
  

  

 
Abstract—With recent technological advances in smart 

sensor platforms, structural condition monitoring 
implementations based on Wireless Sensor Networks (WSNs) 
have received considerable attention. Modal identification is an 
integral step in many structural condition monitoring systems. 
However, accurate time synchronization is not always possible, 
leading to incorrect identification of the mode shapes. Although 
strict time synchronization of the wireless sensors has been 
viewed as crucial for the identification of mode shapes, a new 
perspective is taken herein. The distortion in the identified mode 
shapes is characterized and accommodated. Then the resulting 
mode shapes are used with a flexibility-based damage detection 
approach to localize damage to the exact elements. Numerical 
simulations considering a simply supported beam are used to 
demonstrate that the requirement of frequent sensor 
synchronization can be relaxed with this approach, without 
sacrificing accuracy in the results. 

I. INTRODUCTION 
Recent catastrophic failures of civil infrastructures around 

the world underscore the need for more reliable and robust 
structural health monitoring (SHM) systems. With recent 
technological advances in wireless communication, the SHM 
system based on Wireless Sensor Network (WSN) has shown 
considerable promise [1,2,3].  

However, a new challenge, time synchronization errors 
(TSEs) between different wireless sensing units, has been 
presented in WSNs due to clock imprecision or sensor 
blockage [4]. To solve this problem, some communication 
protocols between the central server and the wireless sensing 
units have been presented, for example, timestamp 
synchronization [4], reference broadcast synchronization [5], 
flood time-synchronization protocol [6], etc.. The basic idea 
of most protocols is to provide a mechanism to synchronize 
the local clocks of the sensor nodes within the WSN. 
However, even if these protocols are employed in a WSN, 
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completely synchronized measurement data are not 
necessarily guaranteed. For instance, for a long-term 
monitoring system, larger TSEs will be accumulated with 
time due to the clock drift after one synchronization is 
performed. Therefore, frequent time resynchronization is 
required, which results in large energy consumption and large 
communication bandwidth occupancy. In addition, when 
sensing is running, time synchronization may not perform 
well [7]. 

In many structural condition monitoring systems, modal 
identification is an integral step. TSEs in WSNs usually 
distort the identification results of mode shapes, which will 
prohibit obtaining correct damage detection results. 
Krishnamurthy et al. [8] studied the influence of the TSE on 
the identified mode shapes and found that the TSE affected 
the amplitudes of mode shapes. However, they overlooked 
the influence on the phase information in these mode shapes.  

In this study, we will systematically investigate the 
influence of the TSE on the identified mode shapes. Then the 
time synchronization problem will be addressed from a new 
perspective. Our goal is not time synchronization, but rather 
to propose damage detection strategies which are tolerant of 
large TSEs. First, the distorted mode shape is corrected to 
some extent according to the influence of TSEs on the 
identification results of mode shapes, and then the resulting 
mode shapes are applied for damage detection. In this way, 
the time resynchronization rate may be reduced. 

II. SYSTEM IDENTIFICATION AND DAMAGE DETECTION  

A. System identification using the FDD method 
Considering that the unmeasurable ambient vibration is 

usually taken as the external excitation for civil structures, an 
output-only system identification method, the Frequency 
Domain Decomposition (FDD) method, is selected to identify 
structural modal parameters. 

The following procedures are used for the FDD method. 
First, the cross spectral density (CSD) matrix of the response 
at each discrete frequency point is estimated. For instance, the 
CSD matrix corresponding to the mth natural frequency is 
expressed as (assuming that the kth frequency point is 
associated with the mth natural frequency) 
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where ( )iX k  reprsents the Discrete Fourier Transform (DFT) 
of the response ( )ix n , and *i  represents the conjugate 
transpose operation. 

Then a Singular Value Decomposition (SVD) is performed 
on the CSD matrix at each frequency point. The maximum 
singular value in each singular value matrix is obtained, and 
all the maximum singular values form a vector. The 
frequency points corresponding to the peaks of this vector are 
identified as the natural frequencies. The first column of the 
left singular decomposition matrix corresponding to one 
natural frequency is an estimate of this mode shape [9].  

