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Abstract— To avoid an increased noise response under high-
gain feedback in nano-positioning motion systems, a nonlinear
(N-PID) control design is proposed. The design is of particular
interest in the wafer scanning industry where nano-accuracy
should be achieved under high-speed motion. In a variable gain
controller setting, the N-PID control design has an observer
structure with state-dependent low-pass filter characteristics.
Under high-gain feedback and being induced by sufficiently
large servo error signals, the nonlinear observer acts as a
low-pass filter with a significantly smaller cut-off frequency
as compared to the case of low-gain feedback. As a result,
the high-frequency noise response that usually increases under
high-gain feedback is kept limited. For a validated wafer stage
model, the effectiveness of the control approach in dealing with
position-dependent behavior is assessed through simulation.

I. INTRODUCTION

In many motion control systems, performance is key to

the success of the control design. Examples of such systems

include the fast and nano-scale motion control of the stages

in wafer scanners which are used in the manufacturing

of integrated circuits, the positioning systems of storage

drives like compact disk, digital versatile disk, blu-ray disk,

and hard-disk drives, and the scanning stages of electron

microscopes used for sub-micron imaging; see [1], [2], [3].

Servo performance is often expressed in terms of dis-

turbance rejection and noise sensitivity. In fact, most con-

trollers aim at improved low-frequency disturbance sup-

pression while maintaining favorable high-frequency noise

properties. Bound by inherent design limitations, however,

linear feedback design generally fails in satisfying this aim

to the fullest. Different from linear control, nonlinear control

then adds more freedom in the control design which can

be attended toward the direction of improved performance.

For example in the process of wafer scanning, disturbances

and related servo signals may differ significantly from one

location on the wafer to another. As such, a high-gain

controller may perform favorably on one location but is

outperformed by a low-gain controller at another location.

This hints toward varying the controller gains as a means to

exceed beyond the possibilities given by the nominal (and

linear) control design.

In N-PID control, see also [4], [5], [6], the controller

gain is adapted according to the (estimated) servo signals

at hand. This generally gives more flexibility in dealing with

position-dependent disturbances but the problem of noise

amplification under high-gain feedback remains. To cope

with this problem we study a nonlinear observer whose

cut-off frequency is lowered under increased gains. This

counteracts a potential increase in noise response, hence the

kind of high-frequency response that would typically occur

in the observer’s absence while operating under high-gain

feedback, but largely preserves the high-gain disturbance

rejection properties. Different from [7], [8], [9], [10], [11]

or [12] (the latter using variable gains) where observer-

based control designs are described that keep the underlying

stability result (through the circle criterion) valid, the focus

of the design described here is on achieving performance. In

so doing, the linear part of the observer design is brought

down to its basic form: a first-order low-pass filter. The

control design is tested through simulation using a validated

model of a wafer stage derived from an industrial wafer

scanner. It shows the ability to improve upon low-frequency

disturbance rejection properties in certain parts of the scan

while maintaining a small high-frequency noise response in

other parts.

This paper is further organized as follows. In Section

II, the variable gain control design is presented within the

considered class of motion control systems. In Section III, a

design for stability is presented which aims at robust stability

under conditions of improved low-frequency disturbance

rejection. In terms of performance, Section IV provides

tuning rules regarding the observer parameters. Also, the

effectiveness of the design in achieving improved low-

frequency disturbance rejection while maintaining a small

high-frequency noise response is assessed in simulation on

a validated model of a wafer stage. The paper is concluded

in Section V.

II. N-PID CONTROL DESIGN

To improve upon the low-frequency disturbance rejection

properties of motion systems, variable gain control embedded

in a nominal PID-controller structure (see also [13]) is used

in optical storage drives, vibrations isolation systems, and

wafer scanner. For these systems, the simplified feedback

scheme of Fig.1 often suffices to represent the nominal (and

linear) control design. That is, a single-input single-output
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Fig. 1. Single-input single-output motion control scheme.

(SISO) feedback controller Cfb and a SISO feed forward

controller Cff are used to control the strictly proper plant
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P . The output y along with a reference command (or set-

point) r forms the controller error e via e = r − y.

Key to the design is the introduction of a nonlinear

controller gain which in view of the incidental, often non-

stationary, and position-dependent expression of disturbances

f adapts the disturbance rejection properties of the feedback

design according to the disturbances at hand. Hereto the error

e (see Fig.1) is fed into an extra and generally nonlinear

controller, which consists of a nonlinear and a linear part.

