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Abstract— Traditional input shaping filters are linear map-
pings between the reference input and the system input. These
filters are often unnecessarily conservative with respect to
input and output bounds if multiple references with different
amplitudes are applied. This conservatism is due to the off-line
computation of the prefilter. This paper presents an on-line
input prefilter design approach to overcome this conservatism.
The resulting prefilters are called predictive prefilters because
the on-line design is based on the model predictive control
(MPC) framework. By theoretical considerations, simulation
results and experimental results, it is shown that this new
prefilter is at least as good as traditional prefilters, and can
result in substantial gains in settling time. Tests show that a 30
% decrease in settling time is possible in a classical application.

I. INTRODUCTION

In the last decades, a lot of effort has been put into

developing efficient input shaping prefilters, see e.g. [1]–

[4]. These prefilters are computed off-line and applied to the

system afterwards. Input or actuator saturation is avoided by

considering during the design worst case reference inputs,

that is a step reference with maximum amplitude [1], [5].

Hence, these input filters yield conservative results with

respect to the input range and response speed if the reference

input is more smooth and/or has a smaller amplitude.

Since the nineties, a new control approach has gained a lot

of attention, namely model predictive control [6], [7], mostly

in control of slow processes. A MPC-controller estimates at

every time step the system state, and computes subsequently

the optimal input to be applied to the system. This optimal

input is computed based on the state of the system, the

imposed reference to the system and constraints on input,

output, and states. The mapping of the reference to an ideal

input is hence computed on-line. An important challenge for

MPC in motion control applications is a high sampling rate,

in the range of kHz, at which these on-line optimization

problems have to be solved.

For some (fast) applications, it is cumbersome to estimate

the states, as is necessary for MPC. This can be due to the

cost of the sensors, the impossibility to introduce these sen-

sors into the system or because of the delay they introduce.
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In these cases, it is better to have open loop control like input

shaping instead of closed loop control like MPC, especially

if the system dynamics are well known.

This paper presents a new approach for the design of

prefilters. This approach is a hybrid between the classical

prefilters and the MPC-framework. The result is a real

prefilter, in the sense that no feedback of the system is

incorporated, but the prefilter realizes a nonlinear instead of

a linear mapping between the reference and system input

because of the on-line optimization. The prefilter takes into

account the constraints on inputs and outputs during the

real motion of the system and not during a worst case

scenario and hence avoids the conservatism of traditional

input shapers.

This paper is organized as follows. Section II starts with a

short introduction to both input shaping and MPC. Section III

describes the design framework of the predictive prefilter and

discusses its practical implementation. Section IV compares

the new prefilter design with the standard input shaping pre-

filter for some scenarios to illustrate its advantages. Section

IV-D validates the proposed framework with experimental

results. The paper ends with directions for future research

and conclusions.

II. INPUT SHAPING AND MPC: THE BASICS

This section gives an overview of the basic idea behind

input shaping and how it can be extended and efficiently

solved. The section continues with basic elements of MPC.

A. Input Shaping

Traditional input shaping prefilters are finite impulse re-

sponse (FIR) filters that convert reference point-to-point

motion commands such that very little or no residual vi-

bration occurs upon arrival at the endpoint. These filters

introduce a short delay, known as move-time penalty, equal

to the duration of the prefilter’s impulse response. Singer en

Seering [1] developed the first popular input shaping design

approach. This approach is based on analytic expressions for

the response of a continuous-time second-order system to the

following sequence of K + 1 impulses fk at time locations

tk:

f (t) =
K

∑
k=0

fkδ (t − tk) (1)
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The required zero residual vibration corresponds to the

following set of nonlinear equations [1]:

K

∑
k=0

fke−ζ ωn(tK−tk) sin(tkωn

√

1−ζ 2) = 0, (2a)

K

∑
k=0

fke−ζ ωn(tK−tk) cos(tkωn

√

1−ζ 2) = 0, (2b)

where ζ and ωn are the damping coefficient and the eigen-

frequency of the system. The minimum number of impulses,

required to solve (2a)–(2b), is two, which corresponds to

K = 1 in (1). A minimal delay is introduced when t0 = 0

and t1 = T0/2, where T0 denotes the period of the damped

natural eigenfrequency. By requiring that all the impulses

of the FIR-filter are positive and sum to one, the design

guarantees that if the original reference does not drive the

actuators of the system in saturation, the new shaped inputs

will not do this either. Numerous extensions to the basic

technique exist e.g. to make it more robust [2], to make it

faster by allowing negative impulses [5], or including a priori

information about the desired trajectory [3].

