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Abstract— We use an approximate input reconstruction algo-
rithm to reconstruct unknown inputs, which are then used as a
basis for fault detection. The approximate input reconstruction
algorithm is a least squares algorithm that estimates both the
unknown initial state and input history. The estimated inputs
are then compared to the commanded values and sensor values
to assess the health of actuators and sensors. This approach is
applied to the longitudinal and lateral dynamics of an aircraft.
The input reconstruction algorithm can be used for minimum-
phase or nonminimum-phase zeros; however, zeros on the unit
circle yield persistent estimation errors and thus poor input

reconstruction.

I. INTRODUCTION

As systems in general–and control systems in

particular–become more complex, there is an increasing

need to monitor critical components to ensure their proper

operation. This problem is known generically as either fault

diagnosis or fault detection [1–4].

A widely studied approach to fault detection is to use input

observers to reconstruct inputs to the system based on an

available system model and measurements. The estimated

inputs can then be compared to expected inputs to assess the

health of sensors and actuators. The relevant literature on

this topic has its roots in system inversion theory developed

for either input observers (left inversion) or preview control

(right inversion) [5–15]. One of the difficulties in system

inversion is the presence of zeros. If the system has no

zeros, then input reconstruction is possible even if the initial

state is zero [15]. However, if the system has zeros, then

there exists an initial state such that, for some nonzero

input, the output is identically zero. Therefore, exact input

reconstruction is impossible if the system has at least one

zero. For a minimum-phase zero, the unobservable input

decays, and thus asymptotically input observation is possible.

On the other hand, for a nonminimum-phase zero, the

unobservable input increases without bound, and thus input

observation is possible asymptotically backward in time, that

is, noncausally for large data sets. As a consequence, if

a system has a minimum-phase zero and a nonminimum-

phase zero, then input reconstruction is possible for time

steps that are neither large nor small. Finally, if the zero lies

on the unit disk, then the unobservable input is persistent

(non-decaying in either forward or backward time) and thus

input reconstruction is not feasible.
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In the present paper we begin by reviewing the exact input

reconstruction method developed in [15]. Since this approach

assumes that the system has no zeros, we estimate the input

by using a least squares solution of the input-output relation.

The resulting estimate is unable to estimate input components

in the null space of the coefficient matrix, which corresponds

to the unobservable input component.

We apply this algorithm to the linearized longitudinal and

lateral dynamics of an aircraft in order to estimate thrust

inputs as well as control-surface deflections. These estimates

can be used to detect faults in the actuator or linkage

sensor associated with the control surface. We consider

examples in which the dynamics are minimum phase and

nonminimum phase, as well as strictly proper and exactly

proper, the latter occurring when the measurement is given

by an accelerometer.

II. FAULTS IN AN AIRCRAFT DYNAMIC SYSTEM

We consider the aircraft elevator and engine subsys-

tems, which can potentially undergo various faults. The

elevator is assumed to have a local sensor, called the linkage

sensor, which provides a measurement of the deflection

of the linkage that drives the elevator. Consequently, the

elevator subsystem can undergo various faults; for example,

the control surface may be damaged, the linkage may be

damaged, or the linkage sensor may malfunction.

Figure 1 shows the various signals that are used for

fault diagnosis. Specifically, δek,com is the command to the

elevator, δêk is the reconstructed (estimated) value of the

elevator deflection, and lk,msmt is the signal from the linkage

sensor. As discussed below, discrepancies between these

signals suggest the possibility of various types of failures.

