
  

  

Abstract— Driving skill characterization is an important step 
towards future enhancement of vehicle adaptation control and 
active safety. This paper presents new approaches for driving 
skill recognition and their comparison. New feature extractors 
based on wavelet transform are developed to include temporal 
(spatial) information into discriminant features. The extractors 
are integrated with three classifiers for evaluation. Results 
show advantages of new approaches over existing approaches. 

I. INTRODUCTION 
N order to tune vehicle control parameters for personal 
preference and active safety, it is prerequisite to know a 

driver’s skill level. Growing interest has been expressed 
towards the application of pattern recognition methods to 
driving skill characterization [1-2]. The basic idea of this 
technique is two-fold. First an extractor is needed to extract 
discriminant features from a set of data, e.g. a sampled 
steering wheel angle signal. The discriminant features reflect 
the dissimilarity between drivers with different skill levels. 
Second classifiers are used to collect the features from the 
extractor and intelligently identify the skill level of a driver. 

In [1] Discrete Fourier Transform (DFT) coefficients of 
steering wheel angle signals normalized at a certain speed 
offer a discriminant feature to differentiate drivers. A Feed-
Forward Neural Network (FNN) is then used to construct an 
FNN-based classifier. In [2] further investigation on other 
classification methods such as Decision Tree and Support 
Vector Machine (SVM) has been conducted. It is concluded 
in [2] that the SVM-based classifier outperforms the FNN-
based classifier and the Decision-Tree-based classifier in 
terms of the highest correct recognition rate among them. 

Between feature extraction and feature classification, the 
former part is more fundamental and more critical to driving 
skill recognition, because even if there were a perfect feature 
classification algorithm with 100% accuracy, without a good 
discriminant feature, the correct recognition rate would not 
be as good as expected. In [1-2], the DFT technique has 
been applied to feature extraction. The essence of DFT 
feature extraction is to conduct DFT to capture the spectral 
characteristics of a feature signal and to use the resulting 
DFT coefficients as a discriminant feature to separate 
skillful drivers from typical drivers. However we know that 
driving behaviors explicitly exhibit temporal characteristics. 
It would be beneficial to incorporate temporal information, 
in addition to spectral information, into feature extraction. In 
this paper, we apply Wavelet Transform (WT) to steering 
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wheel angle signals so as to combine spectral information 
and temporal information (equivalent to spatial information 
when signals are normalized with speed) into one feature 
extractor. The use of temporal information leads to an 
improvement of feature extraction and in turn the overall 
performance for driving skill recognition. The new feature 
extractor will be assessed with three classifiers: a new 
Radial-Basis-Network-based (RBN) classifier and the SVM-
based and FNN-based classifiers proposed in [1-2]. 

The data for analysis and experiments are from the same 
dataset used in [1-2], which is collected via a driving 
simulator for constant-speed limit-handling maneuvers. 
There are totally 12 drivers in the dataset. Four of them are 
considered as skillful drivers and the rest are categorized as 
typical drivers according to a survey conducted before their 
tests. The maneuver discussed in this paper is double-lane 
change (DLC). Since each driver has participated in multiple 
test runs, there are totally 403 successful runs, consisting of 
178 runs of skillful drivers and 225 runs of typical drivers.  

II. WAVELET-BASED FEATURE EXTRACTION 
Various techniques based on spectral analysis have been 

developed for signal analysis, control systems, and pattern 
recognition. The most well known technique of these is 
Fourier analysis. As Fourier analysis transforms a signal 
from the time domain into the frequency domain, the 
temporal (spatial) information of the signal will be lost. On 
the other hand, the most significant information for a driver 
is the road information collected via his vision. The driver’s 
response to spatial information is critical for driving skill 
recognition. A common sense is that a skillful driver acts 
more promptly than a typical driver based on the observation 
of roads and his positions. This is an important and useful 
discriminant feature, which Fourier analysis cannot detect.  

