the overall
motion of the finger needs to be restricted by the object states.
Therefore, we derive the kinematics of dual fingers governed
by the object states by using four constraints which are based
on the nonslipping assumption between the rigid fingertips and
the surface of an object. Then, the control input is derived
from Lyapunov stability analysis including the dynamics of the
overall system. Further, we propose the solution of the contact
forces between fingertips and an object based on physical
analysis, which can not be solved mathematically. Finally,
computer simulations are presented to verify the effectiveness
of the proposed concept and method.

I. INTRODUCTION

Since the beginning of robotics research, the fingered hand

robots have been designed to mimic human hand which

has the capability of dexterous manipulations and elaborate

operations. In the history of development of the fingered

hand robots, various hand models with four or five fingers

with two or three joints each were reported [1]-[3]. They are

so far used only in the open-loop control system which do

not consider the relationship between fingers and an object,

because there is no way to estimate the forces between them.

In order to overcome the disadvantages of open-loop

control system, Arimoto et al. [4]-[6] suggested a pair of

robot fingers with hemispherical finger-ends using sensory

motor coordination. The main theory of this research is

the passivity. The passivity means that the energy variation

of the overall system, which is composed of fingers and

an object, is caused by the torque generated from a joint

motor.[8]. One of the advantages of the using the passivity

is that the physical term of finger dynamics can be cancelled.

Therefore, it is possible to construct a controller only using

the kinematics constraints fingers and object. However, to

back up the passivity theorem, some assumptions are needed.

The overall system does not allow non-conservative factor

such as friction. Even though the effect of these factors can

be ignorable, the grasped object can not be controlled when

the unknown external force is exerted on it.

In this paper, we propose the method for designing a

controller of finger robot which uses the error stability,
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Fig. 1. 3-joint dual finger robot system

not the passivity. To design a controller, we use the finger

dynamics as control input directly. This dynamics consists

of two parts briefly. One part is derived from physical

properties of the fingers. The other part is derived from

terms of contact forces between finger-tips and an grasped

objects. We employ the kinematic synthesis for the former

part and the inverse dynamics for the latter part to construct

a control input as a function of the grasped object posture.

Then, we define the Lyapunov candidate function which only

consists of the posture of the grasped object in order to

guarantee the convergence of the desired posture. To verify

the effectiveness of the proposed controller, we employ a

3-joint finger model because it has geometric flexibility in

object manipulation such as shifting, rotating and changing

contact position simultaneously.

This paper is organized as follows. In Section II, a set

of dynamics of the fingers and an object is derived on the

basis of Hamilton’s principle. In Section III, a control input

is designed by using the kinematic synthesis and deriving

the contact forces. Simulation results are presented to verify

the effectiveness of the proposed method in Section IV.

II. DYNAMICS OF 3-JOINT DUAL FINGER ROBOT

For the sake of physical simplicity, we assume that a 3-

joint dual finger robot shown in Fig. 1 moves on a horizontal

plane to ignore the gravitational force. Moreover, we only

deal with a solid rectangular object with hard spherical

fingertips.
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First, let us consider the geometric constraints as follows:

Q1 =(x − x01) cos θ − (y − y01) sin θ − r1 −
l

2
= 0,

Q2 = − (x − x02) cos θ + (y − y02) sin θ

− r2 −
l

2
= 0,

R1 =Y1 − Y1(0) + r1(θ − q11 − q12 − q13) = 0,

R2 =Y2 − Y2(0) + r2(−θ − q21 − q22 − q23) = 0, (1)

where,

x01 = −l13 cos φ13 − l12 cos φ12 − l11 cos φ11,

y01 = l13 sin φ13 + l12 sinφ12 + l11 sin φ11,

x02 = L + l23 cos φ23 + l22 cos φ22 + l21 cos φ21,

y02 = l23 sin φ23 + l22 sinφ22 + l21 sin φ21.

φi1 = qi1,

φi2 = qi2 + qi3,

φi3 = qi1 + qi2 + qi3, i = 1, 2.

Here, all symbols are defined in Fig. 1. Q1 and Q2 mean the

geometric constraints between Ocm and O01 and between

Ocm and O02, respectively. x0i and y0i, i=1, 2, are the

horizontal and vertical components of the distance from the

center of the fingertips to the center of mass of an object,

respectively. Then, it is reasonable to introduce Lagrange

multipliers f1, f2, λ1, λ2 for the corresponding constraint

equations, which actually act as the normal and tangential

contact forces.

