
Verification and Synthesis for Secrecy in Discrete-Event Systems

Shigemasa Takai, Member, IEEE, and Ratnesh Kumar, Fellow, IEEE

Abstract— Keeping a property of system behaviors secret

from an observer (who has a partial observation of any executed
behavior) requires that the execution of any property-satisfying
or property-violating behavior must not become known to the
observer. When an observer does not know the exact behaviors
of a system it observes, a weaker notion of secrecy can be
defined, which we introduce in this paper. We present an
algorithm for verifying the properties of secrecy as well as
its weaker version. When a given system does not possess a
secrecy property, we consider restricting the behaviors of the
system by means of supervisory control so as to ensure that
the controlled system satisfies the desired secrecy property. We
show the existence of a maximally permissive supervisor to
ensure secrecy or its weaker version, and present algorithms
for their synthesis.

I. INTRODUCTION

The requirement on information-flow to keep a property

of system behaviors secret from an observer has been

characterized in literature [1], and we adopt it here in the

framework of languages: For any property-satisfying event-

trace of the system, there exists a property-violating event-

trace of the system that is indistinguishable to the observer,

and vice-versa. This definition generalizes the notions of

secrecy considered in [2], [5], [12], which require only the

first part above. When an observer does not know the exact

behaviors of a discrete-event system (DES), a weaker notion

of secrecy can be defined, which we introduce in this paper:

For each property-satisfying event-trace of the system, there

exists an indistinguishable property-violating event-trace (not

necessarily executable in the system), and vice-versa. Since

the set of system behaviors is not known to an observer, we

can allow the indistinguishable event-traces be arbitrary and

not necessarily belong to the set of system behaviors.

In [9], noninterference was studied, and in [14], a notion of

prefect security property (PSP) was introduced as a constraint

on information-flow. Both noninterference and PSP can be

captured as the notion of secrecy introduced in [1]. A general

notion of opacity was established for labeled transition

systems in [4]. The opacity property can also be seen as

a special case of the secrecy property introduced in [1].

Various aspects of secrecy have recently been explored

in DES literature. In [3], the notion of observability [6] of

DESs was extended to capture intransitive noninterference,

This work was supported in part by the National Science Founda-
tion under the grants NSF-ECS-0424048, NSF-ECS-0601570, NSF-ECCS-
0801763, and NSF-CCF-0811541.

S. Takai is with the Department of Information Science, Kyoto
Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan, e-mail:
takai@kit.ac.jp

R. Kumar is with the Department of Electrical and Computer Engi-
neering, Iowa State University, Ames, Iowa 50011-3060, USA, e-mail:
rkumar@iastate.edu

a property considered in [8] to characterize the allowable

information-flow in multilevel security systems. An algo-

rithm for verifying the extended version of observability was

also presented [3]. A state based approach for opacity for the

system modeled by a finite automaton was studied in [10],

[11].

Recently, secrecy-enforcing supervisory control has been

studied in [2], [5], [12]. In [2], the authors considered the

situation where there are multiple observers with different

observable event sets, and addressed the problem of syn-

thesizing a maximally permissive supervisor that guarantees

that each observer never unambiguously knows whether an

executed trace belongs to the traces representing a secret

property. Sufficient conditions under which such a maximally

permissive supervisor can be effectively computed were pre-

sented under the assumption that all events are controllable.

The problem of synthesizing a secrecy-enforcing supervisor

in the presence of uncontrollable events was studied in [5],

[12], and sufficient conditions for the maximal permissive-

ness were derived.

As mentioned above, the definition of secrecy we consider

requires that both the satisfaction and the violation of a

property, desired to be kept secret, must not be revealed to

an observer. We also introduce a weaker notion of secrecy

which is appropriate when an observer does not know the

set of all system behaviors. We present an algorithm for

verifying the properties of secrecy as well as its weaker

version. When a given system does not possess a secrecy

property, we consider restricting the behaviors of the system

by means of supervisory control so as to ensure that the

controlled system satisfies the desired secrecy property. We

show the existence of a maximally permissive supervisor

to ensure secrecy or its weaker version. For the case of

secrecy, an algorithm that iterates between the computations

of the supremal relative-closed and controllable sublanguage,

and the supremal secrecy-retaining sublanguage is used for

the synthesis of a maximally permissive supervisor. For the

case of weak-secrecy, it is shown that only a single step of

iteration is required since the supremal relative-closed and

controllable computation preserves the property of weak-

secrecy. We also show that in case of secrecy, if we use the

supremal relative-closed, controllable, and normal computa-

tion, the property of secrecy is preserved, and so a single step

of iteration provides a secrecy enforcing supervisor. A price

to pay is that the resulting control may not be maximally

permissive. We then present closed-form expressions for the

supremal sublanguages of the system language that retain the

secrecy and the weak-secrecy properties, respectively.