A way to correct the deficiency of Fourier analysis is to 
analyze only a small section of a signal at a time and reflect 
the original signal on a two-dimensional map of time (or 
space) and frequency. Methods such as Short-Time Fourier 
Transform (STFT) and Wavelet Transform (WT) have been 
introduced for this purpose. A drawback of STFT is that a 
time window of a certain size has to be determined in 
advance. The pre-determined time window is not suitable for 
driving skill recognition because how to choose the window 
size for the best performance is unknown, especially when 
the speed varies for each run. As a more flexible method, 
WT meets our expectation as it allows the use of longer time 
windows for lower frequencies and shorter time windows 
for higher frequencies by exploiting a set of wavelets. 
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Several families of wavelets, such as Haar, Daubechies, 
Biorthogonal, Coiflets, [3-7], have been successfully applied 
to signal analysis, image processing, and fault detection. 
Continuous WT (CWT) that calculates wavelet coefficients 
at each scale and position is impractical, because it provides 
highly redundant information, requiring a huge amount of 
computation resource. Discrete WT (DWT) gives sufficient 
information for analysis and synthesis of the original signal, 
and offers a more efficient and practical way to operate WT. 
Readers can be referred to [3-4] for detailed mathematics of 
DWT, which is beyond the scope of this paper. 

A. Wavelet-Based Feature Extractor 

 
Fig. 1.  The structure of a WT-based feature extractor 

The structure of a WT-based feature extractor is shown in 
Fig. 1. A signal is inputted into two complementary filters 
and yields two sets of WT coefficients: detail coefficients 
cD1 and approximation coefficients cA1 for the 1st level. 
Note that the two filters, i.e. the high-pass filter and the low-
pass filter are defined with some wavelets as the basis 
functions. Detail coefficients capture the low-scale (high-
frequency) components of a signal, while approximation 
coefficients apprehend the high-scale (low-frequency) 
components. Then cA1 are inputted into the same filters 
again for further decomposition and generate the WT 
coefficients of the 2nd level: cD2 and cA2. This procedure is 
repeated until the last level n. The WT coefficients consist 
of n sets of detail coefficients cDi, i=1,2,…,n, and one set of 
approximation coefficients cAn, covering the entire 
spectrum of the signal. While each set corresponds to a 
specific frequency region, the levels of DWT are chosen 
based on specific requirements. In this research, we choose 
n=8, because of two reasons. One reason is that for the DLC 
maneuver, the 5th and 6th levels are the most critical levels to 
identify a driver’s skill. Another reason is that given the 
sampling rate of 50Hz, the process becomes trivial after the 

8th level, because the size of the time window is large 
enough to cover the entire time domain of data. 

Fig. 1 also shows the signal reconstruction. The WT 
coefficients at each level go through an inverse WT and 
yield a reconstructed signal component of each level. 
Summing these signal components reconstructs the original 
signal. The signal reconstruction, which is only used for 
analysis, is not a part of the WT-based feature extractor. 

In this research, we use the 4th order Daubechies wavelet, 
db4, because Daubechies wavelet family has a self-similarity 
property, which gives rise to a down-sampling technique for 
faster WT [3]. After a study, db4 meets our requirement. 

For the data set under a sampling rate of 50Hz, a DWT 
process using db4 for feature extraction takes 6400─16000 
real multiplications and additions. The DFT-based feature 
extractor in [1-2] conducts a 1024-point FFT for all runs, 
which requires 11264 complex multiplications and additions 
for each run. As feature extraction will be operated online, 
the number of operations results in a large difference in 
implementation. It is also worth mentioning that the DWT 
feature extraction is essentially a combination of several 
filtering processes, which can be implemented in real time, 
while DFT is not a real time operation in a general sense. In 
addition, when we only focus on certain levels for feature 
extraction, e.g. extracting discriminant features at the 5th and 
6th levels, the computation cost can be further reduced. 

B. Feature in the Frequency Domain 
From [1-2], it is known that the second foment in the 

frequency spectrum of steering wheel angle signals is a 
discriminant feature to differentiate skillful drivers from 
typical drivers. Since the basis functions of wavelet analysis 
are not sines and cosines, it is interesting to see which levels 
cover the second foment, being the key to driving skill 
recognition. To show that, we select two runs completed by 
two drivers at different maneuvering speeds for illustration. 