The nonlinear part is given in time-domain by

eφ(t) = φ(e(t))e(t), (1a)

with φ(·) a nonlinear gain operation satisfying 0 ≤ φ(·) ≤ α
with α > 0. The linear part is given in the Laplace-domain

by
u(s)

eφ(s)
= F1(s), (1b)

with F1 a loop shaping filter and u representing the output

of the nonlinear connection, see also [14].

A major benefit from incorporating a nonlinear feedback is

that sporadically significant improvements in low-frequency

disturbance rejection can be obtained (when necessary from

a performance perspective) for a proper choice of F1 and

φ. Namely for the considered class of systems in Fig.1 and

given φ = α > 0 (this is referred to as the linear high-

gain limit) the sensitivity function between e and r, which

expresses the ability to keep the low-frequency servo errors

small in view of input disturbances, is given by

lim
ω→0

{

e(jω)

r(jω)

}

hg

=
1

(1 + αF1(jω))Cfb(jω)P(jω)
, (2)

thus giving a factor of 1 + αF1 extra low-frequency distur-

bance rejection when compared to the case of φ = α =
0, hence in absence of the nonlinear feedback. This low-

frequency improvement, however, comes at the cost of an

increased sensitivity to high-frequency noises. This follows

from the high-gain complementary sensitivity function be-

tween y and r which expresses the ability to limit the high-

frequency output in view of output noises, and which is given

by

lim
ω→∞

{

y(jω)

r(jω)

}

hg

≈ (1 + αF1(jω))Cfb(jω)P(jω). (3)

So increased low-frequency disturbance rejection under high-

gain feedback (see (2) by a factor of 1 + αF1) corresponds

to an increased noise sensitivity by the same amount (see

(3)). It is the aim of this paper to (ultimately) avoid such a

trade-off.

Hereto a combined nonlinear observer/controller structure

is proposed such as depicted in Fig.2. Key to the observer is

the fact that apart from its linear low-pass filter characteris-

tics reflected by F2, the nonlinear controller output u is used

in the observed error ê. As a result, a nonlinear observer is
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Fig. 2. Variable gain observer/controller scheme.

obtained that satisfies the following relations

L{ê(t)} = F2(s)L{e(t) − ê(t)} − L{u(t)}

= F2(s)L{e(t) − ê(t)} − F1(s)L{êφ(t)},
(4)

with êφ(t) = φ(ê(t))ê(t). The observer characteristics can

be partly assessed through the following linear limits

lim
φ(ê(t))→0

{

ê(jω)

e(jω)

}

lg

=
F2(jω)

1 + F2(jω)
, (5a)

and

lim
φ(ê(t))→α

{

ê(jω)

e(jω)

}

hg

=
F2(jω)

1 + F2(jω) + αF1(jω)
. (5b)

For small error levels and if ω → ∞, the observer tends to

the low-gain characteristics determined by F2, see (5a). Con-

trarily for sufficiently large error levels, the observer tends

to the high-gain characteristics F2(1 + αF1)
−1, see (5b).

It is assumed that F2 has low-pass characteristics whereas

F1 does not. As a result the increased high-frequency noise

sensitivity by a factor of 1+αF1 under high-gain feedback,

see (3), is fully counteracted by the observer.

Given the nonlinear observer in Fig.2, its choice of filters

and the parameters therein reflects two different design

approaches. Filter F1 is mainly designed in the context of

closed-loop stability (Section III) whereas filter F2 and φ are

designed in view of closed-loop performance (Section IV).

III. DESIGN FOR STABILITY

Design for stability mainly refers to the choice of F1

in view of closed-loop stability. Apart from guaranteeing

stability using results from absolute stability theory, in

particular the circle criterion, this circle criterion is also

used to design a loop shaping filter F1; see also [12], [10]

with a similar aim. The latter is needed to support a gain

increase for improved low-frequency disturbance rejection,

see also [14]. For this purpose, we adopt the absolute stability

representation of Fig.3 where G(jω) = Cfb(jω)P(jω)/(1 +
Cfb(jω)P(jω)) and Φ(e12, t) = (φ(e1)e1 − φ(e2)e2)/e12

with e12 = e1 − e2 and for which we define e1 = e2 →
Φ(e12, t) := 0. Closed-loop stability is guaranteed on the

basis of the next result.