The contributions of the paper can be summarized as

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB05.2

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4741



follows:

• The paper adopts the notion of secrecy introduced in

[1] to the setting of languages, that requires both the

satisfaction and the violation of a property must not be

revealed to an observer, and also only a desired subset

of generated behaviors is required to have this property.

This generalizes the notion of secrecy explored in prior

DES literature.

• The paper introduces a weaker notion of secrecy that is

adequate when an observer does not have the knowledge

of all the system behaviors.

• Algorithms for verifying secrecy as well as weak-

secrecy are presented. Since the notion of secrecy gen-

eralizes the ones considered in the DES literature, the

corresponding verification algorithm is a generalization

of the existing secrecy verification algorithms.

• Existence and computation of maximally permissive

control that retain the secrecy (or weak-secrecy) prop-

erty is presented. In the case of weak-secrecy, the com-

putation presented is guaranteed to terminate (showing

that weak-secrecy possesses certain nicer properties

when compared to the stronger version).

• In case of secrecy, a restrictive control (that is not nec-

essarily maximally permissive) has also been proposed

with the property that its computation is guaranteed to

terminate.

• In order to facilitate the computation of secrecy (or

weak-secrecy) enforcing control, we provide closed-

form formulas for the supremal sublanguages that retain

the property of secrecy (or weak-secrecy), and also

present their automata-based computations.

II. NOTATION AND PRELIMINARIES

A DES is modeled by an automaton G =
(X, Σ, α, x0, Xm), where X is the set of states, Σ is

the finite set of events, a partial function α : X × Σ → X
is the transition function, x0 ∈ X is the initial state, and

Xm ⊆ X is the set of marked states. Let Σ∗ be the set of all

finite traces of elements of Σ, including the trace of length

zero, denoted by ε. The function α can be generalized to

α : X×Σ∗ → X in the usual way. The generated and marked

languages of G, denoted by L(G) and Lm(G), respectively,

are defined as L(G) = {s ∈ Σ∗ | α(x0, s) is defined} and

Lm(G) = {s ∈ Σ∗ | α(x0, s) ∈ Xm}. Let K ⊆ Σ∗ be a

language. We denote the set of all prefixes of traces in K
by pr(K).

For supervisory control purposes [7], the event set Σ is

partitioned into two disjoint subsets Σc and Σuc of con-

trollable and uncontrollable events, respectively. Formally,

a supervisor is defined as a map S : L(G) → 2Σc . For each

s ∈ L(G), S(s) is the set of events that are disabled by

S after the execution of s. Let L(G/S) and Lm(G/S) be

the generated and marked languages under the supervision

of S, respectively [7]. S is said to be nonblocking if

pr(Lm(G/S)) = L(G/S). Given a nonempty specification

language H ⊆ Lm(G), there exists a nonblocking supervisor

S : L(G) → 2Σc such that Lm(G/S) = H if and only

if H is controllable, i.e., pr(H)Σuc ∩ L(G) ⊆ pr(H) and

relative-closed, i.e., pr(H)∩Lm(G) = H [7]. The properties

of relative-closure and controllability are preserved under

union, and hence there exists the supremal relative-closed

and controllable sublanguage, denoted by sup RC(H), of a

given language H ⊆ Lm(G) [13].

III. SECRECY: DEFINITION AND VERIFICATION

The events executed by a DES can be partially observed

by an observer. The limited observation capability of an

observer is represented as an observation mask, M : Σ ∪
{ε} → ∆∪{ε} with M(ε) = ε, that maps the event symbols

in Σ to the observation symbols in ∆. An event σ ∈ Σ is

unobservable to the observer if M(σ) = ε. The map M is

generalized to M : Σ∗ → ∆∗ and M : 2Σ
∗

→ 2∆
∗

in a

natural way.

Given a language H ⊆ L(G), it is said to be normal

with respect to an observation mask M if M−1M(pr(H))∩
L(G) ⊆ pr(H) [6]. It is known that, similar to relative-

closure and controllability, normality is also preserved un-

der union, and hence there exists the supremal relative-

closed, controllable, and normal sublanguage, denoted by

sup RCN(H), of a language H ⊆ Lm(G).
Given a DES G and a property of its event-traces, which

must be kept secret from an observer that uses an observation

mask M to observe the event-traces executed by G, we next

define the notions of secrecy and weak-secrecy. Let K ⊆ Σ∗

be the set of all event-traces that satisfy a property to be kept

secret.

Definition 1: Consider a DES G, a language K ⊆ Σ∗,

and an observation mask M of an observer.