Run 493 is completed by subject 9996 at 30mph. Fig. 2 
shows the amplitudes of the DFT coefficients of the steering 
wheel angle signal and the reconstructed signal components 
for the 5th─8th levels, i.e., D5, D6, D7, D8, and A8. The 
reconstructed component of each level represents a part of 
the original signal and corresponds to a scale. Conducting 
DFT on the reconstructed signal component of each level, 
we connect WT analysis to DFT analysis. 

In Fig. 2, the blue line represents the DFT coefficients of 
the steering wheel angle signal, and clearly shows a second 
foment around 0.6Hz. It can be seen that the 6th level (black) 
whose pseudo-frequency is also around 0.6Hz, captures the 
second foment. The 5th level (red) whose pseudo-frequency 
is around 1Hz, reflects a high frequency part, where there is 
a third foment. The 7th and 8th levels (yellow, magenta, and 
cyan) cover a low frequency part, together contributing to 
the first foment ranging from 0Hz to 0.4Hz. The 3rd and 4th 
levels grasp higher frequency parts (above 1Hz). Compared 
to the 5th─8th levels, the amplitude of the DFT coefficients 
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for these two levels is much smaller, indicating that they are 
not the key parts of the steering wheel angle signal. The 1st 
and 2nd levels are in the noise region with very small 
magnitudes of their DFT coefficients. 
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Fig. 2.  DFT of reconstructed signal components (5th─8th level) for run 493 
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Fig. 3.  DFT of reconstructed signal components (5th─8th level) for run 416 

Next we investigate run 416 completed by subject 9964 at 
50mph. Fig. 3 shows the amplitudes of the DFT coefficients 
of the original signal and the reconstructed components of 
the 5th─8th levels, i.e., D5, D6, D7, D8, and A8. The blue 
line represents the DFT coefficients of the original signal 
and shows a second foment around 0.8Hz. It can be seen 
that the 5th level (red) whose pseudo-frequency is around 
1Hz captures the second foment. The 6th level (black) whose 
pseudo-frequency is around 0.6Hz also has a contribution to 
the second foment. The 7th level (yellow) whose pseudo-
frequency is around 0.3Hz, captures the main part of the first 
foment. The two reconstructed signal components of the 8th 
level, i.e., D8 (cyan) and A8 (magenta), and the 6th level 
(black) also have contributions to the first foment, which 
ranges from 0Hz to 0.6Hz. Similar to run 493, the smaller 
amplitudes of the DFT coefficients indicates that the 3rd and 
4th levels are not the key parts of the steering wheel angle 
signal, and the 1st and 2nd levels are in the noise region.  

As a summary, we make the following conclusions. Given 
the speed from 20mph to 50mph and the sampling rate of 
50Hz, the 5th and 6th levels have the most significant 
contributions to the second foment, which is the key to 
differentiate skillful drivers from typical drivers. The 7th and 
8th levels have contributions to the first foment, which is the 
basic element for the completion of the DLC maneuver. 
Hence it is reasonable and more efficient to focus on the 5th 
and 6th levels for feature extraction rather than all levels. 
The evaluation results to be presented later also show that 
there is no performance loss for a recognizer using the 5th 
and 6th levels for feature extraction. To be comparable to the 
DFT-based feature extraction, which takes the first 30 points 
of the DFT coefficients normalized at the speed of 27mph, 
we will consider the 4th─8th levels for the comparison study, 
because these levels approximately cover to the same 
frequency region as the first 30 points of the normalized 
DFT coefficients. In fact including 1st─3rd levels into feature 
extraction does not improve the performance. It is worth 
mentioning that although the physical frequency of the 
second foment varies with the speed, there is no need for the 
WT-based feature extractor to normalize at a certain speed. 
This is because with WT, temporal information is explicitly 
displayed along the space axis at each level. A disadvantage 
of normalization is that it blurs the line between some 
typical drivers and skillful drivers for low speed runs. 