Notation Description

δek,com commanded elevator input

δek,act actual elevator output

lk,act actual linkage output

lk,msmt linkage sensor measurement

δêk estimated elevator input

δTk,com commanded engine input

δTk,act actual engine output

δTk,msmt actual RPM sensor output

δT̂k estimated engine input

TABLE I

NOTATION FOR SIGNALS USED TO IDENTIFY FAULTS
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Linkage Sensor Fault Description

Bias lk,msmt = lk,act + b

Drift lk,msmt = lk,act + kc

Frozen lk,msmt = b

Scale Factor Error lk,msmt = lk,actb

TABLE II

LINKAGE SENSOR FAULTS

We consider the possibility that the linkage can fail in

various ways. In particular, we consider linkage faults that

include saturation, rate saturation, deadzone, and frozen. In

addition, linkage sensor faults include bias, drift, frozen, and

calibration error. These faults are listed in Table 2, where b

is a constant and c is a positive number.

The elevator control surface can fail in various ways. For

example, the elevator may become stuck in a single, fixed

deflection. Alternatively, the elevator may become deformed

or damaged, resulting in a loss of control effectiveness.

Detection of these faults is relevant to health monitoring to

avoid loss of control system performance.

For the elevator, we detect faults during flight by com-

paring the commanded inputs δek,com, the measured inputs

from the linkage sensor lk,msmt, and the estimated inputs

from input reconstruction δêk. Table 3 shows the logic by

which these signals are compared. For example, if the linkage

measurement differs from the commanded elevator deflection

and the estimation elevator deflection, then we can conclude

that the linkage sensor is faulty but that the linkage and

elevator are both operational. In practice, all of these signals

are noisy, and thus error criteria are needed. For simplicity,

Table 3 is stated in terms of equality and inequality of

signals. A similar fault analysis can be applied to other

control surfaces and the engine.

III. INPUT RECONSTRUCTION

In this section, we briefly review the input reconstruc-

tion method developed in [15]. We consider both the strictly

proper and exactly proper cases, which are used in later

sections for numerical examples.

A. Strictly Proper Case

Consider the linear discrete-time system

xk+1 = Axk + Hek, (III.1)

yk = Cxk, (III.2)

where xk ∈ R
n, ek ∈ R

p, yk ∈ R
l, A ∈ R

n×n, H ∈
R

n×p, and C ∈ R
l×n. The input ek and the initial state x0

are assumed to be unknown. Without loss of generality, we

assume l ≤ n, rank(C) = l > 0, and rank(H) = p > 0. For a

nonnegative integer r, define Yr ∈ R
(r+1)l and Er ∈ R

(r+1)p

Case Condition
Linkage
Sensor

Linkage Elevator

1 δek,com = δêk = lk,msmt X X X

2 δek,com = δêk 6= lk,msmt Faulty X X

3 δek,com 6= δêk = lk,msmt X Faulty X

4 δek,com = lk,msmt 6= δêk X X Faulty

5
δek,com 6= δêk and
δek,com 6= lk,msmt

Combination of Cases 2, 3, 4

TABLE III

FAULT DETECTION ANALYSIS FOR THE ELEVATOR

as

Yr
△
=











y0

y1

...

yr











, Er
△
=











e0

e1

...

er











. (III.3)

Definition 3.1: Let r ≥ 1. Then the input and state

unobservable subspace Ur of (III.1), (III.2) is the subspace

Ur
△
=

{[

x0

Er−1

]

∈ R
n+rp : Yr = 0

}

. (III.4)

Definition 3.2: The system (III.1), (III.2) is input and

state unobservable if Ur = {0} for all r ≥ r0.

Define Γr ∈ R
(r+1)l×n, Mr ∈ R

(r+1)l×rp, and Ψr ∈
R

(r+1)l×(n+rp) by

Γr
△
=









C
CA
CA2

.

.

.

CAr









, Mr
△
=









0 0 . . . 0
CH 0 . . . 0

CAH CH . . . 0

.

.

.

.

.

.
. . .

.

.

.

CAr−1H CAr−2H . . . CH









,

and

Ψr
△
=

[

Γr Mr

]

. (III.5)

Then from (III.1), (III.2), we can write

Yr = Γrx0 + MrEr−1 = Ψr

[

x0

Er−1

]

, (III.6)

so that

Ur = N(Ψr), (III.7)

where N denotes null space. Next, define the positive integer

r0
△
=

{

max{⌈ n−l
l−p

⌉, 1}, p < l,

1, p = l,
(III.8)

where ⌈a⌉ denotes the smallest integer greater than or equal

to a. Note that r0 is not defined in the case p > l.