1) K is said to be secret with respect to the marked

language Lm(G) and the observation mask M if, for

any s ∈ Lm(G),

• s ∈ K ⇒ (M−1M(s) ∩ Lm(G)) − K �= ∅, and

• s /∈ K ⇒ M−1M(s) ∩ Lm(G) ∩ K �= ∅.

2) K is said to be weakly-secret with respect to the

marked language Lm(G) and the observation mask M
if, for any s ∈ Lm(G),

• s ∈ K ⇒ M−1M(s) − K �= ∅, and

• s /∈ K ⇒ M−1M(s) ∩ K �= ∅.

Secrecy requires that for each marked and property-

satisfying event-trace in Lm(G) ∩ K , there exists an in-

distinguishable marked and property-violating event-trace in

Lm(G)−K , and vice-versa. Note the definition requires the

secrecy for only the event-traces in Lm(G), which designates

the set of “relevant” or “useful” event-traces. Now consider

the case when the set of all system behaviors is unknown

to an observer. Then the requirement of the existence of

an indistinguishable “contradictory” event-trace that is also

marked can be relaxed by omitting this latter requirement

(since the presence or absence of marking is unknown to

the observer anyway). This results in the weaker notion of

secrecy defined above.

Remark 1: By choosing Lm(G) = L(G), the secrecy of

a language K ⊆ Σ∗ is reduced to the opacity [4] of both K
and L(G) − K .

4742



We first develop algorithms for verifying the above prop-

erties of secrecy. Let G = (X, Σ, α, x0, Xm) be the system

model, and R = (Y, Σ, β, y0, Ym) be a trim acceptor of the

language K , i.e., Lm(R) = K and L(R) = pr(K). To

characterize the property-violating event-traces, the acceptor

R is augmented as R = (Y , Σ, β, y0, Ym), where Y :=
Y ∪ {D} (D /∈ Y ), and β : Y × Σ → Y is defined as:

β(y, σ) =

{
β(y, σ), if y ∈ Y and β(y, σ) is defined

D, otherwise

for each y ∈ Y and σ ∈ Σ. It can be verified that L(R) = Σ∗

and Lm(R) = Lm(R) = K .

We can use R to refine G by performing the follow-

ing synchronous composition: G‖R = (X × Y , Σ, α ×
β, (x0, y0),Xm×Ym), where for each x ∈ X, y ∈ Y , σ ∈ Σ,

α × β((x, y), σ) =






(α(x, σ), β(y, σ)),

if α(x, σ), β(y, σ) are defined

undefined,
otherwise.

It can be verified that L(G‖R) = L(G) and Lm(G‖R) =
Lm(G) ∩ K . Further an event-trace in Lm(G) violates the

specification represented by K if and only if its execution

reaches a state marked in the first coordinate but not marked

in its second coordinate, indicating that the execution of a

property-violating (or property-satisfying) event-trace can be

captured as a reachability property in G‖R.

Next, we obtain a deterministic acceptor M(R) that

accepts all traces in M(K) as follows. Replace each σ-

transition label in R by the label M(σ), and next de-

terminize the resulting automaton to obtain M(R) =

(Z, ∆, δ, Reach(ε), Zm), where Z := 2Y − ∅, Zm := {Ŷ ⊆
Y | Ŷ ∩ Ym �= ∅}, and the function Reach : M(Σ∗) → 2Y

is defined as Reach(τ) := {y ∈ Y | ∃s ∈ M−1(τ) :
y = β(y0, s)}. It can be verified that Lm(M(R)) =
M(K) and L(M(R)) = M(Σ∗). Further, we define an

automaton to accept the set of traces indistinguishable from

those in K: M−1M(R) = (Z, Σ, δ′, Reach(ε), Zm), where

the transition function δ′ : Z × Σ → Z is defined as

δ′(z, σ) = δ(z, M(σ)) for each z ∈ Z and σ ∈ Σ.

Since δ(z, ε) = z, it holds that δ′(z, σ) = z for each

z ∈ Z and unobservable event σ. It can be verified that

Lm(M−1M(R)) = M−1M(K) and L(M−1M(R)) = Σ∗.

Similarly, we construct the automata M(G‖R) =
(ZG, ∆, δG, ReachG(ε), (ZG)m) and M−1M(G‖R) =
(ZG, Σ, δ′G, ReachG(ε), (ZG)m) in the same way as M(R)

and M−1M(R), respectively. Here ZG := 2X×Y − {∅},

(ZG)m := {Q ⊆ X × Y | Q ∩ (Xm × Ym) �= ∅},

and the function ReachG : M(Σ∗) → 2X×Y is de-

fined as ReachG(τ) = {(x, y) ∈ X × Y | ∃s ∈
M−1(τ) ∩ L(G) : x = α(x0, s), y = β(y0, s)}. Then

Lm(M(G‖R)) = M(Lm(G) ∩ K), L(M(G‖R)) =
M(L(G)), Lm(M−1M(G‖R)) = M−1M(Lm(G) ∩ K),
and L(M−1M(G‖R)) = M−1M(L(G)).