Theorem 3.1: Assume the system P in Fig.1 is globally

asymptotically stabilized by Cfb. Moreover, assume F1, F2

and 1/(1 + F2) Hurwitz. Then any observer of the form

as considered in Fig.2 with 0 ≤ Φ(·, t), φ(·) ≤ α globally

asymptotically stabilizes P if

ℜ

{

F1(jω)F2(jω)G(jω) −F1(jω)

1 + F2(jω)

}

≥ −
1

α
. (6)
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Fig. 3. Incremental nonlinear dynamics in Lur’e form with observer.

Proof: If Cfb globally asymptotically stabilizes P ,

then the closed-loop transfer G(jω) is Hurwitz. Furthermore,

from the feedback connection of Fig.3, a frequency response

function G′(jω) follows that reads

G′(jω) =
F1(jω)

1 + F2(jω)
{F2(jω)G(jω) − 1} . (7)

The first part of this transfer is Hurwitz. The second part

is also Hurwitz because the poles of F2(s)G(s) − 1 are

determined by the poles of F2(s)G(s). As a result G′(jω)
is Hurwitz which combined with the fact that Φ(·, t) (and

φ(·)) satisfies the sector condition 0 ≤ Φ(·, t) ≤ α allows

for proving absolute stability through the circle criterion, see,

for example, [15].

Example 3.1: To illustrate the value of the result in (6),

a scanning wafer stage is used as a benchmark example,

see Fig.4. In such systems, light from a laser that is passing

through a mask and scaled by a lens is projected onto a wafer.

The wafer is located atop a wafer stage which represents a
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Fig. 4. Artist impression of an industrial wafer scanner.

floating mass that is controlled in six degrees-of-freedom.

For the vertical z-direction (see also [14]), a simplified wafer

stage plant model is given by

P(s) =
7s2 + 90s + 9.2 107

108.5s4 + 2025s3 + 2.07 109s2
. (8)

The corresponding feedback controller reads

Cfb(s) = Fpid(s)Flp(s)Fn(s), (9)

with

Fpid(s) =
8.1 106

(

s2 + 776s + 1.5 105
)

415s
, (10)

Flp(s) =
1.2 107

s2 + 398s + 1.2 107
, (11)

and

Fn(s) =
0.6s6 + 1773s5 + 4.3 107s4 + 4.4 1010s3

s6 + 104s5 + 6.2 107s4 + 2.3 1011s3
. . . (12)

6.3 1014s2 + 1.4 1017s + 5 1019

5.6 1014s2 + 3.7 1016s + 5 1019
. (13)

In the implementation a discrete-time version of this con-

troller is used on the basis of a sampling frequency of 5

kHz. By means of example, the filters F1 and F2 in the

nonlinear observer structure of Fig.2 are given by

F1(s) =
2.5 107s2 + 4.2 1010s + 4.9 1013

s4 + 2 104s3 + 1.2 108s2 + 3.5 1011s + 4.9 1013
,

(14)

and

F2(s) =
3574

s + 1131
. (15)

For this controlled wafer stage model, the graphical inter-

pretation of (6) is shown in Fig.5 by plotting the corre-

sponding frequency response functions: measured (solid) and

simulated (dashed). The main cause for deviation between

both relates to the differences between discrete-time imple-

mentation and continuous-time simulation. For the case that
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Fig. 5. Graphical interpretation of (6) without loop shaping filter F1 (left)
and with loop shaping filter F1 (right).

F1 = 1 (this is the left part of the figure) it follows that

stability using the circle criterion is sufficiently guaranteed

if the frequency response function G′ remains to the right of

a vertical line through the point (-1.9,0). As a result, stability

through the circle criterion is guaranteed for extra gains up

to α = 1/1.9 ≈ 0.5. The extra gains are limited by the

fact that lim
ω→∞

G′(jω) → −1. By definition α cannot exceed

the value of α = 1. To avoid this limitation and hence the

potential increase of extra gain α, the loop shaping filter F1

is chosen strictly proper, see (14). The effect is shown in

the right part of the figure. Here G′ remains to the right of

a vertical line through the point (-0.28,0) such that α can

be chosen up to α = 1/0.28 ≈ 3.6. The need to choose
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F1 strictly proper potentially conflicts with the desired high-

gain observer limit in (5). For sufficiently large error levels,

the high-gain observer limit now tends to the low-gain

observer limit. As a result, the increased high-frequency

noise sensitivity by a factor of 1 + αF1 under high-gain

feedback in (3) is no longer counteracted by the observer. In a

discrete-time control setting, however, the cut-off frequencies

in F1 and F2 can be tuned sufficiently discriminative as

to simultaneously access large extra gain values and still

counteract significant parts of the increased noise response.

