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Abstract—This paper proposes an optimal control method-
ology that addresses the problem of control of fingertip dur-
ing a general class of task that requires the fingertip to
make a transition from non-contact motion to contact motion.
Specifically, the task that the fingertip makes and transitions
from motion to static well-directed force production. Here
we present a mathematical framework for controlling the
contact transition, while switching between non-contact and
contact controller is needed and handled by the optimal control
strategy. The non-linear differential algebraic equation that
describes the dynamics of the index finger is linearized, and then
a modified linear quadratic optimal control problem is solved.
The resulting optimal feedback control law guarantees good
regulation of contact force, velocity and position. Simulation
results are presented to demonstrate the effectiveness of the
new approach.

I. INTRODUCTION

Contact transition in dextrous robotic manipulators is a

very challenging control problem, because it involves the

well-known characteristics of discontinuous nonlinear dy-

namics, between an open and a closed-loop kinematic chain.

The nonzero approaching velocity results in the instability

[3], [5] and undesirably high impact force. Furthermore, the

unknown nonlinear relationship of the reaction force and

deformation is another difficulty for transition control from

free to constrained motion.

During the last three decades, researchers in the control

engineering and robotics have been putting lots of effort into

applying robotic manipulators to contact tasks [2], [6], [10],

[20]. Based on the recognition that the controller changes

the dynamic behavior of the system, Hogan [3] proposed

the use of impedance control approach to achieve stable

control of the force exerted on a rigid surface. By using this

implementation, both free motions and contact tasks can be

controlled successfully using one single control algorithm,

and the control is achieved without the difficult inverse

kinematic computations. The control solution that Mills et al.

[9] proposed was the combination of two separate controls:

one for non-contact motion and another for contact motion.

By utilizing the generalized dynamical system (GDS) theory,

they developed an asymptotically stable discontinuous con-

trol approach to deal with the contact instability problems.

Hyde and co-workers [1], [4] developed an input command
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preshaping method that suppressed the end-effector vibra-

tion by modifying feedforward information during contact

transition. However, the problem with the above algorithms,

such as the impedance control, the input command shaping,

and the discontinuous control, is that they all require the

environment dynamics to be accurately modelled (i.e. a

linear dumped spring or the stiffness and surface location

of the environment) and integrated into controller design.

For dealing with uncertainties in different task environments,

another group of researchers studied the impact control

and force regulation using positive acceleration feedback

together with an event-driven switching control strategy. By

introducing the nonlinear feedback control law, the dynamic

model is feedback-linearized and decoupled [11], [12], [13],

[19]. The peak impact force and bouncing can be controlled,

the stable contact transition can be achieved and the desired

output force can be regulated in an unknown environment

without readjusting the gains.

Although there are many successful applications of prac-

tical dextrous manipulators in industry, such as assembly

tasks for automated manufacturing, robotic gripping, and

interactive robot for service tasks, the ability for robots to

perform dextrous tasks as humans remains a fascination.

Fine manipulation is a distinctive feature of human motor

behavior, hence biological systems themselves should pro-

vide meaningful solution for the study of contact transition

control. Recently, experimental findings on human finger

contact transition [17], [18] demonstrated that the muscle

coordination pattern [15], [16] clearly switched from motion

to well-directed isometric force production before contact.

They further proposed that the underlying neural control

of finger musculature was predictive and also switched in

a time-critical manner from controlling finger motion to

controlling fingertip force. In the study of motor control,

Todorov et al. [8], [14] has pointed out, the sensorimotor

system is the product of optimization processes (i.e. evolu-

tion, development, learning, adaptation) which continuously

improve behavioral performance. Optimality hence provides

an elegant framework for trying to explain why the system

behaves as it does, and to specify the control laws that

generate the observed behavior. Does the control scheme

used by the biological system for contact transitions approach

a strategy that is optimal or suboptimal?

This paper focuses on the study of the human finger move-

ment and develops a new algorithm for transition control

from finger motion to static fingertip force production. The

new method is based on the linear quadratic optimal control

theory. The aim of this research is to achieve smooth, stable
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transitions and to avoid instability and large impact force

spikes during the controller switching, while increasing the

applied force from zero to the desired level as rapidly as pos-

sible. We shall show that stable contact transition and desired

force regulation can be achieved by the resulting feedback

control law. The simulation results clearly demonstrate the

effectiveness and advantages of the proposed approach.

