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Abstract— This paper deals with the robust iterative learning
control (ILC) problem for time-delay systems (TDS) subject to
matched parameter uncertainties. Based on two-dimensional (2-
D) approach, a stability analysis of the ILC process is developed
in the sense that the control error converges monotonically as a
function of iteration. It shows that a sufficient condition for the
ILC stability can be given in terms of linear matrix inequalities
(LMIs), which derives learning gains directly. Simulation results
show that the ILC system under a law using gains solved by the
LMI approach is robustly stable and monotonically convergent.

I. INTRODUCTION

Iterative learning control (ILC) is a technique for systems

that operate repetitively over a fixed time interval. It improves

the control signal through iterated trials in order to achieve a

perfect output tracking. This creates a two-dimensional (2-D)

process in nature, with time and iteration as two independent

directions [1]-[2]. Due to this feature, 2-D approaches to ILC

have attracted considerable attention. Some of them are based

on Roesser systems [3]-[8], and the others are based on linear

repetitive processes [9]-[12]. Such approaches take the entire

dynamics of ILC into account, which can also derive stability

conditions for the ILC process straightforwardly from the 2-

D linear systems/repetitive processes theory. However, ILC

based on 2-D approaches has seen relatively little activity for

time-delay systems (TDS), especially for the TDS subject to

parameter uncertainties.

In ILC, the field of TDS has been studied for a long time.

In [13], it is argued that ILC is a natural method to overcome

the main difficulty in addressing TDS, that is, the state should

be properly considered in an infinite dimensional space. This

viewpoint coincides with the purpose of many promising ILC

design approaches. In [14], a holding mechanism is adopted

in ILC, which is to deal with input-delay uncertainty of linear

time-invariant (LTI) systems. The higher-order ILC has been

investigated for nonlinear systems with unknown but constant

state delays [15]. For LTI systems with both model and delay

uncertainties, a frequency-domain method to design ILC with
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Simth predictor has been employed in [16]. For more details,

see also [17] for ILC with an initial rectifying action and [18]

for feedback-based ILC. In addition to the plant dynamics, in

ILC, the learning transient behavior has also been considered

an important practical issue, and in order to obtain reasonable

transients, the monotonic convergence is desirable [19]. But,

to the best of our knowledge, there are only limited studies

on monotonically convergent ILC for uncertain TDS. This is

just the motivation of the present study.

In this paper, robust stability analysis of ILC for uncertain

TDS is developed in the sense that the control error converges

monotonically as the learning process proceeds from trial to

trial. The updating laws under consideration are the PD-type

ILC. In [18], it has been illustrated that the P-type error term

can improve the transient learning behavior of TDS; however,

strict proofs and explicit conditions are not provided to verify

this point. This paper presents a systematic analysis to derive

ILC with the monotonic convergence in order to refine a good

learning transient behavior, which expresses the convergence

conditions in terms of LMIs. Specifically, using 2-D analysis,

an LMI approach is employed to develop the stability of ILC

based on transforming the monotonic convergence of control

error into a performance index. It shows that this approach to

ILC can also be applicable to TDS with uncertain parameters

that satisfy the matching conditions.

Notations: The superscript “T” represents for matrix trans-

position. Moreover, R
n denotes the n-dimensional Euclidean

space; M > 0 (respectively, M < 0) denotes a matrix M which

is symmetric and positive (respectively, negative) definite; I

and 0 denote the identity matrix and the null matrix with the

required dimensions, respectively. Also, an asterisk ∗ is used

to represent a term that is induced by symmetry in symmetric

block matrices or long matrix expressions, and matrices (if

their dimensions are not explicitly stated) are assumed to be

compatible for algebraic operations.