Because the mode shapes are only relative to the left 
singular decomposition matrices, herein the SVD of a CSD 
matrix can be calculated by means of solving an eigenvalue 
problem [10]. For instance, for the CSD matrix at mω ω=  

* 2 * * *( ) ( )m mω ω = =G G UΣ U UΣΣ U            (2) 
Therefore, let 

( )mω =G UΣ                                (3) 

where Σ  and U  denote the singular value matrix and the 
left singular decomposition matrix, respectively. Σ  is a 
diagonal matrix. 

Herein the first column of U  is an estimate of the mth 
mode shape and is designated 1U . By dividing all of the 
components of 1U  by one of the components of 1U  chosen 
as a reference, the normalized mode shape is obtained. Its 
components are complex values. The phase of each complex 
value represents the phase difference between each response 
and the reference. To get the real-value components of the 
mode shape, the moduli of 1U  are first calculated to obtain 
the magnitudes of this mode shape, and their signs are 
determined by their respective phases. The phases of the 
components in the normalized mode shape should be 0 or π  
for linear and proportional-damping systems. If the phase is 0, 
the corresponding sign is positive; if the phase angle is π , 
the corresponding sign is negative. Due to the presence of the 
measurement and identification errors in practice, the phases 
are not strictly 0 or π . Therefore, the signs of the 
components are determined in the following way: if the phase 
is in the range of [ ]/ 2 / 2π π− , the corresponding sign is 

positive; otherwise, if the phase is in the range of 
[ ]/ 2 3 / 2π π− , the corresponding sign is negative. 

A. Damage detection using flexibility-based methods 
Flexibility-based methods will be employed here, because 

the flexibility matrix can be estimated accurately using few 
lower-frequency modes and the measurement DOFs (Degrees 
of Freedom) are not required to be complete.  

B.1 The classical flexibility difference method 
Based on the fact that the presence of damage in structures 

reduces structural stiffness, and increases structural flexibility, 
the change in structural flexibility in the pre- and 
post-damaged states can be used to detect damage. The 
change in flexibility F can be computed as 

d u∆ = −F F F                                (4) 
where the superscripts d and u indicate the damaged and 
undamaged structures, respectively. The flexibility can be 
assembled by modal parameters as 

2
1

1n
T

r r
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=∑F φ φ                              (5) 

where rφ  is the rth mass-normalized mode shape, rω  is the 
rth circular modal frequency, and n is the number of modes 
used. The diagonal entries or the maximum absolute values of 
the elements in each column of F∆  are extracted to form a 
vector, from which the damage location can be found [11].  

B.2 ASH flexibility-based method  
Because the damage detection results using classical 

flexibilities are embodied as nodal or DOF’s characterization, 
the classical flexibility difference method cannot directly 
localize damage to the exact elements. Herein the ASH 
flexibility-based method (ASHF method for short) will be 
employed for detecting damage in beam-like structures. This 
method measures the change in Angles-between- String-and- 
Horizon (ASH) of beam elements caused by damage and thus 
it can localize damage to the exact elements. The other 
advantages of this method over the classical flexibility-based 
damage detection methods are referred to [12]. 

The ASH flexibility matrix can be constructed as 
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=∑F R R                            (6) 

where rR  is called the rth ASH mode shape, and it can be 
expressed in terms of the rth translational mode shape as  

1, 2, 1, , 1, , 1,
1 2

1 1 1 1( ) ( ) ( )r r r r i r i r n r n r
i nl l l l

ϕ ϕ ϕ ϕ ϕ ϕ ϕ− −

⎡ ⎤
= − − −⎢ ⎥
⎣ ⎦

T

R

                                                                                        (7) 
The elements in the rth column of this flexibility matrix 

represent the ASHs of all elements of the beam resulting from 
a unit moment applied at two nodes of element r of the beam, 
and no force or moment on the other elements. The element in 
the ASH flexibility is associated with a beam-element rather 
than a node. 

The diagonal or the maximum absolute values of the 
elements in each column in the difference of ASH flexibility 
matrices between the pre- and post-damaged structures are 
extracted as damage indicators of elements. By observing the 
“step and jump” in the plot of damage indicators vs. numbers 
of elements, the damage sites in structures can be determined. 

III. THE INFLUENCE OF NON-SYNCHRONIZED SENSING ON 
IDENTIFICATION RESULTS OF MODE SHAPES AND CORRECTION 

In this section, the effect of the TSEs on the identified 
mode shapes is first investigated, and then a strategy for 
adjusting the resulting distorted mode shapes is proposed. 