Consider two quantities for the corresponding constraints

from (1):

Q = f1Q1 + f2Q2 = 0,

R = λ1R1 + λ2R2 = 0. (2)

With these two quantities, the Lagrangian L of the overall

system can be defined as

L = K + Q + R, (3)

where K is the kinetic energy of two fingers and an object,

which is defined as

K =
1

2
{

2
∑

i=1

q̇i
T Hiq̇i + Mẋ2 + Mẏ2 + Iθ̇2}, (4)

where Hi denotes the inertia moment of fingers and qi =
[qi1 qi2 qi3]

T .

Applying Hamilton’s principle to the following equation

∫ t1

t0

{δ(K + Q + R) + u1δq1 + u2δq2} dt = 0,

we can obtain the dynamics of the fingers and an object

described as follows:

Hq̈ + Γq̇ + Ωf = u, (5)

Moẍ = Λf , (6)

where,

H = diag[H1,H2], Γ = [ΓT
1 ,ΓT

2 ],

Ω =

















−JT
01

[

− cos θ

sin θ

]

,03×1,−JT
01

[

sin θ

cos θ

]

+ r1





1
1
1



 ,03×1

03×1, J
T
02

[

− cos θ

sin θ

]

,03×1,−JT
02

[

sin θ

cos θ

]

+ r2





1
1
1





















,

Mo =





M 0 0
0 M 0
0 0 I



 ,

Λ =





cos θ − cos θ − sin θ − sin θ

− sin θ sin θ − cos θ − cos θ

Y1 −Y2 − l
2

l
2



 ,

f =
[

f1 f2 λ1 λ2

]T
, q = [qT

1 , qT
2 ]T .

Here, Γ1 and Γ2 stand for the coefficient of q̇ including

coriolis, centrifugal forces and differential functions of iner-

tia moment. M and I are the mass and the inertia moment

of an object, respectively. fi and λi stand for the normal

and tangential contact forces, which are exerted on an object

for secure grasp and dexterous movements, respectively. J0i,

i=1, 2, denotes the Jacobean matrices of (x0i, y0i)
T with

respect to qi and can be formulated as follows:

JT
01 =

[

J011 J012

]

,

JT
02 =

[

J021 J022

]

,

where,

J011 =





l13 sin φ3 + l12 sinφ2 + l11 sinφ11

l13 sin φ13 + l12 sinφ12

l13 sinφ13



 ,

J012 =





l13 cos φ13 + l12 cos φ12 + l11 cos φ11

l13 cos φ13 + l12 cos φ12

l13 cos φ13



 ,

J021 =





−l23 sin φ23 − l22 sinφ22 + l21 sin φ21

−l23 sin φ23 − l22 sin φ22

−l23 sinφ23



 ,

J022 =





l23 cos φ23 + l22 cos φ22 + l21 cos φ21

l23 cos φ23 + l22 cos φ22

l23 cos φ23



 .

III. DESIGN OF CONTROL INPUT

A. Kinematic Synthesis

The kinematics of each finger can be obtained from x =
[x, y, θ]T and Y = [Y1, Y2]

T by transforming constraints in

(1). The transformed equations are represented as follows:

l13 cos φ13 + l12 cos φ12 + l11 cos φ11

= −x + (
l

2
+ r1) cos θ − Y1 sin θ,

l13 sinφ13 + l12 sin φ12 + l11 sinφ11
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Fig. 2. Diagram of overall dynamic system with controller

= y + (
l

2
+ r1) sin θ + Y1 cos θ,

φ13 =
Y1 − Y1(0)

r1

+ θ,

l23 cos φ23 + l22 cos φ22 + l21 cos φ21

= x + (
l

2
+ r2) cos θ + Y2 sin θ − L,

l23 sinφ23 + l22 sin φ22 + l21 sinφ21

= y − (
l

2
+ r2) sin θ + Y2 cos θ,

φ23 =
Y2 − Y2(0)

r2

− θ, (7)

Numerically, we can find a solution of q1 and q2 by

solving a set of nonlinear equations in (7). However, we need

the differential forms to derive the control input of the overall

dynamic system. The differential form of the kinematics of

the fingers can be derived as follows:

AΦ̈ = Bz̈ + CΦ̇ + D, (8)

where,

Φ =
[

φ11 φ12 φ13 φ21 φ22 φ23

]T
,

z =
[

xT YT
]T

,

A = diag[A1, A2], B = [BT
1 , BT

2 ]T ,

C = diag[C1, C2], D = [DT
1 , DT

2 ]T ,

Ai =





li1 cos φi1 li2 cos φi2 li3 cos φi3

li1 sin φi1 li2 sinφi2 li3 sin φi3

0 0 ri



 ,

B1 =





0 1
(

l
2

+ r1

)

cos θ − Y1 sin θ cos θ 0
1 0

(

l
2

+ r1

)

sin θ − Y1 cos θ sin θ 0
0 0 r1 1 0



 ,

B2 =





0 1 −
(

l
2

+ r2

)

cos θ − Y2 sin θ 0 cos θ

−1 0
(

l
2

+ r2

)

sin θ − Y2 cos θ 0 − sin θ

0 0 −r2 0 1



 ,

Ci =





li1 sinφi1 φ̇i1 li2 sin φi2φ̇i2 li3 sinφi3φ̇i3

−li1 cos φi1 φ̇i1 −li2 cos φi2φ̇i2 −li3 cos φi3φ̇i3

0 0 0



 ,

Di =













−2Ẏi sin θθ̇ − θ̇2

(

(

l
2

+ ri

)

sin θ + Yi cos θ
)

(−1)i+12Ẏi cos θθ̇ + θ̇2×
(

(

l
2

+ ri

)

cos θ + (−1)iYi sin θ
)

0













.

Using q, (8) can be also written as follows:

q̈ = T−1A−1
(

Bz̈ + CT q̇ + D
)

, (9)

where,

T = diag[Tin, Tin], Tin =





1 0 0
1 1 0
1 1 1



 .

The above equation means that joint angles can be governed

by the posture of an object and the contact points. Therefore,

all the kinematic positions are a function of desired posture

of the object and the contact points.

Assumption 1: Invertibility of A is guaranteed when the

determinant of Ai is nonzero as follows:

det(Ai) =ri

{

li1 cos qi1li2 sin(qi1 + qi2)

− li1 sin qi1li2 cos(qi1 + qi2)
}

=rili1li2 sin qi2 6= 0, i = 1, 2.

Therefore, we assume that q12 6= 0 and q22 6= 0 for

invertibility of A.

B. Contact Forces

To use the finger dynamics as control input, the contact

forces between finger tips and object surface should be

calculated. The contact forces are derived from (6) inversely.

Since matrix Λ, however, is not rectangular, we develop

the contact force condition via physical insight. We can

find this condition from the physical meaning of an object

motion. To grasp an object securely, the desired normal
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TABLE I

NORMAL CONTACT FORCES

Condition ẍ cos θ − ÿ sin θ > 0 ẍ cos θ − ÿ sin θ < 0
Normal f1 = fd + ∆f f2 = fd

Forces f1 = fd f2 = fd − ∆f

force fd should be exerted continuously. Only the additional

force ∆f = M × (ẍ cos θ − ÿ sin θ) is added to accelerate

and decelerate an object. The condition for f1, f2 can be

summarized as shown in Table I.

With the condition listed in Table I and (6), finally we can

calculate the contact forces as follows:

f = Πz̈ + Ξfd, (10)

where,

Π =
[

Πin 03×1

]

,

Πin =
[

Π1 Π2 Π3 Π4

]T
,

Π1 =





M
2

(cos θ){1 + sgn(∆f)}
−M

2
(sin θ){1 + sgn(∆f)}

0



 ,

Π2 =





M
2

(cos θ){−1 + sgn(∆f)}
−M

2
(sin θ){1 − sgn(∆f)}

0



 ,

Π3 =









M
l

(

Y1+Y2

2
+ Y1−Y2

2
sgn(∆f)

)

cos θ − M
2

sin θ

−M
l

(

Y1+Y2

2
+ Y1−Y2

2
sgn(∆f)

)

sin θ − M
2

cos θ

− I
l









,

Π4 =









−M
l

(

Y1+Y2

2
+ Y1−Y2

2
sgn(∆f)

)

cos θ − M
2

sin θ

M
l

(

Y1+Y2

2
+ Y1−Y2

2
sgn(∆f)

)

sin θ − M
2

cos θ
I
l









.

(10) is the function of the object accelerations and the

desired normal force. That means it can be controlled by

generating the posture of a pinched object.

C. Design of Control Input

The objective of the proposed controller is to manipulate

an object using the dynamics of fingers. Therefore, The

control input should consist of the states of an object,

ultimately.

Substituting (9) and (10) into (5), we can obtain

u = H′z̈ + Ψ(q, q̇) + ΩΞfd, (11)

where,

H′ = HT−1A−1B + ΩΠ,

Ψ(q, q̇) = {HT−1A−1CT + Γ}q̇.

