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Abstract— In this paper, to further relax the restriction on
the higher order nonlinearity in [7], a stable multiple model
adaptive control (SMMAC) method is developed. First a new
robust adaptive controller is designed, which can guarantee the
stability of the closed-loop system. Then to improve the system
performance, the SMMAC method is presented by switching
between the robust adaptive controller and a conventional neural
network (NN) adaptive controller. Theory analysis and simulation
results are presented to show the effectiveness of the proposed
method.

I. INTRODUCTION

Nonlinear adaptive control of continuous-time systems has

been intensively studied in the past several decades [1-3]. It is

only recently that, along with the introduction of neural net-

works (NNs), issues have related to nonlinear adaptive control

of discrete-time systems [4-6]. In practical applications, it is

desirable to have a systematic method of ensuring stability and

performance properties of the overall neural network (NN)

adaptive system. However, just as what is described in [7],

due to the complexity of the structure of an NN and the

nonlinear dependence of its map on the parameter values,

stability analysis of the resulting adaptive systems has always

been very difficult and quite often intractable.

Although stability and convergence results for adaptive

control using NNs have been presented [8-12], some problems

remain unsolved, and most of them suffer from one or more

of the following drawbacks [7]: (i) The NNs used are linearly

parameterized. Even when the structure allows for nonlinear

parameters, they are kept fixed. (ii) The system to be controlled

is of a special structure, e.g., an affine structure. Such results

cannot be directly applied to a system which is nonlinearly

dependent on the current input variables. (iii) The stability

result is obtained based on the assumption that the estimate

of an NN has to be close enough to the true nonlinearity.

In practice, the closeness is hard to decide, since it is well
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known that parameters usually do not converge to their true

values even after extensive off-line training.

To overcome the problems mentioned above, a stable multi-

ple model adaptive control method is proposed in [7], which is

composed of a linear robust adaptive controller, an NN based

nonlinear adaptive controller and a switching mechanism, and

can lead to the result that all the signals in the closed-loop

systems are globally bounded. In [7], the method is designed

for a single-input-single-output system, and the assumption

made on the nonlinear system is that it can be modeled by the

sum of a linear part and a globally bounded nonlinear part. The

problem becomes extremely challenging when the nonlinearity

is not globally bounded. Two directions of research in this

respect is indicated in [13]: one is to establish some global

result for the closed-loop system by imposing more structural

constraints on the plant, as is done in the integrator backstep-

ping methods for continuous time systems. The other is to

establish some local results using continuity arguments: if the

initial conditions and the amplitude of the desired trajectory

are small, then the system will evolve in a neighborhood of

the equilibrium that satisfies the bound on the nonlinearity.

However, whether there may exist a strategy that does not

rely on any more structural constraints, and can establish some

global result? The answer is positive. By introducing a delay

difference operator, [14] proposes a globally stable multiple

model NN adaptive control method for the same structure

multi-input-multi-output systems and relaxes the assumption

of global boundedness on the higher order nonlinear term.

In [14], the assumption is that the difference of the higher

order nonlinearity is globally bounded. To further relax the re-

striction on the higher order nonlinearity, in this paper, we first

design a new robust adaptive controller, which can guarantee

the global stability of the closed-loop system, then to improve

the system performance, we present the stable multiple model

adaptive control (SMMAC) method by switching between the

robust adaptive controller and a conventional NN adaptive

controller.

The rest of the paper is organized as follows: In Section 2,

the system under consideration is described, and the control

problem is stated. In Section 3, the SMMAC method composed

of a linear robust adaptive controller, a nonlinear NN adaptive

controller and a switching mechanism is proposed. And the

stability and tracking performance of the closed-loop system

is analyzed. Section 4 provide simulation results showing the

effectiveness of the proposed control scheme, and finally some

conclusions are drawn in Section 5.
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II. PROBLEM FORMULATION

It is assumed that the discrete-time multivariable system

under control can be expressed as the following model.