The paper is organized as follows. In section II the

dynamical models for unconstrained and constrained motion

are formulated. The design of the optimal feedback controller

for contact transition is developed in section III and an algo-

rithm for the control design is derived which guarantees the

performance requirement. Section IV presents a numerical

example, and concluding remarks are drawn in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Open chain dynamics model for unconstrained motion

Consider an index finger model [15] with n joints moving

in the horizontal plane. The inverse dynamics is

M(θ)θ̈ + C(θ, θ̇) + G(θ) = τ, (1)

where θ ∈ R
n is the joint angle vector, M(θ) ∈ R

n×n is a

positive definite symmetric inertia matrix, C(θ, θ̇) ∈ R
n is a

vector centripetal and Coriolis forces, G ∈ R
n is the gravity

force, and τ ∈ R
n is the joint torque. Here we consider

direct torque control (i.e. τ is the control signal).

B. Closed chain dynamics model for constrained motion

Let p ∈ R
n denote the position vector of the fingertip in

the Cartesian coordinate system, then the relation between

the Cartesian and the joint coordinate system can be ex-

pressed as p = H(θ), and the Jacobian matrix is defined

as

J(θ) =
∂H(θ)

∂θ
. (2)

Suppose the constraints are such that the position vector

of the fingertip satisfies the following algebraic function

Φ(p) = 0, (3)

where Φ : Rn → R
m is the constraint function and m < n.

The resulting equations of motion for the non-slipping

finger where the fingertip makes contact with the constraint

surface are represented as

M(θ)θ̈ + C(θ, θ̇) + G(θ) + J(θ)T f = τc, (4)

The contact force f between the fingertip and the constraint

surface can be calculated as follows using Lagrange multi-

pliers and Jacobian matrix of the constraint vector function

Φ for the fingertip

f =

(

∂Φ

∂p

)T

λ, (5)

where λ ∈ R
m is a vector of generalized multipliers

associated with the constraints. Hence the differential alge-

braic equations (3)-(5) define the dynamic model of finger,

constrained by contact with a rigid environment.

III. OPTIMAL CONTROLLER DESIGN FOR CONTACT

TRANSITION

The dynamic model is different during free and con-

strained motion. In the following, an optimal control problem

for regulation of contact force and position in free and

constrained systems is considered.

A. LQ controller for unconstrained motion

Here we develop the control law of finger during free

motion using iterative linear quadratic regulator method.

This method uses iterative linearization of the nonlinear

system around a nominal trajectory, and computes a locally

optimal feedback control law via a modified LQR technique.

The control law is then applied to the linearized system,

and the result is used to improve the nominal trajectory

incrementally.

Based on equations (1), we can compute the forward

dynamics and write the system into a form

ẋ = F (x, u), (6)

where the state x = [θ; θ̇] ∈ R
2n, and control u = τ ∈ R

n.

The objective of optimal control is to find the control law

that minimizes

V =
1

2
(x(tf )−x

∗)T
Qf (x(tf )−x

∗)+
1

2

∫ tf

0

(

x
T
Qx + u

T
Ru

)

dt

(7)

where Qf and Q ∈ R
2n×2n are symmetric and positive

semi-definite, R ∈ R
n×n is symmetric and positive definite.

The locally-optimal control law is constructed iteratively.

Each iteration starts with a nominal control sequence uk, and

a corresponding nominal trajectory xk obtained by applying

uk to the dynamical system (6) in open loop. The linearized

discrete dynamics is expressed in terms of the deviations

δxk+1 = Akδxk + Bkδuk, (8)

where Ak = I + ∆t∂F
∂x

∣

∣

(xk,uk)
, Bk = ∆t∂F

∂u

∣

∣

(xk,uk)
, ∆t =

tf/(N − 1). Based on the above linearized model, we can

solve the following LQR problem with the cost function

V =
1

2
(xN + δxN − x∗)T Qf (xN + δxN − x∗)

+
1

2

N−1
∑

k=0

{

(xk + δxk)T Q (xk + δxk)

+ (uk + δuk)T R (uk + δuk)

}

. (9)

Theorem 1: Given the system (6) and its linearization (8)

around the nominal trajectory with the performance index

given in (9), the optimal controller is given by

δuk = −Kδxk − Kvvk+1 − Kuuk, (10)

K = (BT
k Sk+1Bk + R)−1BT

k Sk+1Ak, (11)