II. PROBLEM FORMULATION

Let t ∈ [0,T ] be the continuous-time index and k ∈ Z+ be

the discrete-iteration index. Then let us consider a dynamic

equation modeled in the following 2-D form:

∂x(t,k)

∂ t
= Ax(t,k)+ Aτx(t − τ,k)+ Bu(t,k) (1)

where x(t,k) ∈ R
n is the state, u(t,k) ∈ R

m is the control

input, τ ≥ 0 is the delay parameter, and A, B, Aτ are matrices

of appropriate dimensions. If τ is time-varying, it is assumed

that 0 ≤ τ(t) ≤ τ , t ∈ [0,T ]. Also, if A, B, Aτ are uncertain,
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they are assumed to take the following forms:

A = A0 + ∆A(t), B = B0 + ∆B(t), Aτ = Aτ0 + ∆Aτ(t) (2)

where A0, B0, Aτ0 are constant matrices, and ∆A(t), ∆B(t),
∆Aτ(t) are time-varying uncertain matrices satisfying

[
∆A(t) ∆B(t) ∆Aτ(t)

]
= EΣ(t)

[
F1 F2 F3

]
. (3)

In (3), E and Fi (i = 1,2,3) are constant matrices of appropri-

ate dimensions, and Σ(t) is an unknown time-varying matrix

which satisfies ΣT(t)Σ(t) ≤ I.

For the dynamic equation (1), consider the output trajec-

tory y(t,k) ∈ R
r given by

y(t,k) = Cx(t,k) (4)

where C ∈R
r×n is a constant matrix. Then for system (1)-(4),

we assume that yd(t), t ∈ [0,T ] is a realizable desired output

trajectory, and xd(t), t ∈ [−τ,T ] and ud(t), t ∈ [0,T ] are the

corresponding desired state and control input trajectories,

respectively. Therefore, we can define the sate, control input

and output tracking error vectors as: δx(t,k) = xd(t)−x(t,k),
δu(t,k) = ud(t)−u(t,k) and e(t,k) = yd(t)−y(t,k). Also, we

assume the standard ILC reset condition: x(t,k) = xd(t) for

all t ∈ [−τ,0] and k ∈ Z+. For the sake of discussions, an

extension of e(t,k) is given by e(t,k) =Cδx(t,k), t ∈ [−τ,0].

• ILC Laws Description: The updating law considered in

this paper is a PD-type ILC implemented by

u(t,k+1)= u(t,k)+Ke(t,k)+Kτe(t−τ,k)+Γ
∂e(t,k)

∂ t
(5)

or a typical PD-type ILC given by

u(t,k + 1) = u(t,k)+ Ke(t,k)+ Γ
∂e(t,k)

∂ t
(6)

where u(t,0) = u0(t), t ∈ [0,T ] is an L2,[0,T ]-norm bounded

initial control input, and K, Kτ , Γ are m× r gain matrices.

Remark 1: If the ILC law (5) uses Kτ = 0, it becomes just

the one (6). Hence, the properties of (5) contain those of (6).

However, (5) requires full knowledge of the time delay τ , and

obviously, (6) does not. Noting the two facts, we will use (5)

for analysis regardless of τ in the following, and in the case

where τ is unavailable, (5) is used as just the ILC law (6).

• Problem Statement: Given system (1), let updating law

(5) or (6) be applied. The problem addressed in this paper is

to select gain matrices such that i) the output tracking error

converges to zero as k → ∞, and ii) the following monotonic

convergence of the control input error is achieved

‖δu(t,k + 1)‖2,[0,T ] < γ ‖δu(t,k)‖2,[0,T ] (7)

where γ ∈ (0,1] represents the convergence rate, and for any

k ∈ Z+, the norm ‖δu(t,k)‖2,[0,T ] is defined by

‖δu(t,k)‖2,[0,T ] =

(∫ T

0
δuT(t,k)δu(t,k)dt

)1/2

.

III. LMI APPROACH TO STABILITY ANALYSIS OF ILC

In this section, the 2-D analysis approach to ILC is first

employed to derive an expression for the error system of the

state error and the control input error. With this error system,

the stability analysis of ILC is presented, for which sufficient

conditions are developed in terms of LMIs.