To verify the secrecy of the language K , we construct the

synchronous composition:

G‖R‖M−1M(G‖R)

= (X × Y × ZG, Σ, γG, (x0, y0, ReachG(ε)),

Xm × Ym × (ZG)m)

of the system model G = (X, Σ, α, x0, Xm), the augmented

acceptor R = (Y , Σ, β, y0, Ym) of K , and the automa-

ton M−1M(G‖R) = (ZG, Σ, δ′G, ReachG(ε), (ZG)m) de-

fined above. Since L(R) = Σ∗ and L(M−1M(G‖R)) =
M−1M(L(G)), we have L(G‖R‖M−1M(G‖R)) =
L(G). Further, by the definition of marked states of

G‖R‖M−1M(G‖R), we have Lm(G‖R‖M−1M(G‖R)) =
Lm(G) ∩ K .

Also, to verify the weak-secrecy of the language K , we

construct the synchronous composition:

G‖R‖M−1M(R)

= (X × Y × Z, Σ, γ, (x0, y0, Reach(ε)),

Xm × Ym × Zm).

Then we have L(G‖R‖M−1M(R)) = L(G) and

Lm(G‖R‖M−1M(R)) = Lm(G) ∩ K .

The following theorem provides a way to verify se-

crecy and weak-secrecy by examining the state-space of

G‖R‖M−1M(G‖R) and G‖R‖M−1M(R), respectively.

Theorem 1: Consider a DES G, a language K ⊆ Σ∗, and

an observation mask M of an observer.

1) K is secret with respect to the marked language

Lm(G) and the observation mask M if and only if, for

any reachable state (x, y, zG) of G‖R‖M−1M(G‖R),

• x ∈ Xm ∧ y ∈ Ym ⇒ ∃(x′, y′) ∈ zG : x′ ∈
Xm ∧ y′ /∈ Ym, and

• x ∈ Xm ∧ y /∈ Ym ⇒ ∃(x′, y′) ∈ zG : x′ ∈
Xm ∧ y′ ∈ Ym.

2) K is weakly-secret with respect to the marked

language Lm(G) and the observation mask M if

and only if, for any reachable state (x, y, z) of

G‖R‖M−1M(R),

• x ∈ Xm ∧ y ∈ Ym ⇒ ∃y′ ∈ z : y′ /∈ Ym, and

• x ∈ Xm ∧ y /∈ Ym ⇒ ∃y′ ∈ z : y′ ∈ Ym.

Remark 2: Since |M−1M(G‖R)| = O(2|G||R|) and

|M−1M(R)| = O(2|R|), it follows from the result of

Theorem 1 that the complexity of verifying secrecy is of the

order O(|G||R|2|G||R|) and that of verifying weak-secrecy

of the order O(|G||R|2|R|). It should be noted that since the

secrecy is a property of a desired subset of the generated

behaviors (as captured by the markings), existing algorithms

for verifying opacity (such as [2]), which require opacity to

be a property of every generated behavior, are not applicable

for verifying the secrecy property considered in the paper. In

this sense, our verification algorithm is a generalization of

the existing ones. Further, since the weak-secrecy is newly

introduced, its verification algorithm presented in the paper

is completely new.

The following three examples illustrate the tests for se-

crecy and weak-secrecy. The first example possesses the

4743



x0

x2

x1

ac

(a)

y0 y1

a

b

a

b

(b)

y0 y1

a

b

(c)

D

b, c a, c

a, b, c

(x0, y0) (x1, y1)

(d)

a

b

(x0, D) (x1, D)

a
c

a

b

c
(x2, D)

(x0, y0, z0) (x1, y1, z1)

(f)

a

(x0, y0, z2)
a

b

c c

(x2, D, z2)(x2, D, z0)
(x1, D, z1)

(x0, D, z2)

b a c

a a

b

a

a

z0 z1
z2

(e)

c c
c

Fig. 1. Automata G, R, R, G‖R, M−1M(G‖R), and

G‖R‖M−1M(G‖R) for Example 1.

secrecy property (and so it is also weakly-secret), the second

example possesses only the weak-secrecy property, and the

third example lacks even the weak-secrecy property.

Example 1: We consider a system modeled by the au-

tomaton G shown in Fig. 1(a). A double circle is used to

identify a marked state. Let the observation mask of an

observer be given by,

M(σ) =

{
σ, if σ ∈ {a, b}
ε, otherwise

for each σ ∈ Σ. Also, let K ⊆ Σ∗ be a language accepted

by the automaton R shown in Fig. 1(b). The augmented

automaton R is shown in Fig. 1(c).