Kv = (BT
k Sk+1Bk + R)−1BT

k , (12)

Ku = (BT
k Sk+1Bk + R)−1R, (13)

Sk = AT
k Sk+1(Ak − BkK) + Q, (14)

vk = (Ak − BkK)T vk+1 − KT Ruk + Qxk (15)
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with boundary conditions

SN = Qf , vN = Qf (xN − x∗). (16)

B. LQ controller for constrained motion

The system of constrained dynamics(3)-(4), introduced in

section II, can be written by

ẋ = F (x, u, λ), (17)

where the state and control are given by x = [θ; θ̇] ∈

R
2n, u = τc ∈ R

n, and the Lagrangian multipliers λ ∈ R
m.

The objective of optimal control is to find the control law

that minimizes

V =
1

2
(x(tf ) − x∗)

T
Qf (x(tf ) − x∗)

+
1

2

∫ tf

0

(

xT Qx + λT Pλ + uT Ru
)

dt (18)

where Qf , Q ∈ R
2n×2n and P ∈ R

m×m are symmetric and

positive semi-definite, R ∈ R
n×n is symmetric and positive

definite.

We first present the linearization of the nonlinear

differential-algebraic equations (3)-(4) at the constrained

equilibrium (x0, λ0), where x0 = [θ0; 0] and λ0 are constant

vectors such that Φ(H(θ0)) = 0 and rank
(

∂Φ
∂p

J
)

∣

∣

θ0

= m.

Let u0 be a constant vector such that

u0 = C(θ0, 0) + G(θ0) +

(

∂Φ

∂p
J

∣

∣

∣

∣

θ0

)T

λ0.

The linearization is defined in terms of δxk = xk − x0

and δλk = λk − λ0 as

δxk+1 = A δxk + B δuk + C δλk, (19)

0 = D δxk (20)

where ∆t = tf/(N − 1) and

A = I + ∆t
∂F

∂x

∣

∣

∣

∣

(x0,λ0)

, B = ∆t
∂F

∂u

∣

∣

∣

∣

(x0,λ0)

,

C = ∆t
∂F

∂λ

∣

∣

∣

∣

(x0,λ0)

, D = ∆t
∂Φ

∂p
J

∣

∣

∣

∣

x0

.

Definition 1 (Control Relative Degree): The constrained

systems (19) and (20) are said to have control relative degree

ri for the ith constraint output and the control input δuk if

(i) DiA
jB = 0, 0 ≤ j ≤ ri − 2, i = 1, · · · , m,

(ii) DiA
ri−1B 6= 0.

Definition 2 (Constraint Relative Degree): Systems (19)

and (20) are said to have constraint relative degree σi for

the ith constraint output and the constraint input δλk if

(i) DiA
jC = 0, 0 ≤ j ≤ σi − 2, i = 1, · · · ,m,

(ii) DiA
σi−1C 6= 0.

Now the linearized constrained dynamics(19)-(20) can

be described by a state space realization using a linear

transformation identical to that given in [7]. First we assume

that the constraint relative degree σi is not greater that the

control relative degree ri for the ith constraint output, then

construct the following matrix

Γ =
[

CT ;D1; · · · ; D1A
σ1−2; · · · ;Dm; · · · ; DmAσm−2

]

Suppose the singular value decomposition of Γ ∈

R
(σ1+···+σm)×n is given by

Γ = U [Σ 0]

[

V T
1

V T
2

]

,

where Σ ∈ R
(σ1+···+σm)×(σ1+···+σm), V1 ∈ R

n×(σ1+···+σm)

and V2 ∈ R
n×(n−(σ1+···+σm)), by constructing the nonsin-

gular matrix

T =































D1

...

D1A
σ1−1

...

Dm

...

DmAσm−1

V T
2































and introducing the following linear transformation
[

δx̃k

δx̄k

]

= T δxk,

where δx̃k ∈ R
σ1+···+σm and δx̄k ∈ R

n−(σ1+···+σm), we

obtain a state space realization

δx̄k+1 = Ā δx̄k + B̄ δuk, (21)

δλk = D̄ δx̄k + Ē δuk, (22)

where

Ā = V T
2 AW2, B̄ = V T

2 B,

D̄ = −G−1HW2, Ē = −G−1L,

G =







D1A
σ1−1C
...