Theorem 3.3: The following statements are equivalent:

1) (III.1), (III.2) is input and state observable.

2) For all r ≥ r0, Yr = 0 if and only if

[

x0

Er−1

]

= 0.

3) For all r ≥ r0, rank(Ψr) = n + rp.

4) There exists r ≥ r0 such that rank(Ψr) = n + rp.

5) rank(Ψn−1) = n + (n − 1)p.

Theorem 3.3 shows that (III.1), (III.2) is input and state

observable if and only if Ψr has full column rank for all
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r ≥ r0. In this case the unique solution of (III.6) is
[

x0

Er−1

]

= Ψ†
rYr, (III.9)

where † represents the Moore-Penrose generalized inverse

Ψ†
r = (ΨT

r Ψr)
−1ΨT

r . (III.10)

B. Exactly Proper Case

Consider the linear discrete-time system

xk+1 = Axk + Hek, (III.11)

yk = Cxk + Gek, (III.12)

where G ∈ R
l×p, while A, H, C, xk, ek, and yk are defined

as in (III.1), (III.2). Without loss of generality, we assume

l ≤ n, rank(C) = l > 0, and rank

[

H

G

]

= p > 0. Due to

Gek, the output yk is directly affected by ek as well as by

the past values of ek. Therefore, we have

Yr = Ψ̄r

[

x0

Er

]

, (III.13)

where Er is defined by (III.3), Ψ̄r
△
=

[

Γr M̄r

]

∈
R

(r+1)l×[n+(r+1)p], and

M̄r =















G 0 · · · 0 0
CH G · · · 0 0

...
...

. . .
...

CAr−2H CAr−3H · · · G 0
CAr−1H CAr−2H · · · CH G















.

Furthermore, we have the following definition.

Definition 3.4: Let r ≥ 0. Then the input and state

unobservable subspace Ūr of (III.11), (III.12) is the subspace

Ūr
△
=

{[

x0

Er

]

∈ R
n+(r+1)p : Yr = 0

}

. (III.14)

The input and state unobservable subspace is given by

Ūr = N(Ψ̄r). Next, if p < l, then define

r̄0
△
= ⌈ n

l−p
⌉ − 1. (III.15)

Since n > l − p, it follows that r̄0 ≥ 1.

Definition 3.5: The system (III.11), (III.12) is input and

state observable if Ūr = {0} for all r ≥ r̄0.

Theorem 3.6: The following statements are equivalent:

1) (III.11), (III.12) is input and state observable.

2) For all r ≥ r̄0, Yr = 0 if and only if

[

x0

Er

]

= 0.

3) rank(Ψ̄r) = n + (r + 1)p for all r ≥ r̄0.

4) There exists r ≥ r̄0 such that rank(Ψ̄r) = n+(r+1)p.

5) rank(Ψ̄n−1) = n(p + 1).

If (III.11), (III.12) is input and state observable, then

Theorem 3.6 implies that Ψ̄r has full column rank for all

r ≥ r̄0. In this case the unique solution of (III.13) is
[

x0

Er

]

= Ψ̄†
rYr , (III.16)

where

Ψ̄†
r = (Ψ̄T

r Ψ̄r)
−1Ψ̄T

r . (III.17)

IV. INVARIANT ZEROS AND UNOBSERVABLE INPUTS

If a linear system has invariant zeros, then it is not input

and state observable, that is Ur 6= {0}. In particular, there

exists an initial state and a nonzero input such that the output

is identically zero. Therefore, it is not possible to exactly

reconstruct the initial state and the input vector from the

measured output. Nevertheless, we use (III.9) and (III.16) for

approximate input reconstruction, although the generalized

inverses of Ψr and Ψ̄r are no longer given by (III.10) and

(III.17). We call this the approximate input reconstruction

method.