C. Feature in the Space Domain 
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Fig. 4.  Comparison of magnitudes of DFT coefficients 

It has been observed that some typical drivers have a 
notable second foment in the frequency spectrum of some 
runs, especially when maneuvering at a low speed. It is hard 
for a classifier to recognize those runs as typical drivers only 
based on a feature in the frequency domain. To be specific, 
let us look at an example: run 1130 completed by subject 6 
at 20mph under a dry surface condition. The survey shows 
that subject 6 is a typical driver. Taking 1024-point DFT on 
the steering wheel angle, we plot the magnitude of the DFT 
coefficients for the first 30 points in Fig. 4 (red dotted). For 
comparison, we choose run 801 completed by subject 9964, 
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who is a skillful driver, at 20mph under the same scenario. 
The frequency spectrum of run 801 is also plotted in Fig. 4 
(blue dotted). For better illustration, the means of DFT 
magnitudes for all skillful (blue) and typical drivers (red) are 
also shown in Fig. 4. It shows that at a low speed subject 6 
has a notable second foment in the frequency spectrum, 
which is similar to subject 9964. Meanwhile looking at the 
means of DFT magnitudes, we notice that run 1130 will be 
recognized as a skillful driver’s behavior instead of a typical 
drive’s behavior if we use the DFT feature extraction. 
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Fig. 5.  cD6 and maneuvers 
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Fig. 6.  cD5 and maneuvers 

Fig. 5 and Fig. 6 show the WT coefficients of both runs at 
the 6th and the 5th level respectively. For better illustration, 
the maneuvers of both runs are also plotted (dotted) along 
with the cones. From Fig. 5, we observe that the magnitude 
of the WT coefficients for run 801 is larger than that for run 
1130 in the space region (X position) from 60 meter to 130 
meter, which corresponds to the lane change operation in the 
DLC maneuver. Moreover we notice that for run 801 large 
coefficients appear in an early stage of the DLC operation 
(80 to 130 meter), while large coefficients occur much later 
in the space (after 130 meter) for run 1130. The explanation 
is that skillful drivers are more proactive than typical 
drivers. Skillful drivers tend to look into the road further and 
observe the surrounding environment more actively so as to 

make a quicker but more precise decision. Typical drivers 
are less capable of observing the environment and tend to 
have corrections to the steering wheel angle in a late stage of 
the operation to compensate for the error. In Fig. 6 a similar 
characteristic can be observed. In this case the 6th level plays 
a more important role in the second foment than the 5th level 
at speed 20 mph. This fact can also be verified by noticing 
the magnitudes of WT coefficients of both levels. 

D. Feature Extraction 
To avoid redundancy and reduce implementation cost, we 

use a technique to take weighted averages on the magnitude 
and the X position of the WT coefficients for each level 
before inputting them into a classifier. Fig. 7 plots the 6th 
level WT coefficients of run 493. Consider the region 
enclosed by the x-axis and the curve representing the 
magnitude of the WT coefficients. To equally emphasize 
both frequency and space, we calculate the “center” of this 
region. Assume that the area is defined on a closed 
interval ],[ bax ∈ , and use )(xf  to describe the curve. The 
formula to calculate the area center ),( yx  is 
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Fig. 7.  WT coefficients (magnitude) of the 6th level and the weighted 

average of WT coefficients (magnitude) for run 493 
Use an n-dimension vector ],,[ 21 nxxxx K=  to define 

the X position and another vector ],,[ 21 nyyyy K=  for the 
magnitude. We rewrite (1) into a discrete fashion as 
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where ∑ = + −=
n

i iii xxyA
2 1 )( . With this technique, a pair of 

coordinates is used to characterize the discriminant feature 
for one run at each level. We plot the discriminant feature on 
a two-dimensional plane with the horizontal axis to indicate 
the averaged position x  and the vertical axis to indicate the 
averaged magnitude y . Based on the previous discussions, it 
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is predicted that the features of skillful drivers tend to be in 
the upper left corner, and the features of typical drivers tend 
to be in the lower right corner. Fig. 8 shows the discriminant 
features for all runs at the 6th level. In Fig. 8, visually we can 
draw such a line to divide these runs into two groups of 
skillful and typical drivers respectively. Recall run 1130, 
which cannot be recognized as a typical driver’s behavior 
with the DFT-based feature extractor. Fig. 8 shows the 
discriminant features of run 1130 and run 801 generated by 
the WT-based extractor against the collective features of the 
6th level for all runs. It can be seen that we can successfully 
differentiate run 1130 from skillful drivers’ runs. 
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Fig. 8.  Collective discriminant features for the 6th level 