We show that K is secret with respect to Lm(G) and

M . The synchronous composition G‖R and the automaton

M−1M(G‖R) are shown in Fig. 1(d) and (e), respectively,

where z0 = {(x0, y0), (x2, D)}, z1 = {(x1, y1), (x1, D)},

and z2 = {(x0, y0), (x0, D), (x2, D)}. The synchronous

composition G‖R‖M−1M(G‖R) is shown in Fig. 1(f). Any

reachable state (x, y, zG) of G‖R‖M−1M(G‖R) satisfies

the conditions of the first result of Theorem 1. Thus, K is

secret with respect to Lm(G) and M .

Example 2: We consider the system G and the observa-

tion mask M of Example 1. Let K ⊆ Σ∗ be a language

accepted by the automaton R shown in Fig. 2(a). The

augmented automaton R is shown in Fig. 2(b).

We first show that K is not secret with respect to

Lm(G) and M . The synchronous composition G‖R and

the automaton M−1M(G‖R) are shown in Fig. 2(c)

and (d), respectively, where z0 = {(x0, y0), (x2, y0)}
and z1 = {(x1, y1)}. The synchronous composition

G‖R‖M−1M(G‖R) is shown in Fig. 2(e). There exists a

reachable state (x1, y1, z1) of G‖R‖M−1M(G‖R) such that

x1 ∈ Xm, y1 ∈ Ym, and there does not exist (x′, y′) ∈ z1

with x′ ∈ Xm and y′ /∈ Ym. Thus, K is not secret with

respect to Lm(G) and M .

We next show that, however, K is weakly-secret with re-

spect to Lm(G) and M . The automaton M−1M(R) and the

synchronous composition G‖R‖M−1M(R) are as shown in

Fig. 2(f) and (g), respectively. Any reachable state (x, y, z)
of G‖R‖M−1M(R) satisfies the conditions of the second

result of Theorem 1. Thus, K is weakly-secret with respect

to Lm(G) and M .

y0 y1

a

b

(a)

y0 y1

a

b

(b)

D

b a, c

a, b, c

c

c

(x0, y0)

(x2, y0)

(x1, y1)

ac
a

b

a

z0 z1

(d)

c c

(c)

b
(x0, y0, z0)

(x2, y0, z0)

(x1, y1, z1)

ac
a

b

(e)

b

a

a

(f)

c c
c

{D}a, b, c

{y1, D}
{y0} {y0, D}

b b
a

(x1, y1, {y1, D})

(g)

a

(x0, y0, {y0, D})
a

b

(x0, y0, {y0})

(x2, y0, {y0}) (x2, y0, {y0, D})

c a a c

Fig. 2. Automata R, R, G‖R, M−1M(G‖R), G‖R‖M−1M(G‖R)
M−1M(R), and G‖R‖M−1M(R) for Example 2.

a

y0 y1

c c

b

(a)

y0 y1

a

b

(b)

D

b a

a, b, c

c c

{y0} {y1}

a

b

(c)

{D}

b a

a, b, c

c c

(x0, y0, {y0})

(x2, y0, {y0})

(x1, y1, {y1})

ac
a

b

(d)

Fig. 3. Automata R, R, M−1M(R), and G‖R‖M−1M(R) for Exam-
ple 3.

Example 3: We consider the system G and the observa-

tion mask M of Example 1. Let K ⊆ Σ∗ be a language

accepted by the automaton R shown in Fig. 3(a). The

augmented automaton R is shown in Fig. 3(b).

We show that K is not weakly-secret with respect

to Lm(G) and M . The automaton M−1M(R) and the

synchronous composition G‖R‖M−1M(R) are shown in

Fig. 3(c) and (d), respectively. There exists a reachable state

(x1, y1, {y1}) of G‖R‖M−1M(R) such that x1 ∈ Xm and

y1 ∈ Ym. Thus, K is not weakly-secret with respect to

Lm(G) and M .

IV. ENFORCING SECRECY THROUGH CONTROL

In the previous section, we presented algorithms for ver-

ifying the properties of secrecy and weak-secrecy. When

these properties do not hold, it may be possible to restrict

the behaviors of the system by means of control so that

the properties of the secrecy and/or weak-secrecy hold with

respect to the controlled system. In this section, we study the

corresponding control problem. We show the existence of a

maximally permissive nonblocking supervisor S : L(G) →
2Σc such that K ⊆ Σ∗ is secret (resp., weakly-secret) with

respect to Lm(G/S) and M , i.e., for any s ∈ Lm(G/S),

• s ∈ K ⇒ (M−1M(s) ∩ Lm(G/S)) − K �= ∅ (resp.,

s ∈ K ⇒ M−1M(s) − K �= ∅), and

• s /∈ K ⇒ M−1M(s) ∩ Lm(G/S) ∩ K �= ∅ (resp.,

s /∈ K ⇒ M−1M(s) ∩ K �= ∅).