A(z−1)y(t + 1) = B(z−1)u(t) + v[y(t), · · · ,
y(t − na + 1), u(t), · · · , u(t − nb)]

(1)

where u(t), y(t) ∈ Rn are the system input and output vectors

respectively; v[·] ∈ Rn is an unknown continuous vector-

valued nonlinear function; A(z−1) and B(z−1) are two n×n
matrix polynomials in the backward shift operator z−1, i.e.,

A(z−1) = I + A1z
−1 + · · · + Ana

z−na ,
B(z−1) = B0 + B1z

−1 + · · · + Bnb
z−nb

(2)

with I being an identity matrix; Ai, i = 1, · · · , na;Bj , j =
0, · · · , nb being unknown constant matrices and na, nb being

known structural orders. To make the design procedure easier

to follow, define

x(t) = [y(t), · · · , y(t − na + 1), u(t), · · · , u(t − nb)] (3)

Denoting the n-dimension reference input vector as w(t), the

output tracking error can be expressed as

ec(t) = y(t) − w(t) (4)

Assumption 1 [14]. (i) The linear parameter matrices

Ai, i = 1, · · · , na;Bj , j = 0, · · · , nb lie in a compact region
∑

, and B0 is nonsingular; (ii) The system has a globally

uniformly asymptotically stable zero dynamics.

Assumption 2. The higher order nonlinearity satisfies

‖v[x(t), u(t)]‖ ≤ α0 + α1‖y(t)‖ + · · ·+
αna

‖y(t − na + 1)‖ (5)

where αi|i=0,··· ,na
> 0 and is known.

Assumption 3. For the nonlinear equations
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(6)

where u1, u2, · · · , un are unknown variables; X0 ∈ Rm is

an arbitrary given vector; fi|i=1,··· ,n : Rn × Rm → R are

continuous bounded nonlinear functions and B0 ∈ Rn×n is a

nonsingular matrix, there exist u∗
1, u

∗
2, · · · , u∗

n which satisfy

Eq. (6) for arbitrary ideal constants r1, r2, · · · , rn.

Remark 1. In general, the right hand side of Ineq (5) should

include all the variables of the function v[x(t), u(t)], i.e., the

condition,

‖v[x(t), u(t)]‖ ≤ α0 + α1‖y(t)‖ + · · · +
αna

‖y(t − na + 1)‖ + β0‖u(t)‖
+ · · · + βnb

‖u(t − nb)‖
with βj |j=0,··· ,nb

> 0 and being also known, should be used.

However, in this paper, in the right hand side of Ineq (5),

the variables u(t), u(t− 1), , u(t−nb) of v[x(t), u(t)] are not

included. In practice, if u(t) in v[x(t), u(t)] is constrained by

a bounded function, or if u(t) in Eq. (1) is saturated, then Ineq

(5) can be commonly satisfied. Comparing with [14], where

the difference of the nonlinearity is assumed to be globally

bounded, it is obvious that Assumption 2 is still quite mild.

The aim of the design is to determine a control signal so that

the input and output signals of the closed-loop system remain

bounded, whilst the output tracking error is made as small as

possible. Similar to [7] and [14], the structure of the control

system is composed of a linear model, a nonlinear model, a

robust adaptive controller, an NN adaptive controller and a

switching mechanism.

III. LINEAR ROBUST ADAPTIVE CONTROL

For preliminary, we choose a diagonal matrix polynomial

P (z−1) = P0 + P1z
−1 + · · · + Pnp

z−np (7)

with np ≤ na, and then introduce the following equation.

P (z−1) = A(z−1) + z−1G(z−1) (8)

where G(z−1) with the order na − 1 is a matrix polynomial

and uniquely determined by Eq. (8). Combining Eq. (1) and

Eq. (8), we can obtain

P (z−1)y(t + 1) = G(z−1)y(t)
+ B(z−1)u(t) + v[x(t), u(t)]

(9)

Denote G(z−1) = G0 + G1z
−1 + · · · + Gna−1z

−na+1; Θ =
[G0, · · · , Gna−1, B0, · · · , Bnb

]T;X(t) = [y(t)T, · · · , y(t −
na +1)T, u(t)T, · · · , u(t−nb)

T]T;φ(t+1) = P (z−1)y(t+1),
then Eq. (9) can be rewritten as

φ(t + 1) = ΘTX(t) + v[x(t), u(t)] (10)

First, the linear estimate model of Eq. (10) is defined as

φ̂(t + 1) = Θ̂(t)TX(t) (11)

where Θ̂(t) = [Ĝ0(t), · · · , Ĝna−1(t), B̂0(t), B̂1(t), · · · ,
B̂nb

(t)]T is an estimate of Θ at time instant t. The linear model

error is

e(t) = φ(t) − φ̂(t)

:= φ(t) − Θ̂(t − 1)TX(t − 1)

:= [Θ − Θ̂(t − 1)]TX(t − 1)
+v[x(t − 1), u(t − 1)]

(12)

Denote

M(t) = α0 + α1‖y(t)‖ + · · · + αna
‖y(t − na + 1)‖

= α0 + (α1z
−1 + · · · + αna

z−na)‖y(t + 1)‖
(13)

and introduce the relative deadzone

λ(t) =

{

1 if ‖e(t)‖ > 2M(t − 1)
0 otherwise.