Approximate reconstruction must account for the locations

of system transmission zeros in the complex plane relative to

the unit disk. If all of the transmission zeros are contained in

the open unit disk, then approximate causal reconstruction is

possible for sufficiently large data sets and large times k. On

the other hand, if all of the transmission zeros are contained

in the complement of the closed unit disk, then approximate

noncausal reconstruction is possible for sufficiently large data

sets and small times k. Consequently, if all of the system

transmission zeros are contained in either the open unit disk

or the complement of the closed unit disk, then approximate

noncausal reconstruction is possible for sufficiently large data

sets and small times k. Finally, if at least one transmission

zero lies on the unit circle, then approximate reconstruction

is not possible since a persistent reconstruction error will

corrupt the reconstructed inputs.

Let Pr denote the orthogonal projector onto Ur, and let

Pr⊥ denote the orthogonal projector onto U
⊥
r . Therefore, for

the strictly proper case we have

Pr = ΨrΨ
†
r (IV.1)

and similarly for the exactly proper case. We thus have the

following definition.

Definition 4.1: The observable state and input are

given by
[

x0,rec

Er−1,rec

]

△
= Pr

([

x0

Er−1

])

, (IV.2)

while the unobservable state and input are given by
[

x0,unrec

Er−1,unrec

]

△
= Pr⊥

([

x0

Er−1

])

. (IV.3)

It follows from Definition 4.1 that

x0 = x0,rec + x0,unrec, (IV.4)

Er−1 = Er−1,rec + Er−1,unrec. (IV.5)

Therefore, if the linear system is not input and state observ-

able, then the initial state and input consist of the components
[

x0,rec

Er−1,rec

]

and

[

x0,unrec

Er−1,unrec

]

. Therefore, the accuracy of

the initial state and input reconstruction depends on the mag-

nitude of the unobservable components

[

x0,unrec

Er−1,unrec

]

. As

4964



numerical examples show, the reconstructed input Er−1,unrec

is small for small and large values of k, respectively, in

a system that has only minimum phase and nonminimum-

phase zeros. In both cases the reconstruction process involves

a batch-processing algorithm. However, in the nonminimum-

phase case, the input estimates have good accuracy only

for small values of k, and thus the input reconstruction is

noncausal.

A. Illustrative Example

To illustrate the unobservable state and input, we con-

sider a minimal realization of the transfer function

F (z) =
z − a

(z − 0.2)(z − 0.3)(z − 0.4)
, (IV.6)

where the zero a is given by a = 0.1, a = 10, a = 1, or

a = −1. For the case a = 0.1, Figure 2 shows that the

reconstruction improves asymptotically as k increases, but is

poor for small values of k. This behavior is characteristic of a

minimum-phase zero for which the unobservable component

of the input converges to zero. In contrast, for the case

a = 10, Figure 3 shows that the reconstruction degrades

asymptotically as k increases, but is good for small values

of k. This behavior is characteristic of a nonminimum-phase

zero for which the unobservable component of the input

diverges. Consequently, the input reconstruction is noncausal.

For the case a = 1, Figure 4 shows that the reconstruction is

poor for all values of k since the unobservable component of

the input is constant and nonzero. As shown in Figure 5, the

same situation occurs for a = −1, where the unobservable

component of the input is oscillating. In both cases, the

unobservable component is persistent, and thus the input

reconstruction is poor.

V. APPLICATION TO LONGITUDINAL FLIGHT DYNAMICS

In this section we use the approximate input recon-

struction algorithm to estimate the input signals to a lon-

gitudinal flight dynamics model. In particular, we estimate

the elevator deflection and thrust using measurements of

range, altitude, pitch-angle perturbation, and total-velocity

perturbation, which are assumed to be available from flight

sensors. The matrix Ψ†
r is based on the state-space matrices

of the flight dynamic model. We consider the linearized F-

16 model developed in [16], which provides the state-space

matrices A, B, C, and D for both decoupled longitudinal

and lateral flight dynamics once the altitude and the total

velocity of the aircraft are specified.