Considering the TSE between wireless sensors, the 
response measured from the ith sensor is expressed as 

( ) ( )i i ix t x t tδ= +                              (8) 
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where 
itδ  is the TSE between the ith wireless sensor and the 

time reference sensor. Its Fourier transform is obtained as 
[ ] [ ]( ) ( ) ( ) ( )ii t

i i i i iX x t x t t e Xωδω δ ω= = + =F F     (9) 

where [ ]•F  represents the operator, and ( )iX ω  is the Fourier 

Transform of ( )ix t . 
Equations (8) and (9) are for the continuous Fourier 

Transform under ideal conditions. In practice,the DFT is used 
and thus we need to explore the relationship between the 
DFTs of the data with and without a TSE. Consider one set of 
digital data ( )x n  as the data without the TSE and ( )x n  as 
the data with the TSE. They are expressed as  

[ ]
[ ]

( ) (1) (2) ( 1) ( )

( ) (3) (4) ( 1) ( 2)

x n x x x N x N

x n x x x N x N

= −

= + +
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The DFTs of ( )x n  and ( )x n  can be expressed as 
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The two sides of Eq. (12) are multiplied by 
2 2 kj

Ne
π− i i

 and 
subtracted from Eq. (11), yielding 
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(13) 
Obviously, the other terms except for ( )X k  at the right 

hand side of Eq. (14) are caused by the TSE (two time shift 
points here). The larger the TSE, the more the number of the 
terms in the parenthesis at the right hand side of Eq. (13).  

To investigate the influence of the TSE on the amplitude of 
( )X k , the absolute operation is performed on Eq. (13) 

2 0 2 1

( ) ( ) ( ( 1) (1)) ( ( 2) (2))
k kj j

N NX k X k x N x e x N x e
π π− −

= + + − + + −
i i i i

(14) 
From Eq. (14), ( ) ( )X k X k≠ . That is, the TSE 

introduces an error in the amplitude of the DFT of ( )x n . 
However, when the time delay is not significant, the error will 
be small enough to negligible. This result is observed by 
analyzing Eq. (14). Here we just concern mode shapes, so the 
kth frequency point must be associated with one mode. Thus 
if this mode is excited properly, ( )X k  will exhibit as a peak 

in the amplitude spectrum of DFT, and ( )X k  and its real 

and/or imaginary parts must be very large in magnitudes 
compared with the other terms in the parenthesis. Therfore, 
the difference between ( )X k  and ( )X k  may be small 

enough to negligible for relatively small TSEs. 
 As for the influence of the TSE on the phase of the DFT of 

( )x n , there are two parts, one is contributed by the two terms 
in the parenthesis at the right side of Eq. (13), and the other is 

the term 
2 2 kj

Ne
π i i

 outside the parenthesis. For the first part, let 

us consider the part in the parenthesis as the sum of three 
vectors in a complex plane. As we discussed before, the 
vector ( )X k  is very large in modulus, and the other two 
terms are small in modulus. Therefore, the sum of the three 
vectors are very close to the vector with large modulus, 

( )X k , and thus the contribution on the phase error from the 
first part will be small enough to negligible, when the time 
delay is not that large. Then, Eq. (14) can be approximated as 

2 2

( ) ( )
kj

NX k X k e
π

≈
i i

                       (15) 
For a general case, if the time shift between the two signals 

is n∆ , the phase shift between their DFTs will be 2 n k
N

π ∆i i , 

which can be rearranged as 
2 2 2 m m

s

n k n k f nf t
N N f f

π π π ω δ∆ ∆ ∆ ∆= = =
∆

i i i i i          (16) 

where it is assumed that the mth natural frequency is 
associated with the kth frequency point. mf  and mω  are the 
mth natural frequency and its circular frequency. f∆  is the 

frequency resolution, and 
s

n
f

∆  is actually the TSE tδ .  

Now let us get back to study the influence of the TSE on 
the amplitude and phase of identified mode shapes. Assuming 
that the TSE between the ith wireless sensor and the time 
reference sensor is 

itδ . The digital response data measured 
from the ith sensor is expressed as 

( ) ( )i i ix n x n tδ= +                              (17) 
Based on Eqs. (15) and (16), for the mth mode (associated 

with the kth frequency point), its DFT can be expressed as 
( ) ( ) m ij t

i iX k X k e ω δ≈                          (18) 
Eq. (18) is consistent with Eq. (9) if we ignore the some errors 
caused by the TSE. 