A. 2-D Analysis

Similar to [15], the state error is given by

∂δx(t,k)

∂ t
= ẋd(t)−

∂x(t,k)

∂ t

= Aδx(t,k)+ Aτδx(t − τ,k)+ Bδu(t,k).
(8)

For the ILC system (1) and (5), the input error satisfies

δu(t,k + 1) = δu(t,k)−Ke(t,k)−Kτe(t − τ,k)−Γ
∂e(t,k)

∂ t

=− (KC + ΓCA)δx(t,k)− (KτC + ΓCAτ)

× δx(t − τ,k)+ (I−ΓCB)δu(t,k)
(9)

where the fact e(t,k) = Cδx(t,k) is used, and (8) is inserted.

Hence, if one defines

Ĉ , −KC−ΓCA, Ĉτ , −KτC−ΓCAτ , D , I −ΓCB (10)

then (9) can be simply written as

δu(t,k + 1) = Ĉδx(t,k)+ Ĉτδx(t − τ,k)+ Dδu(t,k). (11)

Thus, (8) and (11) describe the ILC dynamic equations along

two independent axes, i.e., 2-D ILC processes [6], [7].

Remark 2: If τ is a known time delay, then following [7],

one can formulate the error equations (8) and (11) into a 2-D

continuous-discrete Roesser’s type linear system. If there do

not exist the matrix uncertainties, then using the 2-D system

theory, one can further derive the stability result of the ILC

system (1) and (5) as: limk→∞

[
δxT(t,k) δuT(t,k)

]T
= 0, t ∈

[0,T ] holds if and only if (iff) the matrix D is stable, i.e., D

locates all its eigenvalues inside the unit circle. Furthermore,

it can be shown that limk→∞ e(t,k) = 0, t ∈ [0,T ]. That is, the

perfect output tracking can be guaranteed. However, only the

asymptotic stability of ILC can be derived, which not only

restricts the time delay τ to time-invariant cases but also can

not address such time-varying system uncertainties as in (3).

From Remark 2, it is clear that the 2-D analysis approach

adopted in [7] is not sufficient to achieve our ILC objective.

To handle this problem, we take the error equations (8) and

(11) as a system from δu(t,k) to δu(t,k+1), which is simply

denoted by

δU(s,k + 1) ,




state︷ ︸︸ ︷

(A Aτ)

input︷︸︸︷
B(

Ĉ Ĉτ

)
D



δU(s,k)

, T u
k+1,k(s)δU(s,k)

(12)

with δU(s,k) , L [δu(t,k)]. To reach (7), we thus only need

to guarantee the operator T u
k+1,k(s) satisfying

∥∥∥T u
k+1,k

∥∥∥
[0,T ]

≤

γ , since ‖δU(s,k)‖2 = ‖δu(t,k)‖2. The following analysis

will realize this idea in detail.
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B. Convergence Analysis

First of all, let us consider system (1) and (4) by neglecting

the matrix uncertainties in (2), i.e., matrices A, B and Aτ are

known constant. According to the previous development, one

can state the following result:

Theorem 1: Consider system (1) and (4), and let updating

law (5) be applied. If, for a prescribed scalar γ ∈ (0,1], there

exist positive-definite matrices P > 0 and Q > 0, and matrices

Xi, i = 1,2,3 that satisfy

Ξ1 =




−I X1C + X3CA −I + X3CB X2C + X3CAτ

∗ ATP+ PA + Q PB PAτ

∗ ∗ −γ2I 0

∗ ∗ ∗ −Q




< 0
(13)

then the state error δx(t,k), the control input error δu(t,k)
and the tracking error e(t,k) converge to zero as k → ∞ for

all t ∈ [0,T ], and the monotonic convergence result shown

in (7) is achieved for all k ∈ Z+. If the LMI (13) holds, then

learning gain matrices K, Kτ and Γ are given by

K = X1, Kτ = X2, Γ = X3. (14)

Proof: First, let us show (7). For the prescribed scalar

γ and any iteration k ∈ Z+, define the performance index by

J(k) =
∫ T

0

[
δuT(t,k + 1)δu(t,k + 1)− γ2δuT(t,k)δu(t,k)

]
dt.