E. RBN-Based Classifier 
The function of a classifier is to identify drivers with their 
skill levels based on the discriminant features from a feature 
extractor. Neural networks have been extensively used for 
classification such as the Feed-Forward Neural Network 
(FNN) used in [1]. Radial Basis Networks (RBNs) are 
alternatives to FNNs. Similar to FNNs, RBNs have two 
layers: a hidden layer of n radial basis neurons and an output 
layer of a linear neuron. RBNs use radial basis functions in 
the neurons of the hidden layer rather than the sigmoidal or 
other S-shaped functions as in FNNs. A typical radial basis 
function is the Gaussian function, which is given by 

( )( ) },,2,1{,  exp),,( 2 nircxrcxf iiiii K∈−−=       (3) 
where x=[x1, x2,…, xm]T is the input, ic  is the center of the 
function, and ir  is the radius that determines the shape of 
the function. The output neuron is formed by a weighted 
sum of the outputs of the radial basis neurons and a unity 
bias. Two properties of RBNs: linear parameterization and 
locality [8] result in a simple update law, which is operated 
easily and much faster than the back propagation algorithm. 

III. COMPARISON STUDY 
The WT-based feature extraction is compared with the 

DFT-based feature extraction. Three classifiers: FNN-based, 
RBN-based, and SVM-based, are integrated with both 
extractors. A set of discriminant feature vectors is used as 

training data to train the classifiers. Another set is used as 
testing data to be inputted into the classifiers for driving skill 
recognition. A ten-fold cross-validation test as explained in 
[1] is conducted to evaluate the recognition performance. 

The correct recognition rate (CRR) is defined by 

runs  totalofNumber 
runs recognizedcorrectly  ofNumber 

. 

A. Comparison over All Subjects 
The average CRRs for six recognizers are summarized in 

Table 1. In general the WT-based extractor outperforms the 
DFT-based extractor in terms of CRRs. The WT-based 
extractor increases the overall CRRs by 4% with the FNN 
classifier, 4% with the RBN classifier, and 6% with the 
SVM classifier. However, with the RBN classifier, the WT-
based extractor has a worse recognition of skillful drivers. 
This is due to the choice of the spread of the RBN. It has 
been observed that the smaller the spread, the higher the 
CRR of skillful drivers and vice versa. The reason is 
because the frequency spectrum of a typical driver is more 
stationary than that of a skillful driver such that a more local 
RBN with a smaller spread is more capable of recognizing 
skillful drivers. We can see that the spread is not balanced 
for the WT-based extractor, leading to a high CRR for 
typical drivers and a low CRR for skillful drivers. 

TABLE 1 
PERFORMANCE COMPARISON OF DFT-BASED & WT-BASED EXTRACTORS 

Classifier FNN 
Classifier 

RBN 
Classifier 

SVM 
Classifier 

Extractor DFT WT DFT WT DFT WT 
CRR for Skillful (%) 68 72 73 69 76 82 
CRR for Typical (%) 78 81 84 93 82 89 

Overall CRR (%) 73 77 79 83 80 86 

B. Impact of Subject 357 
A further investigation on individual drivers reveals that 

subject 357 causes misrecognition especially for low speed 
runs. In [1] we have concluded that the frequency spectrum 
of the steering wheel angle signals of subject 357 is closer to 
typical drivers than to expert drivers in terms of mean DFT 
coefficients. Applying wavelet analysis, we see that subject 
357 still causes misrecognition, because most of his runs are 
close to the boundary that divides the two categories.  