Before using the FDD method to identify mode shapes, let 
us rearrange the CSD matrix at the mth natural frequency in 
Eq. (1) as 
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Just like in Eq. (19), the CSD matrix of the responses with 

TSEs at the mth natural frequency can be written as 
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Substituting (18) into (20) and considering (19) yields  
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*( ) ( )m mω ω≈G PG P                        (21) 
where P  is called the time synchronization error matrix 
herein. P  is a diagonal matrix and its diagonal elements are 

1( ) m m i m ni t i t i tdiag e e eω δ ω δ ω δ⎡ ⎤= ⎣ ⎦P  (22) 

To identify the mth mode shape from the responses with 
TSEs, the SVD is performed on ( )mωG  by solving an 
eigenvalue problem like Eq. (2). Considering Eqs. (21) and 
(3), *( ) ( )m mω ωG G  can be expressed as 

* * * * * *

* * * *

( ) ( ) ( ) ( ) ( )m m m mω ω ω ω≈

=

G G PG P P G P

PUΣP PΣ U P
          (23) 

Because both Σ  and P  are diagonal matrices, Eq. (23) 
can be rearranged as 

* * * * *( ) ( )m mω ω ≈G G PUP ΣΣ PU P          (24) 
Comparing Eq. (24) and Eq. (2), Eq. (24) is rewritten as 

* * *( ) ( )m mω ω ≈G G UΣΣ U                   (25) 

Therefore, U  is the left singular decomposition matrix of 
( )mωG  

*≈U PUP                                  (26) 
According to the fundamental theory of the FDD method, 

the first column of U  is an estimation of the mth mode shape, 
designated as 1U . To get the normalized mode shape of 1U , 
each component is divided by the reference component (say, 
the rth component)  
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      (27) 

where 1U  denotes the mode shape identified from the data 
with TSEs, and 

,1iU  denotes the ith mode shape component 

identified from the data without TSEs. rtδ  is the TSE of 
response at the reference point (or rth component). 

It is clear that the TSE affect both the amplitudes and 
phases of the mode shape components. However, if the TSE 
is relatively small, the amplitude errors and partial of phase 
errors of the DFTs of the responses will be small enough to be 
negligible, and accordingly, so will be the ampitude error and 
partial phase error of the mode shapes.  

However, the other phase errors cannot be ignored. As 
shown in Eq. (27), for the ith component, the phase shift 
between them is equal to ( )m i rt tω δ δ− , which is a 
consequence of the presence of TSEs between wireless 
sensors. For the same TSE, the higher the order of the mode, 
the greater the natural frequency mω , and the greater the 
phase shift.  

If the phase shift of one component in the normalized 1U  
is great enough to force the phase of this component into 
another region, for instance, from [ ]/ 2 / 2π π−  to 

[ ]/ 2 3 / 2π π , the sign of this mode shape component will be 

changed, and the identified mode shape will be severely 
distorted. 

Because it is difficult to estimate TSEs between wireless 
sensors, one cannot easily obtain information on the phase 
shifts of mode shape components and thus cannot completely 
adjust the signs of the distorted mode shapes. But if one 
neglects phase information and assumes all the mode shape 
components have the same sign, one can use modified values 
of the mode shapes by only keeping information on the 
magnitudes of mode shape components. Actually, these 
modified mode shapes are the absolute values of distorted 
mode shapes, called here Absolute Mode Shape (AMS). The 
distortion of identified mode shapes caused by TSEs and the 
capability of this approximation strategy will be illustrated in 
Fig. 3 by an example of a simply supported beam. This 
strategy is simple, but very useful when paired with an 
appropriate damage detection technique. It makes damage 
detection based on a WSN with large TSEs still effective, and 
thus extends the time resynchronization period of a WSN. 

IV. DAMAGE DETECTION STRATEGIES BASED ON THE 
DISTORTED MODE SHAPES AND THE AMSS 

When the TSE is relatively small, the amplitude errors in 
the mode shapes caused by the TSE can be negligible. Under 
this condition, there are two ways to implement detect 
damage methods when the identified results of mode shapes 
are distorted by non-synchronized sensing in WSNs. One is 
to directly employ the distorted mode shapes, thus a damage 
detection method which still works with them will be 
identified. The other is to apply the modified mode shapes 
(the AMS) to damage detection.  