For longitudinal case, the state-space form of the F-16

model is

Ẋ = AX + BU, (V.1)

Y = CX + DU, (V.2)

where X
△
=

[

x h θ u α q
]T

, U
△
=

[

δT δe
]T

,

and Y
△
=

[

x h u
]T

. The states are range x (ft),

altitude h (ft), pitch-angle perturbation θ (deg), total-velocity

perturbation u (ft/s), angle of attack α (deg), and pitch rate

q (deg/s). The inputs are elevator deflection δe from trim

and thrust δT , while the available measurements are x, h,

and u. The matrices A ∈ R
6×6, B ∈ R

6×2, C ∈ R
3×6, and

D ∈ R
6×2 are given by

A =

















0 0 0 1
0 0 5 3.553e− 10
0 0 0 0
0 1.080e − 04 −3.217e + 01 −1.328e− 02
0 2.076e − 06 2.547e− 13 −2.553e− 04
0 2.573e − 20 0 −3.163e− 18

0 0
−5.000e + 2 0

0 1
−7.326 −1.196

−6.398e− 01 9.378e− 01
−1.568 −8.791e− 01

















, (V.3)

B =









0 0
0 0
0 0

1.565e − 03 7.397e − 02
−2.445e − 07 −1.357e − 03

0 −1.137e − 01









, (V.4)

C =

[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

]

, D = 0. (V.5)

For the system (V.1)–(V.5), we apply the approximate in-

put reconstruction method. The condition number of Ψr

is 2.8901e + 11 for r = 100. We obtain the state-space

matrices for the trim condition at an altitude of 15,000 ft

with a velocity of 500 ft/s. The initial state is thus set to be

x0 =
[

0 15000 0 500 0 0
]T

. The thrust command

δT is chosen to be a constant, and the elevator deflection

command δe is chosen to be sinusoidal. Since D = 0, the

unknown commands are estimated using (IV.2) for r = 100.

Figure 6 shows the commanded inputs and their estimates,

including both the observable and unobservable components.

The unobservable component is close to zero, which is

consistent with the observation that the system is input and

state observable.

Using Table 3, fault detection is conducted for a scenario

in which the engine is given two successive step commands,

while the elevator becomes stuck at t = 45 s. We use the

same initial state, commanded inputs, and step command, as

above. Figure 7 shows commanded inputs, measured inputs

from the linkage sensor and estimated inputs both before

and after the fault occurs. The numerical results suggest that

Case 4 in Table 3 is applicable.

Alternatively, we assume that x, h, and θ are the available

outputs, and thus

C =

[

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

]

. (V.6)

The condition number of Ψr is 2.6326e+14 for r = 100.

With the same initial state and commands, Figure 8 shows the

the unknown commanded inputs and their estimated inputs.

The unobservable component is large, indicating the presence

of an invariant zero near the unit circle.
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VI. APPLICATION TO NONMINIMUM PHASE, EXACTLY

PROPER FLIGHT DYNAMICS

We now consider a nonminimum-phase flight example,

in which the dynamics are exactly proper. We require an

inertial Earth frame FE with an arbitrary origin, whose

axes ı̂E and ̂E are horizontal, and whose axis k̂E points

downward. The aircraft frame is fixed to the body of the

aircraft, and its origin OAC is located at the aircraft center

of mass c. The frame origin is OAC, while the frame vectors

are ı̂AC and k̂AC.

We assume that an accelerometer is installed at the loca-

tion p on the aircraft in order to measure acceleration âpz in

the direction k̂AC. The position vector from the aircraft center

of mass c to p is lı̂AC, and thus |l| is the distance from the

aircraft center of mass c to p. For a typical business jet with

velocity of 675.12 ft/s at an altitude of 4000 ft [17], it can

be verified from aircraft kinematics that the trim condition

is open-loop stable and that the transfer function from the

output of the accelerator to the elevator deflection input is

Gâpz/δê(s) =
âcz(s)

δê(s)
(VI.1)

=−
(42.14−17.65l)s4+(11923.70−26.11l)s3+(88.46−0.12l)s2+79.20s

s4+2.01074s3+8.04799s2+0.084973s+0.067893
.