It has been shown that the input shaping problem can be

reformulated in a more general linear programming frame-

work [8], [9]. This generalization considers the system and

prefilter as one system of which the total impulse response

has to be shaped; i.e., the input shaping prefilter design

considers:

g(t) = f (t)⊗h(t), (3)

with f (t) the impulse response of the prefilter, h(t) the

impulse response of the system, g(t) the impulse response

of the system and prefilter together, and ⊗ the convolu-

tion operator. Consequently, imposing zero vibration with

minimal move-time corresponds to the requirement that the

impulse response g(t) is as short as possible. This no-

vibration constraint has to be acquired without violating input

or output constraints. This is usually attained by considering

a worst-case scenario, or by including a priori information

about the desired trajectory. Based on (3), [8] and [9] show

that the input shaping design can be reformulated as a

convex optimization problem which has a guaranteed global

optimum [10].

B. Model Predictive Control

MPC is an advanced control technique which is also

known as moving or receding horizon control. It determines

the system input by solving on-line, at every sampling time,

an open-loop optimal control problem, based on the current

state of the system. Taking the current state into account,

the controller is capable of accounting for disturbances.

The optimization generates an optimal input sequence for

a specified finite time horizon, however, only the first input

ūl = u0 is applied to the system. In its simplest setting, the

problem to be solved at each time step l has the following

structure:

min
x(.),y(.),u(.)

K

∑
k=0

[(yk − yref,k)
T Q(yk − yref,k)+uT

k Ruk], (4a)

subject to constraints:

x0 = x̄l , (4b)

xk+1 = f (xk,uk), (4c)

yk = h(xk,uk), (4d)

g(xk,uk) > 0 k ∈ [0,K], (4e)

where K is the considered time horizon and x̄l the measured

or estimated system state at time l. The optimization is based

on a model that predicts the system behavior for a sequence

of control variables (4b)–(4d) and acknowledges bounds on

inputs, outputs and internal states (4e). The input is optimized

considering the system input and output weighted with the

matrices R and Q respectively. MPC emerged first in the

process industry, due to the less stringent real time require-

ments [11]. Nowadays there exist algorithms that are able to

solve this type of problems at kHz sampling frequencies for

systems with up to 10-20 states and prediction horizons K

of up to 10-12 time steps ahead yielding that MPC becomes

feasible for mechatronic applications [12], [13].

III. THE PREDICTIVE PREFILTER

This section presents the MPC inspired design of an input

shaping prefilter. It discusses also the practical implementa-

tion of the designed framework, and ends with theoretical

considerations. The predictive prefilter is developed in dis-

crete time and is based on a discrete time presentation of the

system.

A. Design of the predictive prefilter

Like all prefilters, the predictive prefilter transforms the

reference setpoint yref,l to a system input. This input has to

fulfill the following requirements:

• the system must drive the system output to the desired

setpoint as fast as possible,

• the prefilter must prevent residual vibrations at the

system output as much as possible,

• constraints on inputs, outputs, and possibly system state

variables have to be respected.

The predictive prefilter satisfies these requirement by the

on-line solution of an optimization problem which results in

a nonlinear mapping between the reference and the inputs of

the system.

The considered problem P(x̄l ,yref,l) at time step l is:

min
x0,...,xK ,u0,...,uK ,y0,...,yK ,K

K (5a)

subject to: x0 = x̄l , (5b)

xk+1 = f (xk,uk), (5c)

yk = h(xk,uk), (5d)

0 ≤ g(xk,uk) for k = 0 . . .K, (5e)

xK = f (xK ,uK), (5f)

yK ≡ yref,l (5g)

Constraints (5c)–(5d) describe the system dynamics. For

a given input, these constraints completely determine the

system behavior for a given initial state, hence constraint
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Fig. 1. Comparison of MPC (dashed line) and the predictive prefilter (full
line). MPC relies relies on the measured system state, while the predictive
prefilter does not feed back the system state, it relies only on the state of
the model that is used in the optimization formulation.