DmAσm−1C






, H =







D1A
σ1

...

DmAσm






,

L =







D1A
σ1−1B
...

DmAσm−1B






, T−1 =

[

W1 W2

]

,

and δx̄k = V T
2 δxk, δxk = W2δx̄k.

Applying the above state-space transformation results, the

original optimal control problem described by (17)-(18) can

be rewritten as

V =
1

2
(δx̄N − δx̄∗)T Q̄f (δx̄N − δx̄∗)

+
1

2

N−1
∑

k=0

{

xT
0 Qx0 + λT

0 Pλ0 + uT
0 Ru0

+ δx̄T
k x̄0 + x̄T

0 δx̄k + δuT
k ū0 + ūT

0 δuk

+ δx̄T
k Q̄ δx̄k + δx̄T

k P̄ δuk + δuT
k P̄T δx̄k

+ δuT
k R̄ δuk

}

, (23)
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where ū0, x̄0, Q̄, P̄ and R̄ are defined by

ū0 = Ru0 + ĒT Pλ0, x̄0 = WT
2 Qx0 + D̄T Pλ0,

δx̄∗ = V T
2 (x∗ − x0), Q̄f = WT

2 QW2,

Q̄ = WT
2 QW2 + D̄T PD̄, P̄ = D̄T PĒ, R̄ = R + ĒT PĒ.

Theorem 2: Given the system (17), its linearization (19)-

(20) around the constrained equilibrium, and the equivalent

state realization (21)-(22) with the performance index given

in (23), the optimal controller is given by

δuk = −(K + R̄−1P̄T )δx̄k − Kvvk+1 − Kuū0, (24)

K = (B̄T Sk+1B̄ + R̄)−1B̄T Sk+1A, (25)

Kv = (B̄T Sk+1B̄ + R̄)−1B̄T , (26)

Ku = (B̄T Sk+1B̄ + R̄)−1, (27)

Sk = AT Sk+1(A− B̄K) + Q, (28)

vk = (A− B̄K)T vk+1 − (K + R̄−1P̄T )T ū0 + x̄0 (29)

where

A = Ā − B̄R̄−1P̄T , Q = Q̄ − P̄ R̄−1P̄T , (30)

with boundary conditions

SN = WT
2 QfW2, vN = WT

2 Qf (x0 − x∗). (31)

Proof: We begin with the Hamiltonian function

Hk =
1

2

{

xT
0 Qx0 + λT

0 Pλ0 + uT
0 Ru0

+ δx̄T
k x̄0 + x̄T

0 δx̄k + δuT
k ū0 + ūT

0 δuk

+ δx̄T
k Q̄ δx̄k + δx̄T

k P̄ δuk + δuT
k P̄T δx̄k

+ δuT
k R̄ δuk

}

+ δγT
k+1(Āδx̄k + B̄δuk),

where δγk+1 is Lagrange multiplier.

The optimal control improvement δuk is given by solving

the state equation (21), the costate equation

δγk = ĀT δγk+1 + Q̄δx̄k + P̄ δuk + x̄0, (32)

and the stationary condition which can be obtained by setting

the derivative of Hamiltonian function with respect to δuk

to zero

0 = ū0 + P̄T δx̄k + R̄δuk + BT
k δγk+1 (33)

with the boundary condition

δγN = Q̄f

(

δx̄N − V T
2 (x∗ − x0)

)

. (34)

Solving for (33) yields

δuk = −R̄−1
[

B̄T δγk+1 + P̄T δx̄k + ū0

]

. (35)

Hence, substituting (35) into (21) and combining it with (32),

the resulting Hamiltonian system is
(

δx̄k+1

δγk

)

=

(

A −B̄R̄−1B̄T

Q AT

)(

δx̄k

δγk+1

)

+

(

−B̄R̄−1ū0

x̄0 − P̄ R̄−1ū0

)

. (36)

It is clear that the Hamiltonian system is not homogeneous,

but is driven by a forcing term dependent on x̄0 and ū0.

Because of the forcing term, it is not possible to express

the optimal control law in linear state feedback form (as in

the classic LQR case). However, we can express δuk as a

combination of a linear state feedback plus additional terms,

which depend on the forcing function.

Based on the boundary condition (34), we assume

δγk = Skδx̄k + vk (37)

for some unknown sequences Sk and vk.