This is shown in Fig.6 through the frequency response from

e to ê and in terms of the linear observer limits, see also

(5). Apart from the first-order low-pass characteristics, it
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Fig. 6. Bode representation of the observer frequency response function
limits in (5): the low-gain limit (dashed) and the high-gain limit (solid).

can be seen that the high-gain observer limit gives access

to extra high-frequency reduction. This reduction provides a

means to compensate for the increased high-frequency noise

amplification induced by G under high-gain feedback. Note

that for α = 3 a reduction of (1 + α)−1 → 12 dB is not

reached; see the pair of dashed lines indicating the desired

low-pass characteristics. This is because F1 includes a low-

pass filter (see (14)) such that both the high- and low-gain

observer limits ultimately converge. The current choice for

F1, however, gives extra broad-band noise suppression below

the Nyquist frequency of the discrete-time control design.

Apart from extra noise suppression, the high-gain observer

limit in Fig.6 shows deteriorated low-frequency properties.

IV. DESIGN FOR PERFORMANCE

Design for performance refers to the choice for the nonlin-

earity φ and the observer F2. For φ, the distinction between

stability and performance is evident. Namely given the class

of sector-bounded nonlinearities 0 ≤ φ(·) ≤ α, the choice

for φ is invariant under the stability result in (6) but it does

affect the servo performance related to it. For the filter design

of F2 (and also F1) such a distinction is less apparent.

Nevertheless F2 is primarily designed in view of closed-loop

servo performance.

In designing the nonlinearity, φ is given the following

dead-zone characteristics

φ(ê(t)) =







0, if |ê(t)| ≤ δ,

α −
αδ

|ê(t)|
, if |ê(t)| > δ,

(16)

with α a gain and δ a switching length. It can be verified that

(16) satisfies the imposed conditions on stability in (6), i.e.,

0 ≤ φ(ê(t)) ≤ α and 0 ≤ Φ(ê12, t) ≤ α. The idea of using a

dead-zone filter operation is motivated as follows. For large-

amplitude (and sporadically occurring) error signals ê, which

apply to the frequency range below the controller bandwidth,

it is assumed that the switching length δ is sufficiently

exceeded. This induces extra gain which incidentally gives

rise to extra disturbance suppression. Contrarily for small-

amplitude noise occurring during steady-state operation, the

switching length is not exceeded. So no extra gain is induced,

thus maintaining a low-gain noise response.

In tuning the filter parameters in φ, the value for α follows

from the loop-shaping argument considered in Example 3.1

from which α is given the sufficiently robust value of α = 3.

Tuning δ is related to the discrimination between signal and

noise during the wafer scanning interval which follows from

a more ad hoc argument where the smallest upper bound on

the servo error signals during (constant velocity) scanning is

used as an initial estimate, or

δ = lim
t→∞

sup |e(t)|, (17)

and which is (possibly) fine tuned during the process of

achieving servo performance. This is shown in Fig.7 where
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Fig. 7. Time-series measurement of the servo error signals at die five in
relation with the tuned parameter setting of δ = 5 nm.

it can be seen that during scanning the maximum absolute

value of the measured error signal in x-direction roughly

remains below the switching length of δ = 5 nm. This
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keeps a potential noise amplification during scanning limited

whereas performance limiting oscillations related to the

acceleration set-point (dotted curve denoted with acc.setp.)

prior to the scan induce extra controller gain, thus extra

disturbance suppression.

In designing the linear observer part F2, it is natural

to adopt the structure of system G which is generally a

high-order complementary sensitivity function. To limit the

observer order, however, which generally makes the design

more attractive from an implementation point of view, G is

approximated by a single first-order low-pass filter:

F2(s) =
γ ωlp

s+ ωlp
, (18)

with γ a tuning parameter and ωlp the cut-off frequency

which is chosen near the (low-gain) controller bandwidth;

see also (15). The tuning parameter γ determines the low-

frequency magnitude in the transfer from measured error e to

observed error ê, see also Fig.2. So γ is part of a performance

trade-off. Choosing γ small results in limited (extra) low-

frequency disturbance rejection. Choosing γ large results in

a high observer’s cut-off frequency giving an increased noise

response. For the considered wafer stage example γ = 3.16.