(15)

Clearly, (7) holds iff J(k) < 0 is satisfied for all k ∈Z+. Also,

for system (12), define the Lyapunov functional candidate by

V (δxτ(t,k)) = δxT(t,k)Pδx(t,k)+

∫ t

t−τ
δxT(s,k)Qδx(s,k)ds

(16)

where δxτ(t,k) represents the function δx(t,k) defined on the

interval [t−τ,t]. Obviously, V (δxτ (t,k)) is positive-definite,

and particularly, one has V (δxτ (0,k))= 0. Using (8), we thus

know that V̇ (δxτ(t,k)) , ∂V (δxτ(t,k))/∂ t is expressed by

V̇ (δxτ(t,k))

= δxT(t,k)ATPδx(t,k)+ δuT(t,k)BTPδx(t,k)

+ δxT(t − τ,k)AT
τ Pδx(t,k)+ δxT(t,k)PAδx(t,k)

+ δxT(t,k)PBδu(t,k)+ δxT(t,k)PAτ δx(t − τ,k)

+ δxT(t,k)Qδx(t,k)− δxT(t − τ,k)Qδx(t − τ,k)

= ξ T(t,k)Π1ξ (t,k)

(17)

where ξ (t,k) and Π1 are denoted as

ξ (t,k) =
[
δxT(t,k) δuT(t,k) δxT(t − τ,k)

]T

Π1 =




ATP+ PA + Q PB PAτ

∗ 0 0

∗ ∗ −Q



 .
(18)

With the denotation ξ (t,k) and based on (11), we also get

δuT(t,k + 1)δu(t,k + 1) = ξ T(t,k)




ĈT

DT

ĈT
τ


[

Ĉ D Ĉτ

]
ξ (t,k).

(19)

Using (17) and (19), we now have that the index J(k) satisfies

J(k) =

∫ T

0

[
δuT(t,k + 1)δu(t,k + 1)− γ2δuT(t,k)δu(t,k)

+ V̇ (δxτ(t,k))
]

dt − [V (δxτ (T,k))−V (δxτ (0,k))]

=

∫ T

0
ξ T(t,k)Π2ξ (t,k)dt −V (δxτ(T,k))

<

∫ T

0
ξ T(t,k)Π2ξ (t,k)dt

(20)

where the matrix Π2 is computed as follows

Π2 =




ĈT

DT

ĈT
τ


[

Ĉ D Ĉτ

]
+




0 0 0

0 −γ2I 0

0 0 0


+ Π1

=




ATP+ PA + Q+ ĈTĈ PB + ĈTD PAτ + ĈTĈτ

∗ −γ2I + DTD DTĈτ

∗ ∗ −Q+ ĈT
τ Ĉτ


.

(21)

If the LMI (13) holds, then selecting learning gain matrices

in (14), and hence considering the definition (10), we obtain

Π3 =




−I −Ĉ −D −Ĉτ

∗ ATP+ PA + Q PB PAτ

∗ ∗ −γ2I 0

∗ ∗ ∗ −Q


 < 0. (22)

Applying the Schur complement formula to (22), one obtains

Π2 < 0. With this fact, it is immediate from (20) that J(k) <
0, ∀k ∈ Z+. Namely, (7) is proved.