(14)

In this paper, the following identification algorithm is used to

update Θ̂(t).

Θ̂′(t) = Θ̂(t − 1) +
λ(t)X(t − 1)e(t)T

1 + X(t − 1)TX(t − 1)
(15)
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Θ̂(t) = proj{Θ̂′(t)} (16)

where Θ̂′(t) = [Ĝ0(t), · · · , Ĝna−1(t), B̂
′
0(t), B̂1(t), · · · ,

B̂nb
(t)]T; proj is a projection operator, satisfying

proj{Θ̂′(t)} =

{

Θ̂′(t); B̂′
0(t) is nonsingular

[· · · , B̂′
0(t − 1), · · · ]; otherwise

(17)

The linear robust adaptive controller is then obtained as

Θ̂(t)TX(t) = P (z−1)w(t + 1) (18)

Lemma 1. If the recursive least square algorithm described by

Eqs. (11)-(17) is used to update the estimate Θ̂(t) , we have

the following results.

(i) Θ̂(t) is bounded for all t ≥ 0;

(ii) lim
N→∞

N
∑

t=1

λ(t)[‖e(t)‖ − 2M(t − 1)]2

2(1 + ‖X(t − 1)‖2)
< ∞;

(iii) lim
t→∞

λ(t)[‖e(t)‖ − 2M(t − 1)]2

2(1 + ‖X(t − 1)‖2)
→ 0.

Proof. Define Θ̃(t) = Θ̂(t) − Θ, then from Eqs. (15)-(17),

using Eqs. (12), (14) and adopting the similar approach as

what is described in [8], it follows that

‖Θ̃(t)‖2 ≤ ‖Θ̃(t − 1)‖2 − λ(t)[‖e(t)‖2 − 4M(t − 1)2]

2(1 + ‖X(t − 1)‖2)

≤ ‖Θ̃(t − 1)‖2 − λ(t)[‖e(t)‖ − 2M(t − 1)]2

2(1 + ‖X(t − 1)‖2)
(19)

Since λ(t) = 1 for ‖e(t)‖ > 2M(t − 1) and is 0 otherwise,

{‖Θ̃(t)‖2} is a nonincreasing sequence. Consenquently,

results (i) − (iii) are valid.

Theorem 1. For the system (1) with the adaptive algorithm

(11)-(17) and the robust adaptive controller (18), if the stable

matrix polynomial P (z−1) is chosen such that

S(z−1) = ‖P0‖ − (‖P1‖ + 2α1)z
−1

− · · · − (‖Pnp
‖ + 2αnp

)z−np

− 2αnp+1z
−np−1 − · · · − 2αna

z−na

(20)

is also stable, then we have

(iv) lim
t→∞

λ(t)[‖e(t)‖ − 2M(t − 1)]2 → ∞, i.e.,

lim
t→∞

sup[‖e(t)‖ − 2M(t − 1)] ≤ 0;

(v) the input and output signals in the closed-loop syst-

em are bounded.

Proof. Denote the generalized tracking error

ē(t) = P (z−1)y(t) − P (z−1)w(t) (21)

then from Eqs. (12), (18), and the certainty equivalence

principle, we have

e(t) = φ(t) − φ̂(t)

= P (z−1)y(t) − Θ̂(t)TX(t)
= P (z−1)y(t) − P (z−1)w(t)
= ē(t)

(22)

Consequently,

‖P (z−1)y(t)‖ ≤ ‖e(t)‖ + ‖P (z−1)w(t)‖
⇒ ‖P (z−1)y(t)‖ − 2M(t − 1)
≤ ‖e(t)‖ − 2M(t − 1) + ‖P (z−1)w(t)‖
⇒ ‖P (z−1)y(t)‖ − 2α0 − 2(α1z

−1 + · · · + αna
z−na)‖y(t)‖

≤ ‖e(t)‖ − 2M(t − 1) + ‖P (z−1)w(t)‖
⇒ [‖P0‖ − (‖P1‖ + 2α1)z

−1 − · · · − (‖Pnp
+ 2αnp

)z−np

−2αnp+1z
−np−1 − · · · − 2αna

z−na ]‖y(t)‖
≤ ‖e(t)‖ − 2M(t − 1) + ‖P (z−1)w(t)‖ + 2α0

i.e.,
S(z−1)‖y(t)‖ ≤ ‖e(t)‖ − 2M(t − 1)