(5b). This initial state x̄l is in the prefilter formulation not

obtained by system measurements as in real MPC, but by

simulation of the system. This makes the prefilter a real

prefilter, which can easily and without additional sensors be

added to an existing system. Constraints (5f)–(5g) are the

most important ones. They impose the system to arrive at the

desired setpoint at time K without residual vibrations. The

prefilter will minimize the time K required to arrive at this

desired state (5a). Constraint (5e) presents all constraints on

the inputs, outputs and states. This allows to impose directly

the input constraints of the system, and not indirectly as is

done in traditional input shaping. Hence, this avoids to be

unnecessarily conservative, see also [3]. For some specific

cases, e.g. with fast changing setpoint, this new method al-

lows to be restrictive enough, while traditional input shapers

can not handle this and result in over-currenting [5]. This

framework can easily be extended to add constraints on the

system overshoot, maximum speed, rate of input change, . . .
Also robustness with respect to parameter uncertainty can be

included, see paragraph V. Figure 1 illustrates the difference

between MPC and the predictive prefilter.

To summarize:

The inputs of the prefilter at each discrete-time step

l are:

• state of the model of the system x̄l

• desired setpoint yref,l

The outputs of the prefilter at each discrete-time

step k are:

• input of the system ūl

• state of the system xl+1

The following program is solved at each discrete-

time step l:

1) Solve the parametric optimization problem

(5a)–(5g). Obtain ūl as first control input of

the solution. This problem depends on x̄l and

yref,l .

2) Predict the next state of the model system

xl+1 = f (xl ,ul).

B. Problem structure and efficient solution

Problem (5a)–(5g) is in general a nonlinear mixed-integer

program. If the system model is linear and the constraints are

convex, the total problem is quasi convex and can normally

be solved by a sequence of linear feasibility problems which

bisect on the time K. Every bisection step, a linear feasibility

problem with a certain end time K is solved. Depending on

the feasibility, the end time K is reduced or increased, until

the optimal time T ∗ is found. However, because a bisection

approach consists of a series of LP-problems to be solved at

each time step, a reformulation of the problem is proposed.

Instead of directly optimizing problem (5a)–(5g), a slightly

different problem is defined. By using a weighted sum of

l∞-norms of the tracking error:

min
K

∑
k=0

‖y− yref‖∞ck, c > 1, (6)

instead of the objective (5a) and endpoint constraints (5f)–

(5g), one can obtain similar results, at the cost of solving

only one optimization problem. The sum of l∞-norms is

used as this results in a relative heavy weighting of the

small residuals [10], and hence in an efficient removal of

these small residuals, i.e. the residual vibrations. By using

an exponential weighting ck, the exponential decay of the

residual vibrations is compensated for, and hence the time-

optimal behavior can almost perfectly be enforced at a much

lower computational cost of only 1 optimization problem

instead of multiple feasibility problems. This reformulation

should be handled with care though, because it may result

in badly scaled problems if c is too large. For the on-line-

solution, it is important that the considered time-horizon

is not too long as the computation-times of the solution

algorithms scale at least linearly but usually worse with the

horizon length. A good choice of the horizon is the length

of a classical input shaping prefilter.

C. Theoretical considerations

Theorem 1: For any single reference step input, the pre-

dictive prefilter gives the fastest possible transition.

Proof: The solution of problem P(x̄l ,yref,l) for a single

reference step gives a time-optimal trajectory, i.e. the shortest

possible. Because the system model in simulation and opti-

mizer are the same, the principle of optimality of subarcs

[14] applies to the following problems, so the first computed

trajectory, which was optimal, is followed.

IV. VALIDATION

This section discusses the numerical and experimental

validation of the developed predictive prefilter. The exper-

imental test system is discussed in section IV-A. Numerical

validation in section IV-B and IV-C is based on a linear

model of this test setup and clearly shows the advantages

of the predictive prefilter. The design is also experimentally

validated in section IV-D.