TABLE 2 
PERFORMANCE COMPARISON OF RECOGNITION WITH AND W/O 357 

Recognizer DFT-FNN DFT-RBN DFT-SVM 
Subject 357 w w/o w w/o w w/o 

CRR for Skillful (%) 68 75 73 82 76 84 
CRR for Typical (%) 78 89 84 92 82 90 

Overall CRR (%) 73 83 79 88 80 88 
Recognizer WT-FNN WT-RBN WT-SVM 
Subject 357 w w/o w w/o w w/o 

CRR for Skillful (%) 72 76 69 81 82 88 
CRR for Typical (%) 81 90 93 96 89 93 

Overall CRR (%) 77 85 83 90 86 91 
The comparison results of the two cases, i.e., with and 

without subject 357, for the six recognizers are summarized 
in Table 2. The DFT-FNN, DFT-RBN, and DFT-SVM 
recognizers increase the overall CRR by 10%, 9%, and 8% 
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respectively without subject 357. The WT-FNN, WT-RBN, 
and WT-SVM recognizers increase the overall CRR by 8%, 
7%, and 5% respectively without subject 357. 

C. Study of 5TH-and-6TH-Level Extractor 
As addressed in Section 2, among all WT levels, the 5th 

and 6th levels are the most significant to driving skill 
recognition. It is beneficial using less resource (e.g., less 
memory and throughput of CPU due to less data to be 
handled) to extract same discriminant features without loss 
of quality. In this subsection, we study a WT-based feature 
extractor that only uses the WT coefficients of the 5th and 6th 
levels to construct the discriminant feature and compare it 
with the 4th-to-8th-level WT-based extractor. 

TABLE 3 
PERFORMANCE COMPARISON OF THE 5TH-AND-6TH-LEVEL WT-BASED 

EXTRACTOR AND THE 4TH-TO-8TH-LEVEL WT-BASED EXTRACTOR 
Extractor 5th-and-6th-level 4th-to-8th-level 
Classifier FNN RBN SVM FNN RBN SVM 

CRR for Skillful (%) 66 68 79 72 69 82 
CRR for Typical (%) 84 95 88 81 93 89 

Overall CRR (%) 76 83 84 77 83 86 
The average CRRs for the two WT-based extractors with 

three classifiers are summarized in Table 3 to assess the 
effectiveness of the 5th-and-6th-level WT-based extractors. In 
terms of CRRs, there is no much difference between the two 
feature extractors. We conclude that for all three classifiers 
the 5th-and-6th-level WT-based extractor maintains a similar 
performance to the 4th-to-8th-level extractor. However the 
5th-and-6th-level WT-based extractor uses less resource. 

We also compare the 5th-and-6th-level WT-based feature 
extractor and the 4th-to-8th-level feature extractor for the case 
without subject 357 in order to evaluate the impact of 
subject 357 to the 5th-and-6th-level extractor. The average 
CRRs for the two WT-based extractors with three classifiers 
are summarized in Table 4. In terms of CRRs, there is no 
much difference between the two feature extractors. 

TABLE 4 
PERFORMANCE COMPARISON OF THE 5TH-AND-6TH-LEVEL WT-BASED 

EXTRACTOR AND THE 4TH-TO-8TH-LEVEL WT-BASED EXTRACTOR W/O 357 
Extractor 5th-and-6th-level 4th-to-8th-level 
Classifier FNN RBN SVM FNN RBN SVM 

CRR for Skillful (%) 74 79 88 76 81 88 
CRR for Typical (%) 91 96 91 90 96 93 

Overall CRR (%) 85 90 90 85 90 91 

A. Comparison Study of Three Classifiers 
The three classifiers are also compared to investigate their 

effectiveness. The average CRRs for the six recognizers are 
collected in Table 5. It shows that the SVM-based classifier 
outperforms the FNN-based classifier by 7% and the RBN-
based classifier by 1% with the DFT-based extractor and by 
5% and 3% for each with the WT-based extractor. The best 
performance of the SVM-based classifier suggests that the 
extracted discriminant feature may have a similar 
distribution over all of the drivers. The RBN-based classifier 
outperforms the FNN-based classifier due to the advantage 
of RBNs in locality over FNNs. Also referring to Table 2 for 
the impact of subject 357, we see that all algorithms have 

difficulties recognizing subject 357. It implies that a feature 
extractor is more fundamental to differentiate drivers’ skills. 
However the SVM-based classifier is more robust to subject 
357 than the RBN-based and FFN-based classifiers. This 
observation suggests that the extracted discriminant feature 
of subject 357 still follows the assumption of a similar 
distribution, although it is close to the boundary. 