+ ‖P (z−1)w(t)‖ + 2α0
(23)

Since S(z−1) is stable, and ‖P (z−1)w(t)‖ and 2α0 are

bounded, there exist constants C1, C2 such that

‖y(t)‖ ≤ C1 + C2 max
0≤τ≤t

[‖e(τ)‖ − 2M(τ − 1)] (24)

By Assumption 2 and the fact X(t) = [y(t)T, · · · ,
u(t)T, · · · ]T, there exist constants C3, C4 such that

‖X(t)‖ ≤ C3 + C4 max
0≤τ≤t

[‖e(τ)‖ − 2M(τ − 1)] (25)

From Eq. (25) and (iii) in Lemma 1, and using the key

technique lemma in [15], we can obtain the results (iv) and

(v).

IV. STABLE MULTIPLE MODEL ADAPTIVE CONTROL

A. Linear model and robust adaptive controller

The linear estimate model of Eq. (10) is defined as

φ̂1(t + 1) = Θ̂1(t)
TX(t) (26)

where Θ̂1(t) = [Ĝ0(t), · · · , Ĝna−1(t), B̂0(t), B̂1(t), · · · ,
B̂nb

(t)]T is an estimate of Θ at time instant t, and is updated

as

Θ̂′
1(t) = Θ̂1(t − 1) +

λ1(t)X(t − 1)e1(t)
T

1 + X(t − 1)TX(t − 1)
(27)

Θ̂1(t) = proj{Θ̂′
1(t)} (28)

λ1(t) =

{

1 if ‖e1(t)‖ > 2M(t − 1)
0 otherwise.

(29)

e1(t) = φ(t) − φ̂1(t)

:= φ(t) − Θ̂1(t − 1)TX(t − 1)

:= [Θ − Θ̂1(t − 1)]TX(t − 1)
+v[x(t − 1), u(t − 1)]

(30)

where Θ̂′
1(t) = [Ĝ0(t), · · · , Ĝna−1(t), B̂

′
0(t), B̂1(t), · · · ,

B̂nb
(t)]T; proj is a projection operator, satisfying

proj{Θ̂′
1(t)} =

{

Θ̂′
1(t); B̂′

0(t) is nonsingular

[· · · , B̂′
0(t − 1), · · · ]; otherwise

(31)

The linear robust adaptive controller u1(t) considered in this

paper can be computed by

Θ̂1(t)
TX1(t) = P (z−1)w(t + 1) (32)

where X1(t) = [y(t)T, · · · , y(t − na + 1)T, u1(t)
T, u(t −

1)T, · · · , u(t − nb)T]T.
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B. Nonlinear model and NN adaptive controller

The nonlinear estimate model of Eq. (10) is defined as

φ̂2(t + 1) = Θ̂2(t)
TX(t) + v̂∗[x(t), u(t)] (33)

where Θ̂2(t) = [· · · , B̂2,0(t), · · · ]T is an another estimate

of Θ at time instant t; v̂∗[x(t), u(t)] is an NN estimate of

v∗[x(t), u(t)] at time instant t with v̂∗[x(t), u(t)] = φ(t +
1) − Θ̂2(t)

TX(t), i.e.,

v̂∗[x(t), u(t)] = NN [Ŵ (t), X(t)] (34)

where NN [·] represents the structure of the adopted NN; X(t)
is the input vector; Ŵ (t) is the estimate of the ideal weight

matrix W ∗. The nonlinear model error is

e2(t) = φ(t) − φ̂2(t)

:= φ(t) − Θ̂2(t − 1)TX(t − 1)
− v̂∗[x(t − 1), u(t − 1)]

(35)

Similar to [7] and [14], no restriction is made on how the

parameters Θ̂2(t) and Ŵ (t) are updated except that they

always lie in-side some predefined compact region Ω, and

B̂2,0(t) is nonsingular, i.e.,

Θ̂2(t), Ŵ (t) ∈ Ω, and B̂2,0(t) is nonsingular ∀t (36)

The NN adaptive controller u2(t) considered in this paper can

be computed by

Θ̂2(t)
TX2(t) + v̂∗[x(t), u2(t)] = P (z−1)w(t + 1) (37)

where X2(t) = [y(t)T, · · · , u2(t)
T, u(t − 1)T, · · · ]T.