We also present algorithms for computing such maximally

permissive supervisors.

Let SK,M (Lm(G)) (resp., SK,M (Lm(G))) be the set of

all sublanguages L ⊆ Lm(G) such that K is secret (resp.,

weakly-secret) with respect to L and M . The following

4744



theorem shows that both SK,M (Lm(G)) and SK,M (Lm(G))
are closed under union.

Theorem 2: Consider a DES G, a language K ⊆ Σ∗,

and an observation mask M of an observer. The sets

SK,M (Lm(G)) and SK,M (Lm(G)) are closed under union.

By Theorem 2, there always exist the supremal el-

ements, supSK,M (Lm(G)) and sup SK,M (Lm(G)), of

SK,M (Lm(G)) and SK,M (Lm(G)), respectively.

Now we study the synthesis of maximally per-

missive nonblocking supervisors for enforcing secrecy

and weak-secrecy, respectively. Let RCSK,M (Lm(G))
(resp., RCSK,M (Lm(G))) be the set of all relative-

closed and controllable sublanguages L ⊆ Lm(G)
such that K is secret (resp., weakly-secret) with re-

spect to L and M . Since relative-closure and control-

lability are preserved under union, by Theorem 2, both

RCSK,M (Lm(G)) and RCSK,M (Lm(G)) are closed under

union, and their supremal elements, supRCSK,M (Lm(G))
and supRCSK,M (Lm(G)), exist. The following theorem

presents algorithms for computing supRCSK,M (Lm(G))
and sup RCSK,M (Lm(G)).

Theorem 3: Consider a DES G, a language K ⊆ Σ∗, and

an observation mask M of an observer.

1) Consider the iterative computation

• L0 := Lm(G);
• ∀i ≥ 0, Li+1 := sup RC(supSK,M (Li)).

If there exists i ≥ 0 such that Li+1 = Li, then

sup RCSK,M (Lm(G)) = Li.

2) sup RCSK,M (Lm(G))
= supRC(sup SK,M (Lm(G))).

Remark 3: Note that secrecy (and weak-secrecy) requires

that the satisfaction as well as the violation of a property

must not be revealed to an observer. If we design a supervisor

for ensuring that only the satisfaction of the property is not

revealed, and another supervisor for ensuring that only the

violation of the property is not revealed, then an iterative

computation over the two types of supervisors will be re-

quired to eventually obtain a supervisor that enforces secrecy

(or weak-secrecy). The computation presented in the paper

avoids such an iterative computation.

While we have provided a closed-form formula for com-

puting sup RCSK,M (Lm(G)), the termination of the itera-

tive computation of sup RCSK,M (Lm(G)) remains an open

question at this point. In the following, we present a terminat-

ing algorithm for computing a secrecy enforcing nonblocking

supervisor. The supervisor restricts the system behavior to

sup RCN(supSK,M (Lm(G)) (when it is nonempty), which

as we show below, is an element of RCSK,M (Lm(G)), the

set of all relative-closed and controllable sublanguages L of

Lm(G) such that K is secret with respect to L and M .

Theorem 4: Consider a DES G, a language K ⊆
Σ∗, and an observation mask M of an observer. Then,

sup RCN(supSK,M (Lm(G))) ∈ RCSK,M (Lm(G)).

V. COMPUTATION OF SECRECY ENFORCING CONTROL

Theorems 3 and 4 suggest ways in which control

can be exercised to enforce weak-secrecy and secrecy,

respectively. The former requires the computation of

sup RC(supSK,M (Lm(G)), whereas the latter requires the

computation of sup RCN(supSK,M (Lm(G)). The compu-

tations of the sup RC and the sup RCN operations are

already known in literature. In this section, we provide ways

to compute the sup SK,M and the sup SK,M operations.

The following theorem presents formulas for

sup SK,M (Lm(G)) and sup SK,M (Lm(G)).
Theorem 5: Consider a DES G, a language K ⊆ Σ∗, and

an observation mask M of an observer. Then,

sup SK,M (Lm(G))

= {s ∈ Lm(G) | [(M−1M(s) ∩ Lm(G)) − K �= ∅]

∧[M−1M(s) ∩ Lm(G) ∩ K �= ∅]}, and

sup SK,M (Lm(G))

= {s ∈ Lm(G) | [M−1M(s) − K �= ∅]

∧[M−1M(s) ∩ K �= ∅]}.