TABLE 5 
PERFORMANCE COMPARISON OF CLASSIFIERS 

Extractor DFT-Based Extractor WT-Based Extractor 
Classifier FNN RBN SVM FNN RBN SVM 

CRR for Skillful (%) 68 73 76 72 69 82 
CRR for Typical (%) 78 84 82 81 93 89 

Overall CRR (%) 73 79 80 77 83 86 

IV. CONCLUSIONS 
A WT-based feature extraction scheme and a new RBN-

based classifier are proposed for driving skill recognition. A 
comparison study is conducted for three feature extractors: 
DFT-based, 4th-to-8th-level WT-based, 5th-and-6th-level WT-
based, and three classifiers: FNN-based, RBN-based, SVM-
based. We conclude that the WT-based feature extractors 
outperform the DFT-based extractor and the SVM-based 
classifier has the best performance among the classifiers. 
Future work aims at further validation with real driving data 
to close the gap between the simulator and the real world.  

REFERENCES 
[1] Y. Zhang, W. Lin, and Y.K. Chin, “Driving skill characterization: a 

feasibility study,” Proceedings of IEEE International Conference on 
Robotics and Automation, Pasadena, CA, May 19-23, 2008. 

[2] Y. Zhang, W. Lin, and Y.K. Chin, “Data-driven driving skill 
characterization: algorithm comparison and decision fusion,” 
Proceedings of SAE Word Congress, Detroit, MI, April, 2009 

[3] M. Vetterli and J. Kovacevic, Wavelets and subband coding, 
Englewood Cliffs, NJ: Prentice Hall, 1995. 

[4] G. Strang and T. Nguyen, Wavelets and filter banks, Cambridge, MA: 
Wellesley-Cambridge Press, 1996. 

[5] R.A. DeVore,, B. Jawerth, and B.J. Lucier, “Image compression 
through wavelet transform coding,” IEEE Transactions on 
Information Theory, vol. 38, no. 2, pp. 719-746, 1992. 

[6] S. Mallat, “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Analysis and Machine 
Intelligence, vol. 11, no. 7, pp. 674-693, 1989. 

[7] W.J. Wang and P.D. McFadden, “Application of wavelets to gearbox 
vibration signals for fault detection,” Journal of Sound and Vibration, 
vol. 192, no. 5, pp. 927-939, 1996.  

[8] V. Kecman, Learning & Soft Computing ─ Support Vector Machines, 
Neural Networks and Fuzzy Logic Models, Cambridge, MA: MIT 
Press, 2001. 

[9] C. MacAdam, “GM driver model project: literature review,” Technical 
Report for General Motors Corporation, The University of Michigan 
Transportation Research Institute, August 2000. 

[10] C. MacAdam, “Development of a Driver Model for Near/At-Limit 
Vehicle Handling,” Technical Report for GM Corporation, The 
University of Michigan Transportation Research Institute, Nov. 2001. 

[11] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, New 
York, NY: Wiley, second edition, 2001. 

[12] T.M. Mitchell, Machine Learning, Boston, MA: McGraw-Hill, 1997. 
[13] W.T. Miller III, R.S. Sutton and P.J. Werbos, Neural Networks for 

Control, Ed., Cambridge, MA: MIT Press, 1995. 
[14] N. Cristianini and J. Showe-Taylor, An Introduction to Support Vector 

Machines and Other Kernel-based Learning Methods, Cambridge, 
UK: Cambridge University Press, 2000. 

425