Remark 2. From Assumption 3 and Eq. (36), there exists

an exact u2(t) which exactly satisfies Eq. (37). However, it

may be noticed that a connotative u2(t) inside v̂∗[x(t), u2(t)]
will lead to difficult nonlinear calculation of the control output

u2(t). For this reason, we expand v̂∗[x(t), u2(t)] at its current

state X(t) = [y(t)T, · · · , y(t − na + 1)T, u(t − 1)T, u(t −
1)T, · · · , u(t − nb)

T]T. With the higher order term omitted,

it holds that

v̂∗[x(t), u2(t)] ≈ v̂∗[x(t), u(t − 1)]

+
∂v̂∗[x(t), u2(t)]

∂u2(t)
|u2(t)=u(t−1) · [u2(t) − u(t − 1)]

(38)

It is necessary to note that the above equation is used in the

control input calculation and it does not affect the accuracy of

the controller u2(t), and it only takes u2(t) out of the nonlinear

function and makes the calculation easier.

C. Switching mechanism

In this section, the problem of SMMAC by switching

between the linear robust adaptive controller (32) and the

nonlinear NN adaptive controller (37) is considered. Adopt

the similar switching rule as described in [14], i.e.,

Jj(t) =
t

∑

l=1

λj(l)[‖ej(l)‖ − 2M(t − 1)]2

1 + ‖X(l − 1)‖2

+ c
t

∑

l=t−N+1

(1 − λj(l))‖ej(l)‖2

(39)

λj(t) =

{

1, if ‖ej(t)‖ > 2M(t − 1)
0, otherwise.

(40)

where N is an integer and c ≥ 0 is a predefined constant.

By comparing J1(t) and J2(t), the controller C∗
corresponding to the smaller J∗ is chosen to control the

system.

Theorem 2. For the system (1) with the adaptive algorithm

(25)-(39), if the stable polynomial matrix P (z−1) is chosen

such that Eq. (20) is stable, then we have

(vi) the input and output signals in the closed-loop switch-

ing system are bounded.

Moreover, for any predefined arbitrary small positive num-

ber ǫ, there exists an instant T , such that, if the nonlinear

controller u2(t) is chosen, the generalized tracking error of

the system satisfies

(vii) ‖ē(t)‖ < ǫ. for t > T.
Especially, for the above case, if the reference inputs are

step signals, at steady state, the tracking error of the system

satisfies

(viii) ‖ec(t)‖ < ǫ/P (1).
Proof. From By Eqs. (32), (37), and the certainty equiva-

lence principle, at every instant t,

ē(t) = e1(t) or e2(t) (41)

One the other hand, at every instant t, the model error of the

closed-loop switching system

e(t) = e1(t) or e2(t) (42)

Therefore, using the same line as Theorem 1, we have

S(z−1)‖y(t)‖ ≤ ‖e(t)‖ − 2M(t − 1)
+ ‖P (z−1)w(t)‖ + 2α0

(43)

Consequently, there exist positive constants D3, D4 such that

‖X(t)‖ ≤ D3 + D4 max
0≤τ≤t

[‖e(τ)‖ − 2M(τ − 1)] (44)

By Eq. (40), the second term in Eq. (39) is always bounded,

so J1(t) is bounded by employing (ii) in Lemm1. For J2(t),
there can be two cases:

(I) J2(t) is bounded. By the switching rule (39), it follows

that

lim
t→∞

λ2(t)[‖e2(t)‖ − 2M(t − 1)]2

2(1 + ‖X(t − 1)‖2)
= 0

Therefore the model error of the system, e(t) = e1(t) or e2(t),
satisfies

lim
t→∞

λ(t)[‖e(t)‖ − 2M(t − 1)]2

2(1 + ‖X(t − 1)‖2)
= 0 (45)

where

λ(t) =

{

1 if ‖e(t)‖ > 2M(t − 1)
0 otherwise.