Example 4.1: Given the nonlinear observer, wafer stage

performance is assessed (through simulation) at five distinct

locations on the wafer. These locations are shown in Fig.8

and are labelled with die one through die five. Apart from
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Fig. 8. Schematic overview of five different scan locations along the wafer.

the sign, at each die a comparable scan is performed in terms

of x- and y-acceleration set-points. The corresponding servo

errors are depicted in Fig.9. Herein two filter operations

are adopted from the semiconductor industry: the moving

average filter operation and the moving standard deviation

filter operation. The moving average operation, or

Ma(i) =
1

n

i+n/2−1
∑

j=i−n/2

e(j), ∀i ∈ Z, (19)

with n a scanning time-scale parameter, essentially is a low-

pass filter operation on the discrete-time error e(i), which

is used to express the ability to position a single exposed

wafer layer atop another; so-called scanning overlay [16].

The moving standard deviation filter operation, or

Msd(i) =
1

n

i+n/2−1
∑

j=i−n/2

√

(e(j) −Ma(i))2, ∀i ∈ Z, (20)

is a high-pass filter which is used to express the deviation
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Fig. 9. Time-series simulation versus measurement along the wafer.

in equal positioning tasks; so-called fading. In Fig.9, sim-

ulations are based on a finite element model of the wafer

stage plant capturing the dynamics at the five considered die

locations. The model gives rise to position-dependent servo

error behavior which can be best seen when comparing the

error responses from die one with die three, both of which

are the result of the same (scaled) acceleration set-points but

applied at different locations. The figure also contains time-

series measurements obtained from an industrial (scanning)

wafer stage. It is concluded that a fairly good comparison is

obtained between simulation and measurement.

Having this validated model, the effect of the nonlinear

observer can be assessed through simulation. In terms of

moving average filtered error responses, Fig.10 shows the

effect of the low-gain linear control design with α = 0, the

high-gain linear control design with φ = α = 3, and the

nonlinear control design. As expected the high-gain linear
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Fig. 10. Time-series simulation of the Ma-filtered x-error signals.
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and the nonlinear control design perform equally good in

terms of keeping the error responses induced by the accel-

eration set-points (dotted curves denoted by acc.setp.) small.

This is due to the extra low-frequency disturbance rejection

properties. Contrarily, the low-gain linear control design

shows a significantly larger error response for the considered

wafer locations and, therefore, associates with less favorable

low-frequency disturbance suppression properties.

The advantages of the nonlinear control design come

to the fore the clearest in Fig.11. In terms of moving
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Fig. 11. Time-series simulation of the Msd-filtered x-error signals.

standard deviation error responses, this figure shows that the

nonlinear control design combines the favorable disturbance

rejection properties of Fig.10 with a small noise response.

More specifically, during the acceleration phases prior to

scanning, the nonlinear responses show most resemblance

with the (small-amplitude) high-gain responses whose are

preferable to the (large-amplitude) low-gain responses. Dur-

ing scanning, however, both the low-gain and nonlinear

control design show the smallest noise response, the kind of

noise response inaccessible to the high-gain control design.

It is therefore concluded that the nonlinear control design

combines the best of both low- and high-gain linear control

designs in achieving improved wafer scanning performance

in view of the considered position-dependent behavior.

V. CONCLUSIONS

A nonlinear observer-based control design is presented

which combines a high-gain (and low-frequency) disturbance

rejection with a low-gain (but high-frequency) noise re-

sponse. The observer is characterized by a low-pass filter

with varying cut-off frequency. Stability is guaranteed in

the context of the circle criterion whereas performance

is shown to be positively influenced by the usage of a

variable gain observer. With a validated simulation model,

the nonlinear control design shows improved performance

for five considered wafer locations and thereby provides an

effective means to deal with position-dependent behavior

along the wafer surface. At each location, the responses

show improved disturbance suppression but with a superior

noise response. This shows the effectiveness of the variable

gain observer and supports the idea of nonlinear control

for linear systems [17] as a means to improve upon servo

performances under varying expression of plant dynamics

and system disturbances.
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