In order to find the equations (24)-(29), use (37) in the

state equation (21) to yield

δx̄k+1 = (I + B̄R̄−1BT Sk+1)
−1(Aδx̄k

− B̄R̄−1B̄T vk+1 − B̄R̄−1ū0). (38)

Substituting (37) and the above equation into the costate

equation (32) gives

Skδx̄k + vk = Qδx̄k + AT Sk+1(I + B̄R̄−1B̄T Sk+1)
−1

(Aδx̄k − B̄R̄−1B̄T vk+1 − B̄R̄−1ū0)

+ AT vk+1 + x̄0 − P̄ R̄−1ū0.

By applying the matrix inversion lemma 1 to the above

equation, we obtain

Sk = AT Sk+1

[

I − B̄(R̄ + B̄T Sk+1B̄)−1B̄T Sk+1

]

A + Q,

and

vk = A
T
vk+1

−A
T
Sk+1

[

I − B̄(R̄ + B̄
T
Sk+1B̄)−1

B̄
T
Sk+1

]

B̄R̄
−1

B̄
T
vk+1

−A
T
Sk+1

[

I − B̄(R̄ + B̄
T
Sk+1B̄)−1

B̄
T
Sk+1

]

B̄R̄
−1

ū0

+ x̄0 − P̄ R̄
−1

ū0. (39)

By using (R̄ + B̄T Sk+1B̄)−1 = R̄−1 − (R̄ +
B̄T Sk+1B̄)−1B̄T Sk+1B̄R̄−1, the second term in vk be-

comes

−AT Sk+1B̄(R̄ + B̄T Sk+1B̄)−1B̄T vk+1,

while the third term in vk can also be written as

−AT Sk+1B̄(R̄ + B̄T Sk+1B̄)−1ū0.

Therefore, with the definition of K in (25), the above Sk,

vk can be written into the forms as given in (28) and (29).

Furthermore, substituting (37) and (38) into (35) yields

δuk = − (R̄ + B̄T Sk+1B̄)−1B̄T Sk+1Aδx̄k − R̄−1P̄T δx̄k

− (R̄ + B̄T Sk+1B̄)−1B̄T vk+1

− (R̄ + B̄T Sk+1B̄)−1ū0.

By the definition of K, Kv and Ku in (25)-(27), we can

rewrite above δuk as the form in (24).

With the boundary condition SN given as the final state

weighting matrix in the cost function (23), we can solve for

1(A + BCD)−1 = A−1
− A−1B(DA−1B + C−1)−1DA−1.
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an entire sequence of Sk by the backward recursion (28). It is

interesting to note that the control law δuk consists of three

terms: a term linear in δx̄k whose gain is dependent on the

solution to the Riccati equation; a second term dependent on

an auxiliary sequence vk which is derived from the auxiliary

difference equation (29); and a third term dependent on the

nominal control ū0 whose gain also relies on the Riccati

equation solution.

IV. NUMERICAL EXAMPLE

In order to determine the applicability of the method, an

example to solve for the control design of contact transition

is presented next. Consider an index finger model [15]

with 3 joints (metacarpophalangeal (MCP) joint, proximal

interphalangeal (PIP) joint, and distal interphalangeal (DIP)

joint), moving in the horizontal plane (Fig. 1). The inverse

dynamics is described by (1) where the expressions of the

different variables and parameters M(θ) ∈ R3×3, C(θ, θ̇) ∈
R3 are given by

M11 = M31 + a1 + a2 + 2a4cosθ2 (40)

M21 = M22 + a4cosθ2 + a6cos(θ2 + θ3) (41)

M22 = M33 + a2 + 2a5cosθ3 (42)

M31 = M32 + a6cos(θ2 + θ3) (43)

M32 = M33 + a5cosθ3 (44)

M33 = a3 (45)

C1 = a4sinθ2

[

−θ̇2(2θ̇1 + θ̇2)
]

(46)

+ a5sinθ3

[

−θ̇3(2θ̇1 + 2θ̇2 + θ̇3)
]

+ a6sin(θ2 + θ3)
[

−(θ̇2 + θ̇3)(2θ̇1 + θ̇2 + θ̇3)
]

,

C2 = a4sinθ2θ̇1
2

+ a5sinθ3

[

−θ̇3(2θ̇1 + 2θ̇2 + θ̇3)
]

+ a6sin(θ2 + θ3)θ̇1
2
, (47)

C3 = a5sinθ3

(

θ̇1 + θ̇2

)2

+ a6sin(θ2 + θ3)θ̇1
2
, (48)

a1 = (m1 + m2 + m3)l
2
1, a2 = (m2 + m3)l

2
2, (49)

a3 = m3l
2
3, a4 = (m2 + m3)l1l2, (50)

a5 = m3l2l3, a6 = m3l1l3, (51)

where mi is the mass for link i (0.05kg, 0.05kg, 0.03kg), li
is the length of link i (6cm, 6cm, 5cm).