A. Test setup

First, the predictive prefilter is compared with a classical

prefilter for a benchmark problem. The test-setup consists

of a two-DOF mass-spring-damper system. Fig. 2 shows a

picture and a schematic drawing of the setup. The system

is excited by a position controlled hydraulic piston with

position p(t). The system input is the reference signal for
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Fig. 2. Picture and schematic drawing of the test-setup.

TABLE I

POLES OF THE FIFTH ORDER SYSTEM

frequency [rad/s] damping [-]

ω0 = 2.6205×2π ζ0 = 0.157%
ω1 = 7.7926×2π ζ1 = 0.293%
1 real pole at 214 /

the piston position controller. The position of the upper

mass x1(t) is chosen as the system output. A fifth-order

continuous-time state space model is identified for this

system based on frequency response function measurements

that are obtained from a multisine excitation with a frequency

content between 0.1Hz and 10Hz [15]. To apply the devel-

oped framework, this model is transformed to discrete time

with a sample period of Ts = 0.01s. This model contains

two pairs of complex conjugated poles originating from the

two flexible modes of this system, and one real pole that

is introduced by the band limited piston position controller

(Table I). The input of this system is limited to 1 V, and the

output is limited to a displacement of 1cm.

B. Single step benchmark

For benchmarking, the predictive prefilter is compared

with the results of a classical prefilter, for a maximal step, i.e.

a reference step of 1cm. The considered prefilter is designed

following the procedure of [8]. In this procedure, negative

impulses are allowed as in the predictive prefilter, and such

that no saturation takes place for a reference step of 1cm.

Figure 3 shows this reference (full line) and also the resulting

output, both with a classical input shaping prefilter (dashed

line) as with a predictive prefilter (dotted line). This figure

shows that the predictive prefilter can reproduce the classical

input shaping prefilters for a maximal allowable step. Fig. 4

shows this even more clearly by showing the outputs of the

inputshaping prefilter (full line) and the predictive prefilter

(dashed line) for this reference. These filter outputs are not

Fig. 3. Output of the system with a classical input shaping prefilter (dashed
line) and a predictive prefilter (dotted line), for a full step reference (full
line). Remark that both outputs coincide.

Fig. 4. Input of the system with a classical input shaping prefilter (full
line) and a predictive prefilter (dotted line).

completely the same. This is due to the freedom left in the

optimization problem, as the real optimal time can only be

approximated from above in a discrete setting.

C. Multiple step

This paragraph shows the benefits of the predictive pre-

filter for some other references. The desired setpoint change

is not a maximal step, but a sequence of smaller steps.

Figure 5 shows the desired setpoints for the system (solid

line). Also the resulting behavior with a classic input shaping

prefilter (dashed line) and a predictive prefilter (dotted line)

is shown. This shows clearly the superior behavior of the

predictive prefilter. Reductions of the settling time up to

30% are obtained. Figure 6 shows the respective inputs of

the system, i.e. with input shaping (full line) and predictive

prefiltering (dotted line), and this shows that the reduction is

due to the more efficient use of the allowable input range.

The classic prefilter scales its input for the maximal step

with the desired step, while the predictive prefilter makes full

use of the available actuator possibilities. This allows faster

reaction times and hence shorter settling times. If there are

unmodelled higher modes in the system however, they will

be more excited than with classical input shaping prefilters.

The next example illustrates this advantage even more

clearly. Figure 7 shows the same behavior if the next ref-

erence set point is requested before the previous is fully
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Fig. 5. Output of the system with a classical input shaping prefilter (dashed
line) and a predictive prefilter (dotted line). The reference is not one big
step, but a series of smaller steps (solid line).

Fig. 6. Input of the system with a classical input shaping prefilter (solid
line) and a predictive prefilter (dotted line).

executed. Both the behavior with the predictive prefilter

(dotted line) and with a classical input shaping prefilter

(dashed line) are shown for a reference trajectory of 3 steps

(full line).

Figure 8 presents a last simulation example which shows

the better performance of the new prefilter. This example

requests a reference trajectory (full line) with a step up from

0 to 1 at time 0s followed by a step down to 0.3 at time 0.1s.

A traditional input shaping prefilter drives the actuators of the

system into saturation which results in unacceptable behavior

of the system (dashed line). The predictive prefilter (dotted

line) which can take into account the real constraints of the

system has no problems with this saturation, and hence is

also for this case more efficient.