For regulating the posture of an object, it should be

guaranteed in the states z to converge to the desired states

zd.

Theorem 1: Assume that the control input is formulated

as follows:

u = Ψ(q, q̇) + ΩΞfd − H′

{

P1(ż − żd) + P2(z − zd)
}

,

(12)

where, P1, P2 ∈ R
5×5 are the strictly positive diagonal

matrices. Then, the states z are guaranteed to converge to

the desired states zd.

Proof: Let us consider the following Lyapunov candi-

date function:

V =
1

2
sT s > 0, (13)

where,

s =˙̃z + Pzz̃,

z̃ =z − zd.

Differentiating (13) and substituting (11), we can obtain

V̇ =sT ṡ

=sT

{

H′
(

u − Ψ(q, q̇) − ΩΞfd

)

+ Pz(z − zd)

}

. (14)

Then, substituting (12) into (14) yields

V̇ = −sT s ≤ 0. (15)

Therefore, Lyapunov function guarantees the asymptotic

stability of states s. Since s converges to zero, z̃ should

converge to zero. Therefore, the posture of an object and

the contact positions moves toward desired positions.

IV. SIMULATION RESULTS

We carry out computer simulations in Matlab. The physi-

cal parameters are given in Table II. The damping gains are

tuned as 10. The initial and final postures are given as [x0,

y0, θ0, Y10, Y20]=[0.125, 0.3488, 0, 0, 0] and [xf , yf , θf ,

Y1f , Y2f ]= [0.2, 0.38, 0.2, -0.005], respectively.

From Figs. 3 and 4, we can confirm that the proposed

control system performs the secure grasp and manipulation

such as shifting and changing the contact position simultane-

ously. Fig. 6 shows that the transient responses of the center

of mass and the rolling contact position converge to the

desired value. From the result of Fig. 7, we can confirm that

TABLE II

PHYSICAL PARAMETERS

m11 = m21 link mass 0.04 [kg]
m12 = m22 link mass 0.025 [kg]
m13 = m23 link mass 0.035 [kg]
l11 = l21 link length 0.2 [m]
l12 = l22 link length 0.2 [m]
l13 = l23 link length 0.15 [m]

I11 = I21 inertia moment 1.5 × 10−5[kg · m2]
I12 = I22 inertia moment 1.2 × 10−5[kg · m2]
I13 = I23 inertia moment 1.1 × 10−5[kg · m2]

M object mass 0.2 [kg]

I object inertia moment 5 × 10−4[kg · m2]
fd internal force 0.3[N ]
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Fig. 4. Final posture

0 0.5 1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

time(sec)

a
n

g
le

(r
a

d
)

q
11

q
12

q
13

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time(sec)

a
n

g
le

(r
a

d
)

q
21

q
22

q
23

Fig. 5. Transient responses for the angles of the fingers 1 and 2

the normal contact forces f1 and f2, which accelerate and

decelerate an object, respectively, are induced in order and
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Fig. 6. Transient responses for the center of mass and rolling contact
position
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Fig. 7. Normal and tangential contact forces by fingertips
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Fig. 8. Transient responses for the first angle of the fingers 1 and 2

converge to the desired force fd within a second eventually.

We can also confirm that the tangential contact forces λ1

and λ2 are induced to shift an object toward y-axis direction

and eventually converge to zero. Thus, the simulation results

demonstrate the effectiveness of the controller proposed in

this paper. Furthermore, we show how the responses of the

finger angles and the contact forces can be affected by the
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Fig. 9. Normal contact force by fingertips

changes of the damping gains. Fig. 8 shows that the speed of

convergence of finger angles is proportional to the damping

gains. In addition, Fig. 9 shows that the contact forces are

also proportional to the damping gains within smaller time.

V. CONCLUSION

This paper has dealt with a 3-joint dual finger robot for

grasping and regulating the posture and position of an object.

We derive and analyze the dynamics of a setup of a 3-joint

dual finger robot with spherical fingertips pinching a rigid

object. In order to calculate the kinematics of fingers, we

use four geometric constraint based on the assumption of

nonslipping condition between the fingertips and an object.

To design the control input, we propose the contact forces

for manipulating an object, which are derived via physical

insight. The computer simulation results verify the effective-

ness of our proposed method. Furthermore, we can confirm

the advantage of the proposed control system such that the

states of the fingers and an object do not fluctuate in a

transient response.
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