The fingertip is constrained to make contact with the rigid

constraint surface shown in Fig. 1, so that the constrained

dynamic equations are given by (4)-(5), and the constraint

condition is

Φ(p) = l1cosθ1 + l2cos(θ1 + θ2) + l3cos(θ1 + θ2 + θ3) = 0.
(52)

The nonlinear differential-algebraic equations (4)-(5) are

linearized about an equilibrium (x0, λ0) given by x0 =
[π
3 ; π

6 ; 37×π
180 ; 0; 0; 0], λ0 = 0.1.

The task here is to produce a downward tapping motion

followed by vertical fingertip force against a rigid surface.

Fingertip

DIP

PIP

MCP

Direction of fingertip force

Fig. 1. 3-link index finger with metacarpophalangeal (θ1: MCP), proximal
interphalangeal (θ2: PIP), and distal interphalangeal (θ3: DIP) joint

Resembling the experimental data [17], we specify the fin-

gertip to start at rest position at t = 0ms, located vertically

above the target. During the interval [0ms; 500ms], the

fingertip moves downwards and exactly reaches the surface

at t = 500ms; while during the interval [500ms; 600ms],
the fingertip will produce the vertical desired force on the

surface.

The cost function is defined by

Vfree =
1

2
(x(0.5) − x∗)T (x(0.5) − x∗) +

1

2

∫ 0.5

0

rτT τ dt,

(53)

Vconst =
1

2
(x(0.6) − x∗)T (x(0.6) − x∗)

+
1

2

∫ 0.6

0.5

(r1λ
T λ + r2τ

T τ) dt, (54)

where the state and control are given by

x = (θ1 θ2 θ3 θ̇1 θ̇2, θ̇3)
T , u = τ = (τ1 τ2 τ3)

T ,

x∗ is the desired target position, r = 10−4, r1 = 10−3,

and r2 = 10−4 are weighting coefficients. In the definition

of the cost function (53), the first term means that the joint

angle is going to the target x∗ which represents the reaching

movement; the second term illustrates the energy efficiency.

The optimal controller for free motion is obtained by

minimizing the performance criterion (53) subject to the

dynamical system (1), and the control law for constrained

motion is obtained by minimizing the cost function (54)

subject to the constrained dynamics (4)-(5) and (52). The

controller is switched from free to constrained motion at

about 350ms, which is before the contact.

The performance of the contact transition control approach

introduced in this paper is illustrated in Fig. 2 and Fig. 3,

where the movement trajectories and control commands are

plotted. The simulation results show that good regulation

of force and position is achieved: the metacarpophalangeal

(MCP) joint angle, the proximal interphalangeal (PIP) and

the distal interphalangeal (DIP) joint angle arrive to the

desired posture θ1 = 60◦, θ2 = 30◦, θ3 = 37◦ respectively,

and λ arrives to the desired magnitude 0.1 (Fig. 4).
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Fig. 2. Optimal trajectories of 3-link index finger joint angles. Blue solid
(θ1:MCP), green dash (θ2:PIP), and red dashdot (θ3:DIP)
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Fig. 3. Optimal joint torques (control command) for 3-link index finger,
the joint torque needed for the desired force production switches before the
contact
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V. CONCLUSIONS

Optimal control plays a very important role in the study

of bio-mechanical movement system. Here we formulate

the control of fingertip during contact transition as a linear

quadratic optimal control problem. A locally optimal feed-

back control law is computed for the motion of unconstrained

dynamics via a modified LQR technique. The nonlinear

differential-algebraic equations which describe the motion

of constrained dynamics are linearized about a constrained

equilibrium, and then a modified linear quadratic optimal

control problem associated with the state space realization of

the resulting linear differential-algebraic equations is solved.

The simulation results demonstrate that the controller design

approach presented in this paper provides good regulation

of contact force and position in the transition control of

fingertip.
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