A. Damage detection strategies using distorted modes 
Although mode shapes may be distorted by TSEs between 

wireless sensors, recognizing that only the signs of some 
mode shape components are changed, the classical flexibility 
difference method is still applicable with distorted mode 
shapes, as illustrated below.  

From (5), it is observed that the diagonal element in the 
classical flexibility matrix is the square sum of n terms. Note 
that if the magnitudes of mode shape magnitudes remain 
unchanged, even if their signs are incorrect, the diagonal 
elements of the constructed F from these mode shapes will be 
equal to the real ones. In the presence of TSEs between 
wireless sensors, if the distorted mode shapes are used, 
although the signs of some mode shape components are not 
correct, the diagonal elements of F will not be affected, in 
theory. Therefore, the damage indicators extracted from the 
diagonal entries of flexibility are still effective when the 
distorted mode shapes are used to assemble flexibilities. Here, 
the percentage changes in diagonal entries of flexibilities 
before and after damage are taken as the damage indicators.  
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B. Damage detection based on the AMSs 
Because the classical flexibility difference method works 

for the distorted mode shapes, it must work with the AMSs. 
However, the method itself cannot localize damage to the 
exact members. To achieve this goal, the ASHF method is 
employed. Here AMSs are used to construct the ASH 
flexibility by Eq. (6), and the damage indicators are extracted 
from the difference in the ASH flexibilities before and after 
damage. The feasibility of applying AMSs to the ASHF 
method is analyzed:  
1) Due to the sign adjustment in finding the AMS, the 
magnitudes of the ASH mode shape components calculated 
from the AMSs are equal to those calculated from the real 
mode shapes, except for the ASH mode shape components 
corresponding to the elements near the nodes of the modes, 
which will introduce some errors to the constructed ASH 
flexibility, as shown in the schematic diagram of the AMSs of 
a simply supported beam (Fig. 1). The higher the mode order, 
the more nodes there are, and the greater the effect on the 
ASH mode shape components. Fortunately, the higher the 
mode order, the smaller the contribution of the ASH mode 
shape to the ASH flexibility; on the other hand, the mode 
shape components near the nodes are small in magnitude.  
2) Although the signs of some components in ASH mode 
shapes calculated from the AMSs are not correct compared 
with the real ASH mode shapes, it is the same case for both 
intact and damaged states. Therefore, the ASH flexibility- 
based method still works when the AMSs are available.  

a) the 2nd AMS after the adjustment b) the 3rd AMS after theadjustment
Fig. 1 Schematic diagram of comparison between the AMS 

and real mode shape 

V. NUMERICAL SIMULATIONS 
To validate the performance of the proposed strategies, a 

simply supported beam is first studied. The beam is assumed 
to be made of aluminum with dimensions 
2080mm×20mm×20mm. The Young’s modulus and mass 
density of the material are 70GPa and 2700kg/m3, 
respectively. It is modeled using 26 beam elements, each of 
80mm long, as shown in Fig. 2, with 27 nodes and two DOFs 
at each node. The first five analytical natural frequencies are 
10.67, 42.59, 95.54, 169.13 and 262.84 Hz. 

Assume that viscous dissipation is included in the form of 
orthogonal damping with a magnitude of 1% of critical in 
each mode of the structure. A band-limited, random white 
noise is  applied at all nodes to simulate ambient vibration. 
Simulated acceleration responses in the vertical direction are 
computed by Newmark-Beta integration. It is assumed that 
the sampling 

rate is 1152 Hz. The noise of the response at each node is 
prescribed to have an RMS equal to 5% of that of the 
corresponding response.  

A. Influence of TSEs on identified mode shapes 
The intact structure is considered here. The TSEs between 

wireless sensors are simulated with time delays between 
responses. The time delay vector is generated randomly, and 
the maximum value is 50/1152 sec (50 time steps). The time 
delays at all nodes are 44, 29, 42, 21, 17, 0, 9, 8, 6, 36, 48, 50, 
30, 29, 16, 49, 5, 36, 27, 20, 10, 35 and 2 time steps. 