(II) J2(t) is unbounded. Since J1(t) is bounded, there exists

an instant t0 such that J1(t) ≤ J2(t), ∀t ≥ t0 . Therefore

when t ≥ t0 + 1, by the switching mechanism, the model

e(t) = e1(t) and also satisfies Eq. (45).
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From Eqs. (44) and (45), and using the key technique lemma

in [15], we can obtain the results (vi).
From the boundedness of the input and output signals, and

Eq. (45), there exists an instant T and the bound ∆, such that

when t > T , the model error e(t) of the closed-loop switching

system satisfies ‖e(t)‖ < ∆. For the nonlinear model error,

from Eq. (35), we have

e2(t) = φ(t) − φ̂2(t)

= φ(t) − Θ̂2(t − 1)TX(t − 1)
− v̂∗[x(t − 1), u(t − 1)]

= φ(t) − {φ(t) − v∗[x(t − 1), u(t − 1)]}
−v̂∗[x(t − 1), u(t − 1)]

= v∗[·] − v̂∗[·]
(46)

By properly choosing the structure and parameters of an NN,

for a predefined arbitrary small positive number ǫ, when t > T ,

‖e2(t)‖ = ‖v∗[·]− v̂∗[·]‖ ≤ ǫ can be achieved. Thus, from Eq.

(41), if the nonlinear controller u2(t) is used, the generalized

tracking error of the system will equal e2(t), and satisfies

‖ē(t)‖ = ‖e2(t)‖ ≤ ǫ; Consequently, the result (vii) is

obtained. From Eqs. (4) and (21), when the reference inputs

are step signals, at steady state, ec(t) = ē(t)/‖P (1)‖, then the

result (viii) is easlily obtained.

V. SIMULATION RESULTS

This section presents an example and its simulation results

to illustrate the proposed algorithm. Consider the following

double-input-double-output discrete-time nonlinear dynamic

system.
(

1 − 0.6z−1 − 1.5z−2 −1.2z−1 − 0.3z−2

−2.4z−1 + 0.2z−2 1 − 0.1z−1 − 1.8z−2

)

y(t + 1)

=

(

1.1 0.8
0.32z−1 1.25 + 0.1z−1

)

u(t) + v[x(t), u(t)]

where y(t) = [y1(t), y2(t)]
T, u(t) = [u1(t), u2(t)]

T, x(t) =
[y(t)T, y(t − 1)T, u(t − 1)T]T, na = 2, nb = 1. The nonlinear

vector function v[x(t), u(t)] is described by

v[x(t), u(t)]

=

(

0.5 sin(t)[2 sin[u(t)] + y1(t) + y2(t)
0.5 sin(t)[2 sin[u(t)] + sin(t)y1(t) + sin(t)y2(t)

)

It is easy to know that u(t) in the above v[x(t), u(t)] is

constrained by the bounded function sin[u(t)]. Consequently,

‖v[x(t), u(t)]‖ ≤ 2 + 2‖y(t)‖ . Hence α0 = 2, α1 = 2 .

Choosing np = 1, and S(z−1) = 10 − 3z−1, then to satisfy

‖P0‖ − ‖P1‖z−1 = 10 − 3z−1 + α1z
−1

= 10 − z−1

we choose

P (z−1) =

(

5
√

2 −
√

2
2 z−1 0

0 5
√

2 −
√

2
2 z−1

)

Reference trajectories, same to [14], w1(t) = 1.5(sin 2πt/10+
sin 2πt/25) and w2 = w1 are chosen to be followed.
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Fig.1 Performance when the robust adaptive controller is used
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Fig.2 Performance and switching sequence when the SMMAC

method is used

Fig. 1 shows the performance when only the linear ro-bust

adaptive controller is used. Obviously, the input and output

signals in the closed-loop system are bounded. However, the

tracking performance is relatively bad.

Since there is no special requirement for the NN adopted

in this paper, an NN with single hidden layer is chosen and

the back-propagation algorithm with adaptive learning rate in

batch mode is used. In order to determine the optimum number

of hidden nodes, same to [14], a cross-validation procedure is

used, which starts by moving bottom-up [16]. As a result,

when the number of the hidden nodes is larger than 22, the

cross validation error can not be reduced comparing with the

case of 22. So the number 22 is chosen as the optimal number

of hidden nodes. The learning rate is 0.1.

Fig. 2 illustrates the performance when the SMMAC method

proposed in this paper is used. The parameters in Eq. (33) are

chosen to be c = 1.5 and N = 2. Obviously, the good tracking

5166



performance of the output signals and the small amplitude of

the input signals are all achieved.

VI. CONCLUSION

This paper proposes a SMMAC approach for a class of

discrete-time nonlinear multi-input-multi-output dynamic sys-

tems. Comparing with [14], the condition that the difference

of the higher order nonlinear term of a system is globally

bounded is relaxed. Theory analysis and simulation results

show the effectiveness of the proposed method.
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