Next we show that the languages sup SK,M (Lm(G)) and

sup SK,M (Lm(G)) can be computed over the automata

G‖R‖M−1M(G‖R) and G‖R‖M−1M(R), respectively.

Theorem 6: Consider a DES G, a language K ⊆ Σ∗, and

an observation mask M of an observer. Define,

TG := {(x, y, zG) ∈ X × Y × ZG | [x ∈ Xm ∧ y ∈ Ym

∧[∃(x′, y′) ∈ zG : x′ ∈ Xm ∧ y′ /∈ Ym]]

∨[x ∈ Xm ∧ y /∈ Ym

∧[∃(x′, y′) ∈ zG : x′ ∈ Xm ∧ y′ ∈ Ym]]}, and

T := {(x, y, z) ∈ X × Y × Z |

[x ∈ Xm ∧ y ∈ Ym ∧ z − Ym �= ∅]

∨[x ∈ Xm ∧ y /∈ Ym ∧ z ∩ Ym �= ∅]}.

Then,

sup SK,M (Lm(G))

= {s ∈ L(G‖R‖M−1M(G‖R)) |

γG((x0, y0, ReachG(ε)), s) ∈ TG}, and

sup SK,M (Lm(G))

= {s ∈ L(G‖R‖M−1M(R)) |

γ((x0, y0, Reach(ε)), s) ∈ T }.
The following example illustrates how the result of The-

orem 4, that suggests supRCN(supSK,M (Lm(G))) as a

choice for the controlled-behavior (provided it is nonempty),

can be used to synthesize a secrecy enforcing nonblocking

supervisor. It also illustrates the supervisor, thus computed,

need not be maximally permissive.

Example 4: We consider a system modeled by the au-

tomaton G shown in Fig. 4(a). Suppose the observation mask

of an observer is given by,

M(σ) =






σ, if σ ∈ {b, c}
a, if σ ∈ {a1, a2}
ε, otherwise

for each σ ∈ Σ. Let K ⊆ Σ∗ be a language accepted by the

automaton R shown in Fig. 4(b).

4745



x1 x0 x3x2

a1, a2

a1

b

b

c

(a)

y0

a1

(b)

d

y2y1

b

b

c
d

z0 z2z1

b

b

c, d

(d)

c

z3 z4 z6z5

a1, a2

a1, a2

b

b

c, d
c

a1, a2

d
d

d
d d

(x1, y0) (x0, y0) (x3, y2)(x2, y1)

a1

a1

b

b

c

(c)

d

a1, a2

a1

b

b

c
d

a2

(x1, D) (x0, D) (x2, D) (x3, D)

(x0, y0, z0)

b

b

c

(e)

(x2, y1, z1) (x3, y2, z1) (x3, y2, z2)

d c

(x0, y0, z4)

b

b

c

(x2, y1, z5) (x3, y2, z5) (x3, y2, z6)

d c

(x1, y0, z3)

a1

a1

a1

(x0, D, z4)

b

b

c

(x2, D, z5) (x3, D, z5) (x3, D, z6)

d c

(x1, D, z3)

a1, a2

a1

a2

a2

Fig. 4. Automata G, R, G‖R, M−1M(G‖R), and G‖R‖M−1M(G‖R)
for Example 4.

We show that K is not secret with respect to

Lm(G) and M . The synchronous composition G‖R
and the automaton M−1M(G‖R) are shown in

Fig. 4(c) and (d), respectively, where z0 = {(x0, y0)},

z1 = {(x2, y1), (x3, y2)}, z2 = {(x3, y2)},

z3 = {(x1, y0), (x1, D)}, z4 = {(x0, y0), (x0, D)},

z5 = {(x2, y1), (x3, y2), (x2, D), (x3, D)}, and

z6 = {(x3, y2), (x3, D)}. The synchronous composition

G‖R‖M−1M(G‖R) is shown in Fig. 4(e). There

exist reachable states (x3, y2, z1) and (x3, y2, z2) of

G‖R‖M−1M(G‖R) such that x3 ∈ Xm, y2 ∈ Ym, and

there does not exist (x′, y′) ∈ z1 ∪ z2 with x′ ∈ Xm and

y′ /∈ Ym. Thus, by Theorem 1, K is not secret with respect

to Lm(G) and M .

Let Σc = {a, b, d}. We compute the languages

sup RCSK,M (Lm(G)) and sup RCN(supSK,M (Lm(G))).
For G‖R‖M−1M(G‖R), we have TG = {(x1, y0, z3),
(x3, y2, z5), (x3, y2, z6), (x1, D, z3), (x3, D, z5), (x3, D, z6)}.