D. Experimental

After numerical validation, the new input shaping prefilter

design is also experimentally validated. The considered test

setup is the same as presented in section IV. A dSPACE

board DS1103 performs the computations and controls the

input signals of the system. To apply this prefilter, it is

of the utmost importance, that the presented optimization

problem be solved in the available sampling-time of 0.01s.

To execute the computations, the dSPACE board contains a

1GHz processor with 90Mb RAM.

Fig. 7. Output of the system with a classical input shaping prefilter (dashed
line) and a predictive prefilter (dotted line). The reference is a series of 3
steps (solid line), where a new setpoint is requested before the previous is
attained.

Fig. 8. Output of the system with a classical input shaping prefilter (dashed
line) and a predictive prefilter (dotted line). The reference is a series of 2
steps (solid line), where the second step is reversed compared with the first.

The considered optimization problem is formulated with

a horizon of 15 time steps. The input is limited to ±1V

and the slew rate of the input is limited to ±0.1V . This

last constraint is necessary due to nonlinear oil-flow in

the hydraulic actuators. The overshoot is limited to 5%.

This results in a problem formulation with 30 variables,

120 constraints and 60 bounds. This problem can not be

easily solved in the available time, and specialized algorithms

have to be employed which exploit the problem formulation.

Therefore, the problem is modeled in Simulinkr and solved

with qpOASES [13]. To exploit this algorithm fully, a light

quadratic weighting is added to both the inputs and the

error. Furthermore, the hotstarting ability is exploited. For

this formulation, the maximal CPU time for computation is

2.9ms, and the mean CPU time is 0.5ms. The maximal time

of 2.9ms is required when a reference step is requested, but

still safely below the 10ms sampling time, making real-time

application of the method possible.

Fig. 9 shows the system response, i.e. the position x1,

if the reference (solid line) is applied with a traditional

input shaping prefilter (dashed line) and with the designed

predictive prefilter (dotted line). This shows that in the

experimental setup the same gains, i.e. 30% less settling

time, can be attained as in the simulations. The apparent

170



Fig. 9. Validation of the predictive input shaping prefilter design: desired
motion (full line), and system response with a classical input shaping
prefilter (dashed line) and with the predictive prefilter (dotted line).

Fig. 10. Robust design: a reference (full line) is applied to the perturbed
system. This reference is robustly prefiltered and the resulting response
(dashed line) is still very good.

error around the endpoints is accountable to noise.

V. ROBUSTNESS

As an extension to the basic framework, robustness is

introduced in the developed framework. By requiring that

not only the nominal system, but also perturbed systems

arrive at the desired setpoint, the resulting prefilter gains

robustness. This can be introduced by taking the l∞ norm

over the outputs of X systems instead of 1 system, see (6). To

stabilize the designed prefilter, a limited amount of vibration

should be allowed e.g. 0.5% of the total displacement. This

is necessary to allow for numerical rounding errors. This

can be imposed by requiring the l∞ norm in (6) to have

a minimal value. Fig. 10 shows the experimental behavior

(dashed line) of a perturbed test setup, i.e. masses are added

to the setup and the system is controlled by a robust prefilter.

This clearly demonstrates that the proposed prefilter design

is also capable of producing robust prefilters, which are

solvable in real-time, i.e. 10ms sampling time, on embedded

hardware.

VI. CONCLUSION

This paper presents a new design method for input shaping

prefilters. This new design produces a prefilter by the on-

line solution of an optimization problem which takes into

account the real constraints of the system and hence results

in a nonlinear mapping between the sequence of setpoints

and the sequence of inputs for the system instead of a linear

mapping. Theoretical considerations show that this predictive

prefilter is at least as good as the linear input shaping

prefilter but normally outperforms this prefilter in terms of

time optimality. Simulations show that the predictive prefilter

reproduces a benchmark problem. Furthermore, it is also

shown that the prefilter is more efficient than a classical input

shaping prefilter if the requested setpoint does not correspond

to a worst case scenario. Gains of 30% in settling-time are

easily achieved. The simulation results are confirmed by

experimental results on a quarter-car test setup. Hereby it

is shown that sampling times of 0.01s are no problem with

the presented design. It is also shown that robustness easily

can be introduced in the developed framework.
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