The FDD method is employed to identify modal 
parameters. The first five mode shapes are identified from the 
data with time delays and the first two representative mode 
shapes are plotted in Fig. 3. The solid line represents the 
identified mode shape, and the dashed line is the analytical 
mode shape. Clearly, the identified mode shapes are severely 
distorted. Only some components in the identified mode 
shapes agree with the analytical ones. Those components that 
deviate from the corresponding analytical ones have nearly 
the same magnitudes as the analytical ones, with an opposite 
sign. These results are consistent with the theoretical analysis 
in Section III. Note that the amplitude errors are very small. 

 
(a) the 1st identified mode shapes 

without adjustment 
(b) the 1st AMS after the adjustment

 
(c) the 2nd identified mode shapes 

without adjustment 
(d) the 2nd AMS after the 

adjustment 
Fig. 3 The influence of the lack of time synchronization on the identification 

results of mode shapes and the corrected mode shapes 
Using the proposed correction strategy in Section III, the 

AMSs are obtained and they are also presented in Fig. 3. For 
the first order, the AMS agrees with the analytical one, which 
means the distorted mode shape is appropriate user. For the 
higher orders, the distorted mode shapes are modified to some 
extent.  

B. Damage localization using distorted modes and AMSs 
Both the ASH flexibility-based method and the classical  

flexibility difference method are employed to localize 
damage in the simply supported beam.  
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Fig. 2 FEM of the simply supported beam 
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The damage is simulated as 50% reduction of Young’s 
moduli in elements 4 and 22. Three cases with different time 
delays are studied with the maximum time delays 10/1152, 
20/1152 and 50/1152 sec, respectively. To demonstrate the 
robustness of the proposed strategies in practice, different 
time delay vectors are randomly generated by using different 
seeds for intact and damage states in each case.  

The procedures for locating damage using the ASHF 
method are as follows. First, the distorted mode shapes are 
modified to obtain the AMSs. Then, the ASH flexibility is 
constructed using AMSs and natural frequencies. Third, the 
maximum absolute values of elements in each column of the 
difference between ASH flexibility matrices before and after 
damage are extracted as damage indicators. 

Different numbers of modes are used to assemble the ASH 
flexibility. Only the results using the first five modes are 
listed here. The damage localization results with the ASHF 
method are presented in Figs. 5-7. When the maximum time 
delays are 10/1152 sec and 20/1152 sec, the results suggest 
that the ASH flexibility-based method can easily localize the 
damage to the exact elements by observing “step and jump” 
in the plot of “Element Number” vs. “Change in ASHF”. 
When the time delay is 50/1152 sec, although the damage 
localization results are not as good as the other two cases, 
they still could provide an indication of damage sites. 
However, if the proposed strategy is not used, the ASHF 
method with the AMS fails to localize the damage even when 
the maximum time delay is 5/1152 sec.  Therefore, the 
damage detection strategy is able to be tolerant of TSEs, and 
the TSE tolerance is 50/1152 sec.  

(a) the classical flexi. based method (b) the ASH flexi. based method 
Fig. 5 The results when using the maximum time delay of 10/1152 sec 

Fig. 6 The results when using the 
maximum time delay of 20/1152 sec  

Fig. 7 The results when using a 
maximum time delay of 50/1152 sec 

The damage location results using the classical flexibility 
difference method for each case are also presented in Fig. 5 
for comparison. Although there are peaks around the two 
damage sites, it is difficult to determine the exact damage 
elements. To directly localize damage to the exact element is 
one advantage of the ASHF method over the classical 
flexibility difference method. 

VI. CONCLUSIONS 
Damage localization strategies based on WSNs with the 

capability of being tolerant of large time synchronization 
errors are proposed, when the amplitude errors of the 
identified mode shapes caused by the TSE can be negligible. 
The authors show how TSEs in the WSN distorts the 
identification results of mode shapes, and presented two 
possible solutions. First, a damage detection method is 
identified which works with the distorted mode shapes. 
Second, a strategy for using modified versions of the distorted 
mode shapes is developed based on the system identification 
results without time synchronization between wireless 
sensors. Then the modified mode shapes are applied in the 
ASHF method  to localize damage to the exact elements. 
Numerical simulation results of a simply supported beam 
demonstrate that the aforementioned proposed strategies 
relax the requirement of frequent sensor synchronization, 
without sacrificing accuracy in damage localization. 
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