Next, it will be shown that zero tracking errors of δx(t,k),
δu(t,k) and e(t,k) are achieved as k → ∞. From (7), one has

‖δu(t,k)‖2,[0,T ] < γ ‖δu(t,k−1)‖2,[0,T ]

< γk ‖δu(t,0)‖2,[0,T ] .
(23)

Since γ ∈ (0,1] and δu(t,0) = ud(t)−u0(t) is L2,[0,T ]-norm

bounded, one can derive that ‖δu(t,k)‖2,[0,T ] is bounded for

all k∈Z+, and is monotonically decreasing as k →∞. Hence,

limk→∞ δu(t,k) , δu(t,∞), ∀t ∈ [0,T ] exists, which together

with (11) ensures that limk→∞ δx(t,k) , δx(t,∞), ∀t ∈ [0,T ]
exists. Consequently, it follows that limk→∞ ξ (t,k) , ξ (t,∞),
∀t ∈ [0,T ] exists. If γ ∈ (0,1), then it is clear from (23) that

δu(t,∞) = 0, ∀t ∈ [0,T ]. Otherwise, if γ = 1, it is immediate

from using (15) that limk→∞ J(k) = 0. Then taking k → ∞ on

both sides of (20) and noting Π2 < 0, we have

0 = lim
k→∞

J(k) ≤

∫ T

0
ξ T(t,∞)Π2ξ (t,∞)dt ≤ 0

which leads to ξ (t,∞) = 0, ∀t ∈ [0,T ], and as a consequence,

δu(t,∞) = 0, ∀t ∈ [0,T ]. That is, the zero tracking of control

input error is achieved if γ ∈ (0,1]. In addition, if we denote

Π4 =




ATP+ PA + Q PB PAτ

∗ −γ2I 0

∗ ∗ −Q



 (24)

then applying the Schur complement formula to (13), we can

obtain Π4 < 0. Using (17), we can further obtain

V̇ (δxτ(t,k))− γ2δuT(t,k)δu(t,k) = ξ T(t,k)Π4ξ (t,k) ≤ 0
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which, together with (16) and the condition V (δxτ(0,k)) = 0,

k ∈ Z+, yields

δxT(t,k)Pδx(t,k) ≤V (δxτ (t,k))

≤

∫ t

0
γ2δuT(s,k)δu(s,k)ds

≤ γ2 ‖δu(t,k)‖2
2,[0,T ] .

(25)

Since P > 0, it follows immediately on taking k →∞ on both

sides of (25) that δx(t,∞) = 0, ∀t ∈ [0,T ]. Noticing the fact

that e(t,k) = Cδx(t,k), one can complete the proof.

Remark 3: From (21), it is obvious that if Π2 < 0, −γ2I +
DTD < 0, γ ∈ (0,1]. This implies that the matrix D is stable.

As mentioned in Remark 2, the zero tracking errors can thus

be shown with the 2-D system theory. That is, after showing

(7), Theorem 1 can also be derived by using the 2-D analysis

approach to ILC as used in [7].

Noticing the facts in Remark 1, one can state the following

result using the ILC law (6) for unknown but constant delays:

Corollary 1: Consider system (1) and (4), and let updating

law (6) be applied. If, for a prescribed scalar γ ∈ (0,1], there

exist positive-definite matrices P > 0 and Q > 0, and matrices

X1 and X2 that satisfy



−I X1C + X2CA −I + X2CB X2CAτ

∗ ATP+ PA + Q PB PAτ

∗ ∗ −γ2I 0

∗ ∗ ∗ −Q


 < 0 (26)

then the state error δx(t,k), the control input error δu(t,k)
and the tracking error e(t,k) converge to zero as k → ∞ for

all t ∈ [0,T ], and the monotonic convergence result shown

in (7) is achieved for all k ∈ Z+. If the LMI (26) holds, then

learning gain matrices K and Γ are given by

K = X1, Γ = X2. (27)

Proof: This proof is omitted since it follows the lines

of the proof of Theorem 1.