By Theorem 6, the language sup SK,M (Lm(G)) is obtained

as the marked language of the finite automaton shown in

Fig. 5(a). Further, since sup SK,M (Lm(G)) is relative-

closed and controllable, we have sup RCSK,M (Lm(G)) =
sup SK,M (Lm(G)). The maximally permissive supervisor

disables the event d following the execution of a trace

in (bb)∗b ⊆ L(G) to achieve the supremal sublanguage

sup RCSK,M (Lm(G)). On the other hand, the language

sup RCN(supSK,M (Lm(G))) is obtained as the marked

language of the finite automaton shown in Fig. 5(b). We

can verify that sup RCN(supSK,M (Lm(G))) is strictly

smaller than sup RCSK,M (Lm(G)) in this example, i.e.,

the supervisor synthesized by the method advocated in

Theorem 4 need not be maximally permissive. This is a

price to pay for using the finitely terminating algorithm.

VI. CONCLUSION

We presented a language-theoretic framework for verifi-

cation of secrecy properties and synthesis of secrecy en-

forcing supervisors. We argued that when the set of all

system behaviors is not known to the environment, a weaker

a1, a2

b

b

(a)

a1, a2

a1

b

b

c
d

a1, a2

(b)

a1, a2

a1

b

b

c
d

Fig. 5. Accepters of sup SK,M (Lm(G)) and
sup RCN(sup SK,M (Lm(G))) for Example 4.

notion of secrecy suffices, which we showed to have nicer

computational properties. We showed that both secrecy and

its weaker version are preserved under union. We presented

effective algorithms for computing a nonblocking and se-

crecy (or weak-secrecy) enforcing supervisor. For the case

of weak-secrecy, the computed supervisor was shown to

be also maximally permissive, and for the case of secrecy,

finding a condition under which the computed supervisor is

also maximally permissive is a problem for future research.

For the case of secrecy, we presented another, an iterative,

algorithm that achieves also the maximal permissiveness. A

future research problem is to find a condition under which

the iterative computation will terminate in a finite number of

steps.

REFERENCES

[1] R. Alur, P. Černý, and S. Zdancewic, “Preserving secrecy under
refinement,” in Proc. 33rd International Colloquium on Automata,
Languages and Programming, Lecture Notes in Computer Science,
vol. 4052, Venice, Italy, pp. 107–118, 2006.

[2] E. Badouel, M. Bednarczyk, A. Borzyszkowski, B. Caillaud, and
P. Darondeau, “Concurrent secrets,” Discrete Event Dynamic Syst.:

Theory and Appl., vol. 17, no. 4, pp. 425–446, 2007.
[3] N. Ben Hadj-Alouane, S. Lafrance, F. Lin, J. Mullins, and M. Yed-

des, “On the verification of intransitive noninterference in multilevel
security,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 35,
no. 5, pp. 948–958, 2005.

[4] J. W. Bryans, M. Koutny, L. Mazaré, and P. Y. A. Ryan, “Opacity
generalized to transition systems,” in Proc. 3rd International Workshop
on Formal Aspects in Security and Trust, Lecture Notes in Computer
Science, 3866, Newcastle upon Tyne, UK, pp. 81-95 (2005)

[5] J. Dubreil, P. Darondeau, and H. Marchand, “Opacity enforcing control
synthesis,” in Proc. 9th Int. Workshop Discrete Event Syst., Göteborg,
Sweden, pp. 28–35, 2008.

[6] F. Lin and W. M. Wonham, “On observability of discrete-event
systems,” Inf. Sci., vol. 44, no. 3, pp. 173–198, 1988.

[7] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J. Control Optim., vol. 25, no. 1,
pp. 206–230, 1987.

[8] J. Rushby, Noninterference, transitivity and channel-control security
policies, SRI International, Tech. Rep. CSL-92-02, 1992.

[9] A. Sabelfeld and A. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on Selected Areas in Communications, vol. 21,
no. 1, pp. 1–15, 2003.

[10] A. Saboori and C. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in Proc. 46th IEEE Conf. Decision and Contr.,
New Orleans, LA, pp. 5056–5061, 2007.

[11] A. Saboori and C. Hadjicostis, “Verification of initial-state opacity in
security applications of DES,” in Proc. 9th Int. Workshop Discrete

Event Syst., Göteborg, Sweden, pp. 328–333, 2008.
[12] S. Takai and Y. Oka, “A formula for the supremal controllable and

opaque sublanguage arising in supervisory control,” SICE Journal of

Control, Measurement, and System Integration, vol. 1, no. 4, pp. 307–
311, 2008.

[13] W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Control Optim., vol. 25,
no. 3, pp. 637–659, 1987.

[14] A. Zakinthinos and E. S. Lee, “A general theory of security properties,”
in Proc. 1997 IEEE Symposium on Security and Privacy, Oakland, CA,
pp. 94–102, 1997.

4746