This system is nonminimum phase as long as l < 276.

In addition, the dynamics are exactly proper case except

when the coefficient of the highest order of s in the transfer

function equals zero, which occurs when l = 2.388.

To apply approximate input reconstruction to fault detec-

tion, we assume that the elevator command is a square wave

and that the elevator becomes stuck. The elevator deflection

is estimated using (III.16) for r = 100. The measured output

is the acceleration in the direction k̂AC. Figures 9 and 10

show the unknown deflection inputs and their estimates with

l chosen to be 50 and 274, respectively. It can be seen that,

for l = 50, the unobservable component of the input is close

to zero, whereas, for l = 274, the unobservable component

increases with time, which is consistent with the fact that the

aircraft dynamics have a nonminimum-phase zero.

VII. CONCLUSIONS

As an extension of exact input reconstruction, we con-

sidered an approximate input reconstruction method where a

least squares solution is used in the presence of zeros. For

plants with minimum-phase zeros, the input-reconstruction

error decays; for nonminimum-phase zeros it grows; and

for zeros on the unit circle, it is persistent. We applied

this technique to aircraft fault detection, where the objective

is to compare the estimated input with the commanded

input and the linkage sensor. This comparison provides a

technique for online fault detection. We demonstrated the

technique for both lateral and longitudinal dynamics, as well

as nonminimum-phase exactly proper dynamics. Future work

will focus on the effect of model errors and sensor noise on

the fault-detection accuracy.
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Fig. 1. Signals used for elevator fault detection
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Fig. 2. Example (IV.6) with minimum phase zero a = 0.1. The
unobservable component is close to zero except for small values of k.
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Fig. 3. Example (IV.6) with nonminimum-phase zero a = 10. The
unobservable component is close to zero except for large values of k.
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Fig. 4. Example (IV.6) with zero a = 1 on the unit circle. In this case,
the reconstructed input has a persistent component.
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Fig. 5. Example (IV.6) with zero a = −1 on the unit circle. In this case,
the reconstructed input has a persistent component.
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Fig. 6. Input reconstruction for F-16 longitudinal flight. Estimates of
the unknown inputs δT and δe are obtained by using measurements of
the outputs x, h, and u and the linearized flight model. In this case, the
unobservable input is close to zero.
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Fig. 7. Input reconstruction for F-16 longitudinal flight. Estimates of the
unknown inputs δT and δe are obtained by using measurements of the
outputs x, h, and u and the linearized longitudinal flight model. For this
example, the input reconstruction algorithm and the logic of Table 4 indicate
that the engine is operational, whereas the elevator is stuck.
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Fig. 8. Input reconstruction for F-16 longitudinal flight. Estimates of
the unknown inputs δT and δe are obtained by using measurements of
the outputs x, h, and u and the linearized flight model. In this case, the
unobservable input is not close to zero, suggesting the presence of an
invariant zero near the unit circle.
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Fig. 9. Nonminimum-phase aircraft example with forward-mounted
accelerometer. For this example, the distance from the aircraft center of
mass to the accelerometer is l = 50 ft. The output is âcz, while δê is the
input. Both observable and unobservable components are shown. Note that
the unobservable component is close to zero, which indicates the absence
of zeros near the unit circle.
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Fig. 10. Nonminimum-phase aircraft example with forward-mounted
accelerometer. For this example, the distance from the aircraft center of
mass to the accelerometer is l = 275 ft. The output is âcz, while δê is
the input. Both observable and unobservable components are shown. Note
that the unobservable component is large for large k, which indicates the
presence of a nonminimum-phase zero close to the unit circle.
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