Actually, the result in Corollary 1 is applicable to systems

with time-varying delays. If the delay τ satisfies

0 ≤ τ(t) < ∞, τ̇(t) ≤ ρ < 1 (28)

then one can state the following result:

Corollary 2: Consider system (1) and (4) subject to time-

varying delay of (28), and let updating law (6) be applied. If,

for a prescribed scalar γ ∈ (0,1], there exist positive-definite

matrices P > 0 and Q > 0, and matrices X1 and X2 that satisfy



−I X1C + X2CA −I + X2CB X2CAτ

∗ ATP + PA + Q PB PAτ

∗ ∗ −γ2I 0

∗ ∗ ∗ −(1−ρ)Q


 < 0

(29)

then the state error δx(t,k), the control input error δu(t,k)
and the tracking error e(t,k) converge to zero as k → ∞ for

all t ∈ [0,T ], and the monotonic convergence result shown

in (7) is achieved for all k ∈ Z+. If the LMI (29) holds, then

learning gain matrices K and Γ are given by (27).

Proof: Let us consider again the Lyapunov functional

candidate V (δxτ(t,k)) defined in (16) by noticing that τ is

time-varying. Following the steps of (17) and inserting (28),

we can derive that V (δxτ(t,k)) now satisfies

V̇ (δxτ (t,k))

= δxT(t,k)ATPδx(t,k)+ δuT(t,k)BTPδx(t,k)

+ δxT(t − τ,k)AT
τ Pδx(t,k)+ δxT(t,k)PAδx(t,k)

+ δxT(t,k)PBδu(t,k)+ δxT(t,k)PAτ δx(t − τ,k)

+ δxT(t,k)Qδx(t,k)− δxT(t − τ,k)Qδx(t − τ,k) [1− τ̇(t)]

≤ δxT(t,k)
(
ATP+ PA + Q

)
δx(t,k)

+ δxT(t,k)PBδu(t,k)+ δxT(t,k)PAτ δx(t − τ,k)

+ δuT(t,k)BTPδx(t,k)+ δxT(t − τ,k)AT
τ Pδx(t,k)

− δxT(t − τ,k)(1−ρ)Qδx(t − τ,k)

= ξ T(t,k)Π̃1ξ (t,k)

where Π̃1 is defined by

Π̃1 =




ATP+ PA + Q PB PAτ

∗ 0 0

∗ ∗ −(1−ρ)Q


 .

The remaining of the proof can be established by considering

the performance index J(k) in (15) and following the same

lines of the proof of Theorem 1.

Next, let us consider the uncertain system (1)-(4) and state

the following result:

Theorem 2: Consider the uncertain system (1)-(4), and let

updating law (5) be applied. If, for two scalars γ ∈ (0,1] and

λ > 0, there exist positive-definite matrices P > 0 and Q > 0,

and matrices Xi, i = 1,2,3 that satisfy

Ξ2 =


−I 0 X1C +X3CA0 −I +X3CB0 γλX3CE X2C +X3CAτ0

∗ −I 1
λ

F1
1
λ

F2 0 1
λ

F3

∗ ∗ AT
0 P+PA0 +Q PB0 γλPE PAτ0

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −Q




< 0 (30)

then for all t ∈ [0,T ], the state error, the input error and the

tracking error converge to zero as k → ∞, and the monotonic

convergence result shown in (7) holds for all k ∈ Z+. If the

LMI (30) is satisfied, then learning gain matrices K, Kτ and

Γ can be computed by (14).

To show Theorem 2, the following lemma is adopted from

the literature.

Lemma 1: [20]: Given symmetric matrices X , Y , Z ∈R
n×n

satisfying X ≥ 0, Y < 0, Z ≥ 0, if for any nonzero vector

0 6= ζ ∈ R
n, the following inequality holds

(
ζ TY ζ

)2
−4ζ TXζζ TZζ > 0 (31)

then there exists a scalar λ > 0 such that

λ 2X + λY + Z < 0. (32)

Proof: (Proof of Theorem 2:) First, let us show J(k)< 0.

From the proof of Theorem 1, it can be seen that (20) holds

also for equation (1) with uncertainties of (2) and (3), but Π2

and Π3 are no longer LMIs. In this case, if for any nonzero
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vector µ , µTΠ2µ < 0 is satisfied, then (20) still ensures that

J(k) < 0. Obviously, this result can be achieved if ξ TΠ3ξ < 0

holds for any nonzero vector ξ . This can be seen from the

fact that if one chooses ξ =
[
µT

1 µT
]T

and µ1 =
[
Ĉ D Ĉτ

]
µ ,

then ξ TΠ3ξ = µTΠ2µ holds for this particular choice. Note

that ξ TΠ3ξ < 0 iff ξ TΞ1ξ < 0. Therefore, to derive the proof

of J(k) < 0, we only need to prove that ξ TΞ1ξ < 0 holds for

any nonzero vector ξ iff Ξ2 < 0.

Using (2), (3) and (13), we know that Ξ1 = Π5 +Π6, where

Π5 =




−I X1C + X3CA0 −I + X3CB0 X2C + X3CAτ0

∗ AT
0 P+ PA0 + Q PB0 PAτ0

∗ ∗ −γ2I 0

∗ ∗ ∗ −Q




Π6 =




0 X3CEΣ(t)F1 X3CEΣ(t)F2 X3CEΣ(t)F3

∗

{
[EΣ(t)F1]

T
P

+PEΣ(t)F1

}
PEΣ(t)F2 PEΣ(t)F3

∗ ∗ 0 0

∗ ∗ ∗ 0




.

If we denote ξ ,
[
ξ T

1 ξ T
2 ξ T

3 ξ T
4

]T
, the inequality ξ TΞ1ξ <

0 holds iff it follows for any ΣT(t)Σ(t) ≤ I that

ξ TΞ1ξ = ξ TΠ5ξ + 2
(
ξ T

1 X3CE + ξ T
2 PE

)
Σ(t)

× (F1ξ2 + F2ξ3 + F3ξ4) < 0.
(33)

Now, if one takes

Σ(t) =

(
ETCTXT

3 ξ1 + ETPξ2

)
(F1ξ2 + F2ξ3 + F3ξ4)

T

∥∥ETCTXT
3 ξ1 + ETPξ2

∥∥
2
‖F1ξ2 + F2ξ3 + F3ξ4‖2

(34)

then ξ TΞ1ξ in (33) reaches the maximum value. Hence, (33)

holds for any Σ(t) satisfying ΣT(t)Σ(t)≤ I iff it holds for Σ(t)
in (34). Thus, inserting (34) into (33), we derive that (33) is

equivalent to

ξ TΠ5ξ + 2
√

ξ TXξ
√

ξ TZξ < 0 (35)

where X and Z are given by

X =




X3CEETCTXT
3 X3CEETP 0 0

PEETCTXT
3 PEETP 0 0

0 0 0 0

0 0 0 0




Z =




0 0 0 0

0 FT
1 F1 FT

1 F2 FT
1 F3

0 FT
2 F1 FT

2 F2 FT
2 F3

0 FT
3 F1 FT

3 F2 FT
3 F3


 .

(36)

Clearly, (35) holds iff Π5 < 0 and

(
ξ TΠ5ξ

)2
−4ξ TXξ ξ TZξ > 0. (37)

From (36), it is obvious that X ≥ 0 and Z ≥ 0. Thus, using

Lemma 1, it follows that (37) holds iff there exists a scalar

λ > 0 that satisfies

Π5 + λ 2X + λ−2Z < 0 (38)

which is equivalent to

Π5 +WTW < 0 (39)

with W given by

W =

[
λ ETCTXT

3 λ ETP 0 0

0 1
λ

F1
1
λ

F2
1
λ

F3

]
.

According to the Schur complement formula, (39) becomes

V =

[
−I W

W T Π5

]
< 0. (40)

If one takes

ϒ =




0 0 I 0 0 0

0 I 0 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

γI 0 0 0 0 0

0 0 0 0 0 I




then Ξ2 = ϒV ϒT holds. Hence, (40) is equivalent to Ξ2 < 0.

Summarizing the above analysis, we can conclude that the

LMI (30) is equivalent to ξ TΞ1ξ < 0 for any nonzero vector

ξ . This ensures that J(k) < 0, ∀k ∈Z+. The remaining of this

proof is omitted since it is immediate from Theorem 1.

Remark 4: From Theorems 1 and 2, it can be seen that the

H∞ control design approach and the robust H∞ control design

approach can be employed to develop sufficient conditions in

terms of LMIs for the stability of the (uncertain) ILC process

with time delays. With the satisfaction of certain LMIs, the

learning gains can be determined directly. In addition, when

τ is unknown but constant, Theorem 2 implies results similar

to Corollary 1. As in Corollary 2, when τ is time-varying and

satisfies (28), one can also derive the convergence results in

Theorem 2 for the ILC law (6) if the following LMI holds:



−I 0 X1C +X2CA0 −I +X2CB0 γλX2CE X2CAτ0

∗ −I 1
λ

F1
1
λ

F2 0 1
λ

F3

∗ ∗ AT
0 P+PA0 +Q PB0 γλPE PAτ0

∗ ∗ ∗ −γ2I 0 0

∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −(1−ρ)Q




< 0. (41)

Consequently, the learning gains of (6) are computed by (27).

IV. SIMULATION RESULTS

This section examines an example for the uncertain system

description (1)-(4), with T = 1 and y(t,k) = [y1(t,k) y2(t,k)]
T

representing the output at iteration k. Here, the time-varying

delay τ satisfying (28) is considered, i.e., τ = 0.2+0.2sin(t),
the constant matrices are given by

A0 =

[
0 1

−5 −6

]
,Aτ0 =

[
0 0

−1 −1

]
,B0 =

[
0

1

]
,C =

[
1 0

0 1

]

and parameters in (3) are described by the uncertainty Σ(t) =
diag{sin(10t),1− e−t} and the constant matrices as follows:

E =

[
0 0

0.8 0.8

]
, F1 =

[
1.2 0

0 1.2

]
, F2 =

[
0.5
0.5

]
, F3 = F1.

Also, assume that the desired trajectory is described by

yd(t) =

[
yd1

(t)
yd2

(t)

]
=

[
t3(4−3t)
12t2(1− t)

]
, t ∈ [0,1]
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Fig. 1: ILC process of the law (6). Left:
∥∥yd1

(t)− y1(t,k)
∥∥

2,[0,1]
. Middle:

∥∥yd2
(t)− y2(t,k)

∥∥
2,[0,1]

. Right: ‖ud(t)−u(t,k)‖2,[0,1].

and the initial function is given as: xd(t) = 0 for all t ≤ 0.

To apply the ILC law (6), the zero initial control input is

adopted, i.e., u(t,0) = 0 for t ∈ [0,1]. From Remark 4, the

learning gain matrices can be determined using the LMI (41).

For γ = 1 and λ = 2, and with the LMI toolbox of Matlab, we

know that the LMI (41) is feasible (tmin =−9.7743×10−4),

and the learning gain matrices are given by

K = [0.9840 −5.2219], Γ = [6.3466 0.1661].

Fig. 1 shows the test results, where we describe the tracking

performance of the ILC process for the first 50 iterations. In

this figure, we show the trend of the tracking errors, respec-

tively,
∥∥yd1

(t)− y1(t,k)
∥∥

2,[0,1]
(left),

∥∥yd2
(t)− y2(t,k)

∥∥
2,[0,1]

(middle), and ‖ud(t)−u(t,k)‖2,[0,1] (right). Clearly, the ILC

system is robustly stable, and the input error converges, in the

sense of the L2-norm, monotonically to zero as a function

of iteration.

V. CONCLUSIONS

In this paper, the stability analysis of the ILC problem for

TDS has been presented when system parameters are subject

to uncertainties. After providing the 2-D analysis of the ILC

process, we have employed an approach to develop the robust

stability conditions in terms of LMIs, which is based on the

monotonic convergence of the control input error. It has been

shown that the proposed approach can be applicable to TDS

which may suffer unknown delays or time-varying delays. In

particular, the effectiveness of our approach has been verified

through simulation tests.
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